On injective attributed characterization of 2-way deterministic finite
state transducers

By M. BArRTHA

Definitions and notation

_ A 2DFT starting from the left (right) is a 7-tuple T=(0,X,L,R,Y,34,q,),
where : -
(i) Q is a finite, nonempty set of states;

(ii) X is a finite, nonempty input alphabet

(iii) L (left endmarker) and R (right endmarker) are dlstmgmshed symbols
not in X;

(iv) Y is a finite output alphabet; -

(v) 8: OX(XU{L, R)~OXTYX {left, nght} is a part1a1 functxon

(vi) g,€Q is the initial state.

tuformally T functions as follows. . The input word is surrounded by the two
endmarkers, and T starts from state g, with its tape head reading the left. (right)
endmarker. The moves of T are described by the transition function é in the usual
way (cf. [1]). The transduction terminates successfully when T moves right of
R or left of L. It is obvious that the left or right start of T is only a technical
question. T is called an IDFT if & allows it moving in only one direction, = . -

Let 4 be a finite, nonempty set such that 4=4.,UA4; and 4,N4;=0. The
elements of A, and A4; are called synthesized attributes (s-attributes) and inherited
attributes (i-attributes), respectively. Define the monoid M(4, ¥) (Y .is a- finite
alphabet) as follows. M(4, Y) consists of all partial functions .of 4 into AXY™*.
D1SJom1ng (eM(A, Y) into four parts we can represent it by the followmg dlagram,

A, -~ A, XY*
4 .
é: - -gtl IE’
AXY* « A;

where é= E UE Ué, Uf and Es, &> &5 & have pa1rw1se d1s_|omt domams To make

this kind of diagrams composable we rather consider ¢ as a partial function
& AXY*~AXY* where &(a,w) (acA, wEY*) can be obtained from -&(a)

2+



348 M. Bartha

by prefixing its second component with w. For simplicity we use the abusing
notation ¢ =¢, and do not indicate the factor Y* in the diagrams. For a€ A4,
the first and the second component of &(a) will be denoted by atir (¢, a) and
out (£, @), respectively. attr (£) will denote the partial function {(a, attr (¢, a))|ac A}.
If Y=0, then we identify ¢ with attr (). ¢ is called injective if such is attr (&).
Now if &, n€M(A,Y), then Eon={ can be constructed as follows.

A o4, T 4

e e ¢ ‘.“_ L g’.l’_" . "l . . R
- Tl . A

Ai ;...Ai,

-

ta

= anJo (Es o (ﬁl o és)" ° ﬁs)'; - <Z; = El U (."LEJO (Es o ('_]l o _s)" o ﬁi o é;))
= ,.szo (’_1; o (§s oif;)" °§i) 5 ':€5.= Q's.U'.(ntsz (’_1. o @s of)"o és o '_ls))

_ ¢ is-well defined, since in each case those: partial mappings, the union of which must
be taken have pairwise disjoint domains. It is easy to verify that this composition
is associative, preserves injectivity, and the unit element of M(4, ¥) corresponds
to the identity map of AXY* For acA, path- (¢on, a) will denote the sequence
of atttibutes reached in the above composite diagram during the computatlon of

Eon(a).

Definition. ‘A simple deterministic attributed strmg transducer (SDAST) starting
from the left (right) is a 7- -tuple A=(4, X, L, R, Y, h,a,), where ..

(i) A=A4,U4; is the finite, nonempty set of attributes, A,MNA4;=0;

@) X, L, R ‘and Y -are as in the case of a:2DFT;
i (iii) h is:a'mapping of X(L, R)=XU{L, R} into M(4,Y);

- (iv)-if A starts from the left, then a,€ 4, else aj€A4;.

Denote the extension of h to-a homomorphlsm of - X(L, R)* into M(A Y )
also by k. “Then the transform of wéX* by A is out(h(LwR), ao) Ais called
m_]ectlve 1f h(x) is mJectlve for every-x€ X(L, R).

. Lemma 1. 2DFT and SDAST are equ1valent 1e they define the same class
of mappmgs

- Proof Let T=(0,X,L,R;Y,9, qo) be a’ 2DFT, and define the SDAST
A= (2Q X, L, Ry Y h, ay) as follows A, and A4; are two (dlSjOlnt) isomorphic
copies of Q. Let g, and ¢; denote the correspondmg s-attribute and i-attribute
of a state g€ Q, respectively. Then for x€X(L, R) and g€Q, h(x)(q,) and h(x)(q;)
are defined iff 8(g, x) is defined, and in this case ,

@@ =hoe= ({2 ) w] i 569 = (e {Zf;,’”}]

ao—(qo), if T starts from the left, otherwise ao—(qo), It is easy to see that T and
‘A ‘are equivalent. .
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Let A=(4,X,L; R, Y, h,;a5). ' be an SDAST and.define the 2DFT T=
=(4,X,L, R, Y,5,a,) as follows. For xEX(L R) and aEA 5(a, x) is defined
1ﬁ' h(x)(a) is defined, and in this case

5(a ¥) = ( {;’%”}] if - h(x)(a)—(b W) with be{ }

The equivalence of T and A is agam ev1dent. Now we prove a lemma-similar
to Lemma 1 in [2]. Y ’ C

Lemma 2. Every SDAST mapping is.the composition of two IDFT mappmgs
and an lnjectrve SDAST mapping. '

Proof. Let A=(4,X,L,R,Y,h,a,) be an SDAST startmg from the left,
w€X*, and suppose that LwR=w,xw, for some x€X(L, R), w,€X(L, ‘R)* (i=1,2).
The tr1p1e a=(w,, X, w;) indicates an x-labelled node in LwR. Let ¢=attr (h(wy),
n=attr (h(xwz)) called the left and right dependency graphs of ox, respectlvely,
and define the subsets 4{” and A® of A4 as: :

(i) if h(LwR)(ay) is undeﬁned then A(")—A(")—ﬂ

(i) else A""— (E °(n.0€s) (ao))

AW = U G o(m0~f) on.(ao))

AM(A) is the set of useful s-attrlbutes (1-attr1butes) at node a, ie. only these
- attributes of a take part inthe transduction of w. Our goal is to mark each node
of LwR with a set 4,S A4 which consists of the useful s-attributes of the node and
the useful i-attributes of - its right neighbour. (Take A(")—ﬂ at'the “right neighbour
of (Lw, R, 2)”.) This can be achieved by the successive application of two IDFT
as follows. The first 1IDFT T, starts from the right and marks each node with
a pair consisting of the right dependency graph of the node and that of its right
neighbour. The set of possible right dependency graphs is finite, so it can be used
as the set of states for T,. The second 1DFT T, starts from. the left, and at each
node first computes the left dependency graph of the node and that of its right
neighbour, then from the mark put by T, it is able to.compute: 4, and write it
out as a new mark.. -

Let. X' S X(L, R)XP(A) denote the alphabet of those marked symbols that
can be achieved by the above marking process, and let A’= (A X, L, R Y, W, ao)
be the following SDAST (starting from the left).

(i) W(L) and H(R) are equal to the unit element of M(A Y);

@) if (x, 4,)€X’, then K((x, 4,)) is the restriction of h(x)‘to 4,.

A’ is injective, because any duplrcatlon wouild imply a circular. dependence among
the useful attributes, which is impossible.. (Note that if - (x, ‘4,)€X’, - then there
exist wy, we€X(L, R)* such' that w,xw,=LwR - for some wecX*, and:the set
of useful attributes at the node (w,, x,w,) and its right nelghbour is A;) Itis
also clear that the composite-application of T,, T, and A’ defines the same mapping
as A. The case of a right start can be treated symmetrlcally I

ot
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Simulation of 1DFT by injective SDAST

Let T=(Q,X,L,R,Y,d3,q) be an 1DFT starting e.g. from the left, Q=
={q,, ..., 4,}- It can be supposed without loss of generality that & is completely
defined on: QX X. We shall use the following attributes to simulate T.

AP = {s(i, Nl =i j = nfU{s@)li€[n])
as synthesized attributes, and

SR AP ={iGHl=ixj=n)
as inherited ones.

For A,=AMUA™ let HSM(A4,,0) be defined as follows. ¢€H iff it
satisfies the following three conditions. : :

(i) for every 1=j<k=n {£(i(j, ), &k, N))=1{s(, k), sk, )3
" (ii) there exists an i¢[n] such that

a) &(s(1))=s(), and :
b) £(i(i, j))=s(min (i, j), max (i, j)) for every ji;

(iii) for every 1=jsk=n and i#l, &(s(j,k)) and &(s({)) are undefined.

It is easy to check that the elements of H are injective. We can define an equi-
valence relation on H as follows. £=y iff &(s(1))=n(s(1))..[Let #; (i€[n]) be an
arbitrary representant of the equivalence class characterized by #,(s(1))=s(i).

Lemma 3. For any mapping f: Q—Q there exists an injective ¢&,€M(A,, )
such that o : .
f(g) = q;(, j€[n]) implies n; o, =1;. @

Proof. We follow an induction on n to construct ¢,. The case n=1 is
trivial. Let n=p+1 for some p=1, and suppose first that f is injective. Then take

Es@)=s() if flg)=gq;
¢ 8GN =s,j) if (flg), f(a) = (gss 45,
6j(i(l9])) = i(l,’.”) if (qi, q;) = (f(ql'), f(q_]'))

It is clear that (1) is satisfied this way. If f is not injective, then interchange the
subscripts of the states so that f~*(g,,,)=0 should hold. Let g=7|0\{gp+1}
and constrict £,€M(A,,0) to satisfy (1). This goes together with a reordering

Of Q\{qp+1} tl‘!at we fix from now on. Let f(qp+1)=qm and g_l(qm): {qmp ceey qu},
where m;<m; if 1=i<j=k. We construct £, in two steps.

Step 1. (i) for each j€[k] -
- ) Ep(s(my)=i(m;, p+1), &p(s(my, p+1)=¢,(s(m))),
b) &,(s(p+1, m,)) is undefined; -

(ii) &,(s(p+1))=if k=0 then s(m) else i(p+1, m);
-+ (iii) for each je[k—1, & (s(my, m))=i(p+1,m));
. ( )(iv)g f(or) any other a€{s()|i€[pl}U{s(i, H|1=i=j=p and f(g)=f(g))}

a)=¢,(a).

! It isg easy to see that (iii) is in fact not a real modification of &,, because
&,(s(my, m;)) is undefined. (i)/b assures the same situation for &,. It is also clear
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that the segment of £, defined so far is injective. After descrlbmg the ﬁrst step
of the construction we can prove that if f(g;)=gq;, then . ) :

n.off(s<1))—so) e

If j#m, then we only have to observe that path (mot,, s(l)) path (n,oﬁ,, s(1)).
The abusing notation #; can be used on- both sides” of this equation provided
mE€M(A4,,0) on the rlght hand side is the restriction of n,€M(4;.,,%) - on the
left hand side. Let j=m, q;€g7*(g), path (n,oég,s(l)) S(l)XOC, where «is an
appropriate sequence of attributes ending with s(m) Then, using. (1)/a 2) follows
from the equahty B . o

path (n,ogf,s(l)) (S(l) 1(z,p+1),s(z,p+1))><oc .

Finally, if i=p+1, then for the first sight it seems possible that the last attribute
of path(n;0é,, s(l)) is s(p+1,r), where g,€27%(q,). (By (i)/b ¢, is undefined
on these attributes.) However, this' would imply ‘that the tail of this path should
be (s(r), i(r, p+1),s(p+1,r)), which is impossible. Thus, the last attribute of the
path, must be . s(m), which is the only way out of the circle it has entered (1 e.. of

the set {s(r), s(r; 5), i(r, 5) |r s, {q” a }cf 1(qm)})
. Step 2. (i) for each ic[p] o

7 (8,GG, p+1)) f,(x(p+1 ) = (s(: p+1) s(p+1 0);
(i) if f‘l(q,) 9. for some IE[P+1], then

----- (f,(l(m 1)), éf(l(z m))) (s(mm (m; i); max-(m, 1)), s(max (m, 1) min (m, l)))
(111) if lE[p],l;ém and f7Yg)= {4,> -5 g, for some [=1; then -
a) éf(l(ma l))_l(llap+1), a A
b) &p(s, p+1))=¢,(i(m, D),
0) &(sG p+1)=i(p+1,52y) if 1<ksl
d) &;(s(p+1, i) =i(s1, p+1) if 1=k=<l,
e) &(s(p+1,ip))=s(min (m, i); max (m, i)); - -
f) &p(¢; Y (s(min (m, i), max (m, i)))=i(p+1, i)); , ’ v
(iv) for any other ac{i@i,H|l=i=j= p}U{s(z j)]1<1;éj<p and f(qi);é
¢f(q1)} éj(a) ég(a)
.. Again, let i, j€[p+1]), f(g)=g;. Weprove.that . . S
a) for every 1=r#s=p+1" e (3)

ot (986 ) = (56 s M), and
B fore s SN
. moé;(l(], s)) = s(mm(J s), max(; s)) L

(3)/a Follows from the fact that all the attr1butes but the last oné of path (nio é 7 1(r, s))

are in the set {s(i, ), i(i, HI{f (@), f (g)}= {q,, g,}} and there are only two ways
out of this circle which lead to.'s(r; s) and- s(s, r).. To prove'(3)/b we dlstlngulsh
three cases.
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1) i=p+1.
a) f~Ygq,)=9: consider (ii),
b) f~4q)=1{qys> ---» 45} for some I=1:

path(r],OC,,i(j,s)) (i(sl’ +1)a S(p+1 S]_) al(sl9p+1)o_
s(p+1, ), s(min (m 5), max (m s)))

2) 1¢p+1 and s#m.

. a) s=p+1: consider (i), :

b) s#p+1: path (n,0¢,, i(J, 5))=path (mOE,, l(J, s))
3)i2p+1 and s=m.

Let f~g)={qi; ---» g} (=1), i=i; for some 1=k=l:and
3 S Copath(mody,i(m, ) =e. ot
Then =~ "~ PR

L " o "~ path ('li°ff,1(m N)= BX“ L
where B=(i(i, p+1), .. 51, p+1), s(l,,p+1), s s(ll,p+l)) for some r=k;
Since the last attribute of @ is 's(max (m, j), min (m, j)); (2)/a implies that
&,(i(j, m))=s(min (m, j), max (m, j)). Finally, (2) and (3) imply (1).

It must be noticed, however, that (1) holds only under one particular ordermg
of Q. Let us fix an arbitrary order, i.e. suppose that Q=[n]. Then:by steps 1 and
- 2 we in fact construct &;, where f'=p ofop for some bijection ¢. Since
f=gof’op™}, we can take é, E,08 0é,-1. (Recall that n; is an arbitrary
representant, and the construction of e and &,-:..can be carried -out directly.)

Now define h: X(L, R)~M(A,,Y) asfollows. For x€X consider the mappmg
f:[n]—~[n] for which f(iy=j if 6@, x)=(j, w). Let"~ -

() attr (h(x))=¢&;;
(ii) for each i€[n]
out(h(x), s()))=w if 6(i, x)=(, w)
(iii) foreach 1=i#j=n
out (h(x), s(i, 7))=out (h(x) G, ) =4 : ’

Extend h to a homomorphlsm of X* into M(A,,, Y ) An easy 1nductlon shows
that for any u€X™ 6(i, )=(j, w) 1mphes that .

.a) attr (moh(W)=n;:. . . o

" b) out(n; oh(u), s(1))=w. .

Thus, to make T and the lnjectlve SDAST (4,, X, LR Y,h, , Go) equlvalent we
only have to set:

() g=s(1);- .

(i) if g=i and 6(1 L) ( 7, w), then h(L) n, ‘with  the modiﬁcation
out (h(L), s(1))=w;

(iii) A(R)(a) is defined iff a= s(l) (lE[n]) and 5(1 R)( 3, w)) is deﬁned In
this case h(R)(S(l))—(S(I),
¢+ In [3] we proved that mjectlve SDAST mappings are closed under composxtlon
Thus, using,Lemmas 1 and 2 we get the followmg result

t

' Theorem. SDAST; ‘injective SDAST and 2DFT deﬁne the ‘same- class of
mappmgs
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Corollary. ([1],[2]). 2DFT mappings are closed: under composition. Other
results of [1} and [2] concerning 2DFT with regular lookahead (which are called
quasideterministic in [2]) and the reverse run of 2DFT can also be derived from
this theorem.

Abstract

The result indicated in the title is achieved as a corollary of the following four statements.

1. 2-way deterministic finite state transducers (2DFT) and simple deterministic attributed
string transducers (SDAST) are equivalent.

2. Every SDAST mapping is the composition of two 1DFT mappings and an injective
SDAST mapping.

3. 1DFT mappings can be defined by injective SDAST.

4. Injective SDAST mappings are closed under composition.
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