A new method for the analysis and synthesis of
finite Mealy-automata

By Cs. Pusk4s

In this paper we deal with the problem of analysis and synthesis of finite
Mealy-automata. As it is known, this problem-has already been solved, namely,
it is proved, that if X and Y are non-empty finite sets and o: X*—~Y* is an
automaton mapping, then there is a finite Mealy-automaton inducing « if and
only if all classes of the partition C, of X* corresponding.to o are regular
languages (see [3]). For a given automaton mapping, a Mealy-automaton can be
constructed inducing it and vice versa, but the known algorithms use, as an inter-
mediate step, the notion of the acceptance of languages in automata without outputs
and the synthesis algorithms give no reduced automaton, generally. In this paper
we give a new proof of the previous theorem, which provides us more advantageus
algorithms for both the analysis and the synthesis of finite Mealy-automata. . In the
latter case, our method supplies immediately the minimal Mealy-automaton inducing
a given finite automaton mapping.

Preliminaries

Let X be a finite non-empty set. We shall denote the algebra of all languages
over X by Z(X) and the set of all matrices over- £(X) by M(X). A matrix
NeM(X) issaid to be of type mXn ifit has m rows and » columns. The language
in the i-th row and in the j-th column of N will be denoted by (N),;. Based on the
regular operations (addition, multiplicationvgnd iteration, denoted by +, - and
{}; respectively) in #(X), we introduce the following operations on M(X). If
Le#(X) and NeEM(X), then L-N and N.L are language matrices, defined by

(L ‘N);;=L-(N);; and (N -L);; = (N);;-L,

respectively.. Let N and P be two language matrices of the same type. Then the
sum N+P is the language matrix, given by

(N +P)ij = (N)ij+(P)ij- ‘ 3
If Nisa language matrix of type mXn and P is another one of type nXp, then

3 Acta Cybernetica V1/4



362 Cs. Puskds

we define the product N-P in the usual way of matrix products, i.e.,

N-B)y = 5 M- Wy

Using the definition of the product we can form the powers of quadratic matrices
as follows: let
Nf=NF-L.N (k=1,2,..),

where N°=E means the unit language matrix, that is,

e if i=j,
(B = {ﬂ if i#j.
Finally, the iteration {N} of a quadratic matrix N is defined by

Ny = SN
k=0

We note that we use the term langnage vector instead of language matrix if
it has only one row or only one column. The set of all row language vectors over
Z(X) will be denoted by V"(X) and the set of all column language vectors over
Z(X) will be denoted by V(X).

Let NeM(X) be a quadratic matrix of type nXn. Take a directed graph
with n nodes, which are labelled by natural numbers 1, ..., n and there is an arrow
from the node i to the node j if and only if e€(N);;. This graph is called the
characteristic graph (see [3]) of the matrix N. If the characteristic graph of N has
cycles and the node i belongs to a cycle, then the number i is said to be a cyclic
number with respect to N.

Now we consider matrix equations of form

N-Q+P=Q, ¢y

where N and P are given language matrices and N is of type nXn.
We shall use the following results which are generalizations of some results
due to V. G. Bodnarcuk [2] (see also [3, 4, 5, 7]):

Statement 1 [6]. If the characteristic graph of N has no cycle, then
Q={N}-P

is the unique solution of the equation®(1). In the opposite case, every solution of (1)
has the form

Q = {N}-(P+R),
where R is an arbitrary language matrix with the same type as P, such that if
i (1=i=n) is not a cyclic number with respect to N, then (R);;=0 for all j.

Statement 2 [6]. If the equation (1) has a unique solution, then it can be determined
by subsequent elimination of unknown rows of the matrix Q.

Statement 3 [6]. If every element (N);; and (P);; of the matrices N and P,
respectively, is regular and the characteristic graph of N has no cycle, then every
element (Q)y; of the solution matrix Q of the matrix equation (1) is regular.
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Connections between language vectors and automaton mappings

It is known, that every automaton mapping o: X*~Y*, where X and Y are
non-empty finite sets, determines a partition C, of X*, which consists of classes

L,= (peX*|a(p)=y) (EY).

Here 7 denotes the last letter of the non-empty word r. Conversely, every partition
C of X+ defines a unique automaton mapping a:X*—~Y* appart from the nota-
tion of elements of Y. This fact makes possible for us to establish a one-to-one
correspondence between automaton mappings and certain language vectors.

In the following we use the term /-vectors instead of row language vectors and
they will be denoted by a, b, ¢, ....

An l-vector a€V"(X) is said to be complete if the sum of its components a; is
the free semigroup X+ and the intersection of any two components 4, and g,
(i#Jj) of a is the empty language.

It is obvious that if X =(xy, ..., X)), Y =(}, ..., Ymp and o: X*—+Y* is an
automaton mapping then we can correspond to « a complete /-vector a of m
components, such that

a; = <P€X+l°‘_(—1’) = J’i> (i=1,..,m.

Conversely, if ac¢V”"(X) is a complete l-vector of m components then it determines
an automaton mapping o: X*—Y*, such that a(e)=e and for p=x;x, ... x;,
a(p)=y;,¥j, --- ¥, if and only if x;€a;, x; x,.€a;,, ..., Xiy Xy, ... X, €4y, .

An l-vector acV'(X) is called regular if every component of a is a regular
“language. ’

A system ({a,, ...,a,) of complete /-vectors from ¥V"(X) is said to be closed
if there exist functions

S (oo WXL o By > (1 oy m)

and
b: {1, ..., n) - V" (X),
such that
b= 2 x;
x;€apn
and : v
8= 2 Xja5,;+b() R ¢))
xJGX

for all i (=1, ...,n) holds.

We would like to direct attention to the fact, that a closed complete I-vector
system can be considered as the rows of a solution language matrix of a matrix
equation (1). Indeed, if we set

N);= 2 x (Gj=1,.,n)
sG0=j
and we put a; and b(i) into the i-th row of Q and P, respectively, then (2) gains
the form (1). Therefore, by Statement 3, we have got immediately the following

Lemma 4. If (a,, ...,a,) is a closed complete l-vector system then a,, ..., a,
are regular.
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Theorem 5. -Let U=(4, X, Y,;8,1) be a finite Mealy-automaton with state set
A=(ay, ..., a,), input set X = (xl, ooy X1y, output set Y =(py, ..., Vuy, transition
Sunction '(5 AXX—»A and output funcnon ArAXX-+Y. Let f and b be the
furictions - -

VE <1 . n>)(<] 1>—f<l, ceey n), defined by 6 (a;, Xj)-—af(,',j) and

b:{1,..,n) ~V"(X), givenby b@)= 2 x;.

. l(a,,xj)=y,‘
Then the l-vectors a,€V'(X) (i=1, ...,n), where 4
' ay = PEXHA@,p)=y) (i=1,..,n; k=1,..,m)
Jorm a closed complete l-vector system, that is, satisfy the equalities (2).

Proof. 1t is obvious that a,,...,a, are complete I-vectors. Thus we have to
show that a;, ..., a, satisfy the equalities (2). Let i (I1=i=n) and k (I=k=m)

=i» y

be arbitrary index pair. We prove that
- Ay = Z xja,(;,j)k+b(i)k.
x;€X
Let p be an arbitrary element of "a;,. We distinguish two cases.

‘ Case I. If |pl=1, ie., p=x; for some j (1=;=I) then x;€a,; implies
‘A(a;, x;)=y,. Hence, by deﬁmtlon of b, we have that x,€b(i), and therefore
PE 2 X af(l J)k+b(l)k : R

. :Cas_e 2. If |p|=2 then p=x;q (1=j=l) and

Vi = AMa;, p) = Ma;, x;9) = A(a(aia x;), ‘I) = Masa,j 9>
that is, g€ayq ;. and p=x;9€x;a., ,)k— Z X;asq px+b(@). Conversely,
let p be an arbitrary element of 2 X;a;q, ,)k+b(t)k If peb(i);, then [p|=1

and A(a;, p)=y, and therefore pEa,k If pex;az; for some j (1=j=l),
then p=x;q with g€a,; ;.. This implies that

. Yie = Aasi, 5y, D) ="1(5(aia x;), 4 = A(a;, x;q) = Aai, p),
i.e., p€ay. Thus we have shown that
- Ay = 2 XAy, J)k+b(’)k

for all i (1=i=n) and k (ISkSm) holds. O *
By Lemma 4 and Theorem 5 we 1mmed1ately get

- Corollary 6. If U=(4,X,Y,8,%) is a finite Mealy automaton then for all
state -a€A and output. y€ Y. the language

T et e g = (pEX ¥ A (a; p) = ¥
is regular.
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Theorem 5 and Statement 2 provide us an algorithm to the analysis :of finite
Mealy-automata. To illustrate this, let us consider : -

Example 1. Let U be the Mea]y-automaton given by the transmon -output’ table
Q[l a a as -

(am u) ((13, U) (az, u)
(03, D) (a2, W) (aay W)

Taking the ordering u<v<w of the output letters, by Theorem 5 we have the
followmg l-vector equatlons

a, = xaz"”}-’aa."’ [x, », 0],
a, = xaa.-l—yaz-i-[@ x, ¥l
= xa2+ya3+[x, 9, y]
From the third equation we obtam that _.

= ()xay 1,9, 7).

Substituting this into the expressmns of a and a,, we have, that o
ay = xa+ p{)0cay + 1%, 0, YD +1%, %, 01 =
= hxaat[{hn 7 i,
az=x{y}(xaz+-[x B, yD+yas+I0, x, y] =:.-

=(+x{y}x)a+[x{y}x,x, y+x{y}y]
Now we can already determine the l-vector a,:. : A o
= {p+x{) 5} [x0}x, x; yx(ph ] = ' '
= {r+xlafx{i}, {y+X{y}x}x, {y+x{y}x}(,v+x{y}y)]

b e
L

-

Then
=[x{y+x (i, {y}x'{y_+ﬁX'{y}x}x; Py +x{¥x 0+ 3]+
1Oy O = \ , :
= [hx(e+{y+x{p}x}x{}x), y+{y}x{y+x{y}x}x, 2{y}+ S
ORI O] " o
e {y}xa2+[{y}x, 0, {y}y] T
= [{y}x(e+{y+x{y}x}x{y}x) {y}x{y+x{y}x}x, y{y}+ g
| DI oI

Now we -define a new operation on the set of /-vectors. (It is. well- known that
if L is a language from £(X) and pEX* then the left-sxde denvatlon of. L ‘with
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respect to p is the language ;D,(L)=(gcX*|pgcL). We modify this concept
as follows: by the left-side e-free derivation of L with respect to p we meanthe
language ,D,(L)=(g€X *|pgcL). It is obvious that

o D@ i peL
D7 (L) = {:D:(L)—<e> if peL.

We extend this operation to [-vectors, that is, if a=[q,, ..., a,] then we define the
left-side e-free derivation of a with respect to p, by

1D; (@) =[[D; (ay), ..., 1D; (ay)]

Lemma 7. If a=[a,,...,a,] is a complete l-vector then for all pcX*, ,D,(a)
is a complete l-vector as well.

Proof. 1t is easily seen that g;Na;=0 implies that ,D;(a)N,D;(a;)=9.
On the other hand, if ¢ is an arbitrary element of X'+ then pge X *. Consequently,
there exist a unique component g;-of a, such that pg€a; because of the complete-
ness of a. Hence we obtain that g¢,D;(a;). Since e¢,D,(a;) for all i (1=i=m)

m

holds, it follows that X+= > ,D;(a). O

i=1
Lemma 8. If a=|a,, ..., a,) is an arbitrary l-vector in V'(X) then
‘ a= x_,,D;,(a)-{-b,
x,EX

where b=[by, ..., b,] is an l-vector for which b;= 2 x; (i=1,...,m).
x;€a;

Proof. Let a; (1=i=m) be an arbitrary com’ponent of a. By the definition
of b it is trivial that any word of length one from a; is in b; and there is no other
element of b;. On the other hand, the word p€a;, for which |p|=2, isin x;,D;(a)
if and only if the first letter of p is x;. O

A closed complete [-vector system (a,, ..., a,,) is said to be reduced if a,, ..., a,,
are pairwise different l-vectors. -

Lemma 9. If a is a complete regular l-vector then there exists a unique reduced
closed complete l-vectar system containing a and it can be determined algorithmicallv.

Praof. If acV(X) with X=(x,, ..., x;)) then we extend the ordering of X,
which is given by the indices of the elements in X onto X* as follows: for arbitrary
pair of words p and g let p<g if either |p|<lg| or |p|=|g} and in the latter
case p precedes ¢ by the lexicographical ordering. Then we form the left-side
e-free derivations of a. Since a is a regular [-vector, it has only finite different
left-side e-free derivations and they are regular as well. Therefore, there exist a
system of words p,, ..., p, in X*, such that the following conditions hold:

(i) if isj (1=i,j=n) then Dy(a)=D;(a),

(i) for all ge X* there exists a unique i (1=i=n), such that ,D;(a)=,D; (a),

(iii) if g is an arbitrary word in X* for which ,D;(a)=,D;(a) (1 =i=n)
then p; < g.

Let us assume that the elements of the system (p, ..., p,) are indexed ac-
cording to the ordering of X*, thatis, p,<p,<...<p,. Then p,=e. Let a;=
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=D;(a) for all i(=1,...,n). The system (a,,..,a,) consist of pairwise dif-
ferent complete l-vectors. We show that this system is closed as well. To prove
this, we have to note that for all g¢X* and a;£(a,, ..., a,) there exists p; (1= =n),
such that ,D;(a)=,D;(a,) because a,=,D,(a)=,D;(@)=a and ,D;(a)=
=D;(,Dy(a)))=iD;4(a;) and the system (p,, ..., p,) satisfy the condition (ii).
We have to determine the functions f:(l,...,myX(l,...,0H~(l,...,n) and
b: {1, ...,n)—=V"(X) yet. Letforalli(l=i=n) and j(1=/=l),

fG.j) =k D; (a) =Dy (@) (I=k=n)

bG) = (b, ... b)) Where b(i)y= 3 x; (s=1,..., m).

x €a;,

and

Finally, the fact that (a,,...,a,) is the unique closed complete I-vector system,
which contains the I-vector a(=a,) follows from Lemma 8. 0O

To illustrate the algorithm described above consider the

Example 2. Let X =(x, y) with the ordering x<y and take

a = [x{x}, y{y} :{x}y+y{p}x){x+y}l.
Let a,=a. Then

a = x[x(x}, 0, )y e+ N+ 310, ) DIx(x+a)i+Ix 3, 0)
%}elzn a,=D; (a)=[x{x}, 8, {x}y{x+y}] -and a,=.D;(a)=[9, y{y}, P}x{x+y}l.
a, = x[x{x}, 0, {x}y{x+y}+y[0, 0, (x+ ) {x+y}+[x, 8, y].
Let a,=,D; (a;)=D;,(8,)=[8, B, (x+y){x+}I.
a; = x[0, 0, -+ )+ ) +210, y () hx{x+y}1+10, 3, 5]

a, = x[0. 0, (x+y){x+y}1+y[0. 0, (x+ y){x+ y}]+[0. 0. x+ yl.

and

It can be seen that ,Dz,(a,)=.Dz(a,), Dy (a,)=,D; (a,) and ,Dj.(a,)=,D;,.(a;)=
D3y, (a1)=,D;,(ay), thatis, a,,a,,a; and a, are the all different left-side e-free
derivations of a. Finally, the functions f:{l,2,3,4)x(1,2)—~(1,2,3,4) and
b: (1,2,3,4)->V"(X) are derived from the previous computations: f(1,1)=2,
F,2)=3, f2, D=2, f(2,2)=4, 3, 1)=4, f(3,2)=3 and f(4,1)=/(4,2)=4,
furthermore b(1)=[x, y, 0], b(2)=[x, 9, y], b(3)=[0, y, x] and b(4)=[0, B, x+y].

Theorem 10. Let X =(x;, ..., Xp), Y =(py, ..., Yy and let a: X*—~Y™* be an
automaton mapping. Let a, be the complete l-vector corresponding to a. If a, is
a regular l-vector and {(a, ...,a,) Is the reduced closed complete Il-vector system
containing a, then a can be induced by the reduced initially connected Mealy-
automaton A=(ay, ..., a, a1, X, Y, 8, 1), where d(a;, x;)=a, j and A(a;,x;)=y;
if and only if x;€b(i), (i=1,...,n;j=1,...,1; 1=k=m) and the functions [ and
b are determined by the system (a,, ..., a,).
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Proof. 1t is obvious that U is well-defined. Since every /-vector a; of the
system (ay, ..., a,) is a left-side e-free derivation of a, and a,=/D;(a,) implies
that a, p=a;, it follows that U is an initially connected Mealy-automaton We
have to prove that QI induces the mapping «. To verify thls it 1s sufficient to show
that

= (p€X *|2(a;, p) = y)
for all s(=1,...,m) holds. Instead of this equality, we prove more, namely that
a;; = (PEX *|A(a, p) = ¥5) 3
for all i(=1,...,n) and s(=1,..,m) holds. If |p|=1, thatis, p=x; for some
x;€X then by the definitions of the functions b and 1 we obtain that
xj€a; > x;€b (i), o Ala;, x;) = Vs .

Let us assume that (3) have 2 lfeady been oved for all PEX T of length less than
or equal to r, for all i (=1, ...,n) and s (=1, ..., m). Now let pcX+, such that,
|p|=r+1. Then p=x;q for some x;€X and |ql—r Thus taking into account
that the system (a,, .. a Ly is closed and the previous hypothesis, we obtain that

pag = %;xtaf(i.t)s'*'b(l)s > q€as; s
*¢

AT D=y 1(5(01, x;), Q) =y, Aa;, p) =y,

Therefore, (3) is true. But this means that a; is just the l-vector corresponding to
the-automaton mapping induced by the state @; of U for all i(=1,...,n). Thus,
the fact that the system (ay, ..., a,) is reduced implies that 9 is reduced as well. [

To show how we can apply this result for the synthesis of finite Mealy-automata
~ consider o

Example 3. Let X=(x, y), Y =(u, v, w) andlet a: X*~Y™* be the automaton

mapping, given by
a(e) =e,

a(¥) =t (k=1),
()=t (k=1),
a(x*yp) = wtw™*t (k= 1, m = |p|),
a(y*xp) = Fw"tt (k=1,m = |p)).
Then the complete l-vector corresponding to « is just the regular l-vector a,=
=[x{x}, y{y}, (x{x}y+y{y}x){x+y}] from Example 2. Thus the mapping « can

be induced by the automaton U=(a, a,, a5, a3), a1, X, Y, 5, 4),. where & and
A is given by the transition-output table:

Al ay a az; a4

@, %) (@ 0) @2 W) (@, W)
y (a3: U) ((14, W) (03, U) (04, W).
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Summarizing the results of Theorelps 5 and 10, we have got

Corollary 11. If X and Y are finite non-empty sets and o: X*—~Y* is an
automaton mapping then it can be induced by a finite Mealy-automaton if and only if
the complete I-vector corresponding to a is regular.
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