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In this paper we deal with the problem of analysis and synthesis of finite 
Mealy-automata. As it is known, this problem has already been solved, namely, 
it is proved, that if X and Y are non-empty finite sets and a:X*-*Y* is an 
automaton mapping, then there is a finite Mealy-automaton inducing a if and 
only if all classes of the partition Ca of X+ corresponding, to a, are regular 
languages (see [3]). For a given automaton mapping, a Mealy-automaton can be 
constructed inducing it and vice versa, but the known algorithms use, as an inter-
mediate step, the notion of the acceptance of languages in automata without outputs 
and the synthesis algorithms give no reduced automaton, generally. In this paper 
we give a new proof of the previous theorem, which provides us more advantageus 
algorithms for both the analysis and the synthesis of finite Mealy-automata. In the 
latter case, our method supplies immediately the minimal Mealy-automaton inducing 
a given finite automaton mapping. 

Preliminaries 

Let I be a finite non-empty set. We shall denote the algebra of all languages 
over X by ££(X) and the set of all matrices over J i f ( X ) by M(X). A matrix 
N£M(X) is said to be of type mXn if it has m rows and n columns. The language 
in the z'-th row and in the y'-th column of N will be denoted by (N)y. Based on the 
regular operations (addition, multiplication and iteration, denoted by + , • and 
{ }, respectively) in ^f(X), we introduce the following operations on M(X). If 
L£SC{X) and N€M(A"), then L - N and N - L are language matrices, defined by 

(L-N)0 .=L.(N)0 . and (N = (N)y 

respectively. Let N and P be two language matrices of the same type. Then the 
sum N + P is the language matrix, given by 

(N+P);y = (N)y + (P)(J-. 

If N is a language matrix of type mXn and P is another one of type nXp, then 
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we define the product N • P in the usual way of matrix products, i.e., 

( M - P ) , 7 = ¿ ( N V C L ) * , - . k=1 
Using the definition of the product we can form the powers of quadratic matrices 
as follows: let 

N* = N*_1 • N (fc = 1, 2, ...), 

where № = E means the unit language matrix, that is, 

Finally, the iteration {N} of a quadratic matrix N is defined by 

{N}= ¿ N * . 
fc=o 

We note that we use the term language vector instead of language matrix if 
it has only one row or only one column. The set of all row language vectors over 
•SC(X) will be denoted by V(X) and the set of all column language vectors over 
se{x) will be denoted by VC(X). 

Let NGM(A') be a quadratic matrix of type nXn. Take a directed graph 
with n nodes, which are labelled by natural numbers 1, ..., n and there is an arrow 
from the node i to the node j if and only if e6(N) i ;. This graph is called the 
characteristic graph (see [3]) of the matrix N. If the characteristic graph of N has 
cycles and the node i belongs to a cycle, then the number i is said to be a cyclic 
number with respect to N. 

Now we consider matrix equations of form 
N Q + P = Q, (1) 

where N and P are given language matrices and N is of type nXn. 
We shall use the following results which are generalizations of some results 

due to V. G. Bodnarcuk [2] (see also [3, 4, 5, 7]): 

Statement 1 [6]. If the characteristic graph of N has no cycle, then 
Q = { N } - P 

is the unique solution of the equation*( 1). In the opposite case, every solution of (1) 
has the form 

Q = {N}-(P+R), 

where R is an arbitrary language matrix with the same type as P, such that if 
i (1 ^i^n) is not a cyclic number with respect to N, then (R);j = 0 for all j. 

Statement 2 [6J. If the equation (1) has a unique solution, then it can be determined 
by subsequent elimination of unknown rows of the matrix Q. 

Statement 3 [6]. If every element (N)u and (P)y of the matrices N and P, 
respectively, is regular and the characteristic graph of N has no cycle, then every 
element (Q)y of the solution matrix Q of the matrix equation (1) is regular. 
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Connections between language vectors and automaton mappings 

It is known, that every automaton mapping a:X*-~Y*, where X and Y are 
non-empty finite sets, determines a partition Cx of X+, which consists of classes 

Ly = (p£X + Mp) = y) (y£Y). 

Here r denotes the last letter of the non-empty word r. Conversely, every partition 
C oi X+ defines a unique automaton mapping a: X* — Y* appart from the nota-
tion of elements of Y. This fact makes possible for us to establish a one-to-one 
correspondence between automaton mappings and certain language vectors. 

In the following we use the term /-vectors instead of row language vectors and 
they will be denoted by a, b, c, .... 

An /-vector a€ V'(X) is said to be complete if the sum of its components at is 
the free semigroup X + and the intersection of any two components at and a3 

j ) of a is the empty language. 
It is obvious that if X={xt, ..., x,), Y=(yx, ..., ym) and a :X* — Y* is an 

automaton mapping then we can correspond to a a complete /-vector a of m 
components, such that 

al = (p€X + M i ) = yl) (i = 1, ..., m). 

Conversely, if V(X) is a complete /-vector of m components then it determines 
an automaton mapping a :X*-»Y*, such that a(e)=e and for p=xllxh ... xlk, 
< P ) = y j l y j 2 ••• yJ k

 i f a n d o n l y i f *ii£aJx> xhxi£aj,> •••> xhxh - x^ajk-
An /-vector a 6 Vr(X) is called regular if every component of a is a regular 

language. 
A system <a1( ...,a„) of complete /-vectors from Vr(X) is said to be closed 

if there exist functions 
/ : (1, ..., H)X(1, /) (1 n> 

and 
b:<l,.. . ,n>-Kr(JT), " 

such that 
K 0* = 2 Xj 

ik 
and 

a { = 2 xj*nuj)+Hi) , (2) 
XjiX 

for all i (=1, ...,«) holds. 
We would like to direct attention to the fact, that a closed complete /-vector 

system can be considered as the rows of a solution language matrix of a matrix 
equation (1). Indeed, if we set 

( N ) y = 2 ** O'J = 1 «) 
f(i,k) = j 

and we put a ; and b(/) into the i-th row of Q and P, respectively, then (2) gains 
the form (1). Therefore, by Statement 3, we have got immediately the following 

Lemma 4. If (a2, ..., a„) is a closed complete l-vector system then a^ ..., a„ 
are regular. 
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Theorem 5L Let SH=(A,X, Y, 5,).) be a finite Mealy-automaton with state set 
A — (a1,...,an), input set X =(xly ..., x,), output set Y ..., ym), transition 
function S: AXX-+ A and output function ),:AXX-~Y. Let f and b be the 
functions •••• 

/: <1, ..., W>X<L, ..., 1)^(1, n), defined by S(a-t, Xj)-af(iJ) and 

b:<1 ,.,.,n)~Vr(X), given by b(i)k = 2 xj-W,,Xj) = yk 

Then the l-vectors Vr(X) (/ = 1, ..., n), where 

Cik =. + = yk) (i = 1, ..., n; k = 1, ..., m) 
t 

form a closed complete l-vector system, that is, satisfy the equalities (2). 

Proof It is obvious that ..., a„ are complete /-vectors. Thus we have to 
show that a1,...,a„ satisfy the equalities (2). L e t / ( 1 « / S n ) and k (1 ^k^m) 
be arbitrary index pair. We prove that 

"ik = 2 Xjaf(.i.j)k + b(i)k. XjZX 

Let p be an arbitrary element of aik. We distinguish two cases. 

Case 1. If \p\ = 1, i.e., p=Xj for some / ( l ^ j ^ l ) then Xj£aik implies 
¿(a,-, Xj) = yk. Hence, by definition of b, we have that Xj£b(i)k and therefore 
p€ 2 Xjaf(ij)k+b(i)k. 

-Xj£X 

Case 2. If \p\^2 then p=x}q (1 and 

yk = A(a,,p) = A (a,, Xjq) = Xj), q) = Haf(iJ), q), 

that is, q£a/(iJ)k and p=Xjq£xjaf(iJ)kQ 2 xja/a,j)k+b(i)k. Conversely, 
XjiX 

let p be an arbitrary element of 2 x j a f u j)k+b(i)k- If p£b(i)k, then |/?| = 1 

and X(fli,p) = yk and therefore p£aik. If p£Xjaf(iJ)k for some j (1 ^ j ^ l ) , 
then p=Xjq with q£a/aj)k. This implies that 

yk = H<if(i,j),P) = • X j ) , q = k(ai,Xjq) = X(altp), 

i.e., p£aik. Thus we have shown that 

aik = 2 Xja/(ij)k + b(i)k 
• • • • XjiX 

for all i (1 S i ^w) and k ( l ^ J t ^ m ) holds. • V 

By Lemma 4 and Theorem 5 we immediately get 

Corollary 6. If <H=(A, X, Y, <5, ).) is a finite Mealy-automaton then for all 
state a£ A and output yZY the language 

• r • ay = (peX + \Ifrp)=y) 
is regular. 
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Theorem 5 and Statement 2 provide us an algorithm to the analysis -of finite 
Mealy-automata. To illustrate this, let us consider 

Example 1. Let 21 be the Mealy-automaton, given by the transition-output table: 

91 

(a2, u) (a3, v) (a2, u) 
(a3, v) (a2, w) (a3, w) 

Taking the ordering u < v < w of the output letters, by Theorem 5 we have the 
following /-vector equations: -

aj — xa2+ya3 + [x, y,-&], " ^V''' ^'-;' 

a2 = xaa + ya2 + [<d, x, y], , . , . 

a3 = xa2 + ;'a3 + [x, 0, >•]. : . •;, 

From the third equation we obtain that ;' 

a 3 = M(xa 2 - | - [x> 0, y]) . . .. . 

Substituting this into the expressions of ax and a2, we have, that 

aj = xa2 + y{y}(xa2 + [x, 0,\y]) + [x, y, 0] = 

= {y}xa2+[{y}x, y, y2{y}], 

a2 = x{y}(xa2+[x, 0, ^] )+ja 2 +[0, x, y] =[.. ,/>. ! , - . 

= (y+x{y}x)a2+[x{y}x,-x, y+x{.y}y]. > . 

Now we can already determine the /-vector a2: . " ; V ... . , . 

a2 = {y+x{y}x}[x{y}x,x,y+x{y}y]= -

= [{y+x{y}x}x{y}x, {y+x{>-}x}x, {y+x{y}4(y + x{y}j)] 
Then 

+[{y}x,y,y2{y})= . -

= [{y}x(e+{y+x{y}x}x{y}x), y+ {y}x{y+x{y}x}x, y2{y}+ J / :: 

+ {y}x{y + x{y)x}{i+x{y}y)'\ : : . . 
and J . ' ' . . . , 

a3 = {y}xai+[{y}x, 0, {y}y] = ; ; 

Now we define a new operation on the set of /-vectors. 5It is well-known that 
if L is a language from ¿¿{X) and P£X* then the left-side derivation of L with 
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respect to p is the language iDp(L)=(q£X* | pq£L). We modify this concept 
as follows: by the left-side e-free derivation of L with respect to p we mean the 
language ¡D~(L)=(q£X+\pq£L). It is obvious that 

D - ( n - l ' D ' ( L ) Íf HL> 
" l i , " U ( i ) - ( i > if PÍL. 

We extend this operation to /-vectors, that is, if a=[ű! , . . . , am] then we define the 
left-side e-free derivation of a with respect to p, by 

iDp (a) = [¡D-(ai), ..., ,D-(aJ]. 

Lemma 7. If a=[ŰJ,..., am] is a complete l-vector then for all p£X*, ,D~(a) 
is a complete l-vector as well. 

Proof. It is easily seen that a ; n a y = 0 implies that ,£)"(«,.)fl¡Dp(aj)=0. 
On the other hand, if a is an arbitrary element of X+ then pqfX+. Consequently, 
there exist a unique component űj'of a, such that pq£a,- because of the completer 
ness of a. Hence we obtain that (a,). Since e^,/)"(a,) for all / (1 ^ i ^ m ) 

m 
holds, it follows that X + = Z i D p («»)• • 

¡=i 

Lemma 8. If a=[a l 5 ..., am] is an arbitrary l-vector in V(X) then 

a = 2 XjiD'i^+b, 
XjiX 

where b=[fc l5 ..., ¿>m] is an l-vector for which bt= 2 x j 0 = 1, m). 
Xj €o( 

Proof. Let ű; ( l á / á m ) be an arbitrary component of a. By the definition 
of b it is trivial that any word of length one from af is in bt and there is no other 
element of On the other hand, the word p£a i t for which |p| isin 
if and only if the first letter of p is Xj. • 

A closed complete /-vector system (a^ ..., am) is said to be reduced if a l 5 ..., am 
are pairwise different /-vectors. 

Lemma 9. If a is a complete regular l-vector then there exists a unique reduced 
biased conwlete l-vector svstem containing a and it can be determined aleorithmicallv. 

Proof. If VÍX) with Y=(xx, ..., x,) then we extend the ordering of X, 
which is given by the indices of the elements in X onto X* as follows: for arbitrary 
pair of words p and q let p<q if either |/>|<|g| or |/>| = |g| and in the latter 
case p precedes q by the lexicographical ordering. Then we form the left-side 
e-free derivations of a. Since a is a regular /-vector, it has only finite different 
left-side e-free derivations and they are regular as well. Therefore, there exist a 
system of words plt...,p„ in X*, such that the following conditions hold: 

(i) if then lDPi(^lDPj(&), 
(ii) for all q£X* there exists a unique i ( I s i S n ) , such that ,D~(a)=/Dp1(a), 
(iii) if q is an arbitrary word in X* for which ,í)~>(a)=,Z)-(a) (1 s i s n) 

then Pi -< q. 
Let us assume that the elements of the system (p l 5 ..., p„) are indexed ac-

cording to the ordering of X*, that is, pi<pz<... <p„. Then px—e. Let a( = 
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=(Z>p((a) for all i( = l,...,n). The system (a^ ..., a„) consist of pairwise dif-
ferent complete /-vectors. We show that this system is closed as well. To prove 
this, we have to note that for all q£X* and a;6(als ..., a„) there exists pj (1 == j^n), 
such that ,i>~(af)=IjDpJ(a1) because a1= /Dj i(a) = ,I>-(a)=a and ,D~(a;) = 
=,D~(lDp{(a1))=,Dpiq(a1) and the system (px, ..., pn) satisfy the condition (ii). 
We have to determine the functions / : <1, ..., w}x(l , • ••, !)-*(}, • ••> n) and 
b: <1, ..., ri)—Vr(X) yet. Let for all / (1 =£/ ==«) and y ( l = s / S / ) , 

f{i,j) = ,D" (a,) = (aa) (1 ^ k s n ) 
and 

b(i) = [f>(i)i, • ••, b(i)J, where b(i)s= 2 (s = l,...,m). 

Finally, the fact that (ax, ...,a„) is the unique closed complete /-vector system, 
which contains the/-vector a(=aj) follows from Lemma 8. • 

To illustrate the algorithm described above consider the 

Example 2. Let X=(x,y) with the ordering x<y and take 

a = [x{x}; y{y}, +j^Jx^x+y}]. 
Let ax=a. Then 

= x[x{x], 0, {x}y{x+y}]+y[&, y{y}, y, 0]. 

Let a2=,D-(a1)=[x{x}, 0, {*M*+:v}] and a3= iDJr(a1)=[0, y{y}, {j>}x{*+j>}]. 
Then 

a2 = x[x{x}, 0, {x}y{x + y}] + y[V>, 0, (x + > 0 { x + j } № , 0, y]. 

Let a4= tD~ (a2)=,D^(a^=[0, 0, +;>}]. 

a3 = Jt[0, 0, (x + y){x+y}] + y[9, y{y}, M x { x + j}] + [0, y, x] and 
ad = jc[0. 0. Ot+j>) {*+>}] + y[Q. 0. (x+y){x+j} ] + [0. 0. x+y]. 

It can be seen that = ,Z),"y(a1)=/Z)-(a1) and lD^x(a1)=lD~yx(a1) = 
,D~yy(a1)=iD~y(a1), that is, a t , a2, a3 and a4 are the all different left-side e-free 
derivations of a. Finally, the functions / : <1,2, 3 , 4 ) x <1, 2)—(1,2, 3, 4) and 
b: (1,2, 3,4)->-V r(X) are derived from the previous computations: / (1 ,1 )=2 , 
/(U2)=3, / ( 2 , 1 )=2 , / ( 2 , 2 ) = 4 , / ( 3 , 1 )=4 , / ( 3 , 2 ) = 3 and / (4 , l ) = / ( 4 , 2 ) = 4 , 
furthermore b( l)=[x, y, 0], b(2)=[x, 0, y], b(3)=[0, y, x] and b(4)=[0, 0, x+y]. 

Theorem 10. Let X = (xlt ..., xt), Y =(yx, •••, ym) and let a:X*^Y* be an 
automaton mapping. Let at be the complete l-vector corresponding to ol. If ax is 
a regular l-vector and (a1, ..., a„) is the reduced closed complete l-vector system 
containing ax then a. can be induced by the reduced initially connected Mealy-
automaton = «ai, ...,a„),altX, Y, 8, X), where S(at, xj)=af(iJ) and k(ai,Xj)=yk 
if and only if Xj£b(i)k (i= 1, ...,n;J = 1, ...,/; liiSm) and the functions f and 
b are determined by the system (al5 ..., a„). 
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Proof. It is obvious that 91 is well-defined. Since every /-vector a, of the 
system (a l5 ...,a„) is a left-side e-free derivation of ax and a j= ! /)p(a1) implies 
that a1p=ai, it follows that 91 is an initially connected Mealy-automaton. We 
have to prove that 91 induces the mapping a. To verify this, it is sufficient to show 
that 

for all J(=1, ..., m) holds. Instead of this equality, we prove more, namely that 

a is = < p ( ! * + | I ( ^ ) = (3) 
for all / (=1 , ...,«) and J ( = 1 , ...,m) holds. If |/>.| = 1, that is, p—x} for some 
Xj£X then by the definitions of the functions b and X we obtain that 

Xjeais oxjib(i\ o X(a,, Xj) = ys. 

Let us assume that (3) have already been proved for all p£X + of length less than 
or equal to r, for all / (=1, ..., n) and s (=1, ..., m). Now let p£X+, such that, 
\p\=r+\. Then p=Xjq for some xsdX and \q\=r. Thus taking into account 
that the system (aj, ..., a„) is closed and the previous hypothesis, we obtain that 

Ptais = 2 xlaf0it)s+b(i)s <=> q€af(iiJ)s o 

~ ¿("/(¡.J)» q) = ys (ah Xj), q) = ys<=> Xfa,p) = ys. 

Therefore, (3) is true. But this means, that a; is just the /-vector corresponding to 
the automaton mapping induced by the state a t of 91 for all / (=1, ' . . . , n). Thus, 
the fact that the system <al5 ..., a„) is reduced implies that 91 is reduced as well. • 

To show how we can apply this result for the synthesis of finite Mealy-automata 
consider 

Example 3. Let X=(x,y), Y=(u, v, iv) and let a: X*-*Y* be the automaton 
mapping, given by 

<x(e) = e, . 

a(x*) = M* (fc — 1), 

« ( / ) = o» ' (k S 1), 
a(xkyp) = M*wm+1 (k S 1, m = |j>|), 

a ( f x p ) = p*wm+1 (k == 1, m = |p|). 

Then the complete /-vector corresponding to a is just the regular /-vector a2 = 
=[x{x}, (x{x}y+y{y}x){x+y}] from Example 2. Thus the mapping a can 
be induced by the automaton 91=({a1, a2, a3, a4), alt X, Y, 5, X), where <5 and 
X is given by the transition-output table: 

• x (fl2, u) (a2, u) (a4, w) (a4, w) 
y (a3, v) (a4, w) (a3, v) (a4, w). 



A new method for the analysis and synthesis of finite Mealy-automata 369 

Summarizing the results of Theorems 5 and 10, we have got 

Corollary 11. If X and. Y are finite non-empty sets and a: X* y * is an 
automaton mapping then it can be induced by a finite Mealy-automaton if and only if 
the complete l-vector corresponding to a is regular. 
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