On the lattice of clones acting bicentrally

By László Szabó

1. Introduction

For a set F of operations on a set A the centralizer F^* of F is the set of operations on A commuting with every member of F. If $F = F^{**}$ then we say that F acts bicentrally. The sets of operations on A acting bicentrally forms a complete lattice \mathscr{L}_A with respect to \subseteq .

The sets of operations acting bicentrally were characterized in [5] and [11]. For |A|=3 the lattice \mathscr{L}_A is completely described in [2] and [3]. The aim of this paper is to investigate the lattice \mathscr{L}_A . Among others we show that for any set A there exists a single operation f such that $\{f\}^{**}$ is the set of all operations of A (Theorem 5). Furthermore, it is proved that if $B \subseteq A$ then \mathscr{L}_B can be embedded into \mathscr{L}_A (Corollary 7).

2. Preliminaries

Let A be an at least two element set which will be fixed in the sequel. The set of n-ary operations on A will be denoted by $O_A^{(n)}$ $(n \ge 1)$. Furthermore, we set $O_A = \bigcup_{n=1}^{\infty} O_A^{(n)}$. A set $F \subseteq O_A$ is said to be a *clone* if it contains all projections and is closed with respect to superpositions of operations. Denote by [F] the clone generated by F. Let f and g be operations of arites n and m, respectively. If M is an $m \times n$ matrix of elements of A, we can apply f to each row of M to obtain a column vector consisting of m elements, which will be denoted by f(M). Similarly, we can apply g to each column of M to obtain a row vector of n elements, which will be denoted by (M)g. We say that f and g commute if for every $m \times n$ matrix M over A, we have (f(M))g=f((M)g).

By the centralizer of a set $F \subseteq O_A$ we mean the set $F^* \subseteq O_A$ consisting of all operations on A that commute with every member of F. It can be shown by a simple computation that $F^* = [F]^* = [F^*]$ for every $F \subseteq O_A$. The mapping $F \rightarrow F^*$ defines a Galois-connection between the subsets of O_A . Indeed, $F_1 \subseteq F_2$ implies $F_1^* \supseteq F_2^*$ and $F \subseteq (F^*)^* = F^{**}$ for every $F_1, F_2, F \subseteq O_A$. From this

it follows that $F^* = F^{***}$ for every $F \subseteq O_A$. Thus the mapping $F \to F^{**}$ is a closure operator on the subsets of O_A . The set F^{**} is called the bicentralizer of F. If $F = F^{**}$ then we say that F acts bicentrally. The sets of operations on A acting bicentrally form a complete lattice with respect to \subseteq . Denote by \mathscr{L}_A this lattice. In \mathscr{L}_A we have $\bigwedge_{i \in I} F_i = \bigcap_{i \in I} F_i$, $\bigvee_{i \in I} F_i = (\bigcup_{i \in I} F_i)^{**}$ and $(\bigvee_i F_i)^* = \bigwedge_{i \in I} F_i^*, (\bigwedge_i F_i)^* =$ $= \bigvee_{i \in I} F_i^*$. It follows that the mapping $F \to F^*(F \in \mathscr{L}_A)$ is a dual automorphism of \mathscr{L}_A .

The set of all projections, and the set of all injective unary operations on A will be denoted by P_A and S_A , respectively. An operation $f \in F$ is said to be homogeneous if $f \in S_A^*$. The symbol H_A denotes the set of all homogeneous operations, i.e., $H_A = S_A^*$.

We say that an operation $f \in O_A$ is parametrically expressible or generated by a set $F \subseteq O_A$ if the predicate $f(x_1, ..., x_n) = y$ is equivalent to a predicate of the form

$$(\exists t_1) \dots (\exists t_l) ((A_1 = B_1) \land \dots \land (A_m = B_m))$$

where A_i and B_i contain only operation symbols from F, variables $x_1, ..., x_n$, $y, t_1, ..., t_l$, commas and round brackets.

For $3 \le n \le |A|$ denote by l_n the *n*-ary near-projection, i.e. the *n*-ary operation defined as follows:

$$l_n(x_1, ..., x_n) = \begin{cases} x_1 & \text{if } x_i \neq x_j, \quad 1 \leq i < j \leq n, \\ x_n & \text{otherwise.} \end{cases}$$

We need the ternary dual discriminator-function d which is defined in the following way:

$$d(x, y, z) = \begin{cases} x & \text{if } y \neq z, \\ z & \text{if } y = z. \end{cases}$$

If $f \in O_A$ and $B \subseteq A$ then f_B denotes the restriction of f to B.

3. Results

First we give two examples. For every subset $X \subseteq A$ let C_X be the set of all unary constant operations with value belonging to X. Furthermore, let I_X be the set of all operations $f \in O_A$ for which f(x, ..., x) = x for every $x \in X$.

Example 1. For every subset $X \subseteq A$ we have $C_X^* = I_X$ and $I_X^* = [C_X]$. In particular, $P_A^* = O_A$ and $O_A^* = P_A$.

Proof. $C_X^* = I_X$ and $I_X^* \supseteq [C_X]$ are obvious. Now let $f \in I_X^*$ be an *n*-ary operation and suppose that $f \notin [C_X]$. Then *f* is neither a projection nor a constant operation with value belonging to *X*. Therefore there are elements $a_{i1}, \ldots, a_{in} \in A$, $i=1, \ldots, n+2$, such that $a_i = f(a_{i1}, \ldots, a_{in}) \neq a_{ii}$, $i=1, \ldots, n$, and $(a_{n+1}, a_{n+2}) = = (f(a_{n+1,1}, \ldots, a_{n+1,n}), f(a_{n+2,1}, \ldots, a_{n+2,n}) \notin \{(x, x) | x \in X\}$. Let $M = (a_{ij})_{(n+2)\times n}$. Since $(a_1, \ldots, a_{n+2}) \notin \{(x, \ldots, x) | x \in X\}$, and (a_1, \ldots, a_{n+2}) is distinct from each column of *M*, there exists an (n+2)-ary operation $g \in I_X$ such that $(f(M))g = = g(a_1, \ldots, a_{n+2}) \neq f((M)g)$, showing that *f* and *g* do not commute and $f \notin I_X^*$. This contradiction shows that $I_X^* \subseteq [C_X]$.

Finally if $X=\emptyset$ then we have $I_X=O_A$ and $[C_X]=[\emptyset]=P_A$. Example 2. If $|A| \ge 3$ then $(S_A \cup C_A)^* = H_A$ and $H_A^* = [S_A \cup C_A]$.

Proof. It is well known that $H_A \subseteq I_A$ if $|A| \ge 3$ (see e.g. [1]). Therefore $(S_A \cup C_A)^* = S_A^* \cap C_A^* = H_A \cap I_A = H_A$. In [10] it is proved that $[S_A \cup C_A]$ acts bicentrally. Thus $H_A^* = ((S_A \cup C_A)^*)^* = [S_A \cup C_A]^{**} = [S_A \cup C_A]$. \Box

For |A|=2, E. Post [8] described the lattice of clones over A. Using this result the lattice \mathscr{L}_A can be determined by routine. Figure 1 is the diagram of \mathscr{L}_A in case |A|=2. (We use the notation of [9]).

Fig. 1.

L. Szabó

Considering the diagram we can observe the following facts: if |A|=2 then \mathscr{L}_A has 25 elements, six atoms $(O_4, O_5, O_6, S_1, P_1, L_4)$, and six dual atoms $(D_3, C_2, C_3, S_6, P_6, L_1)$. Remark that the dual automorphism $F \rightarrow F^*$ coincides with the reflection of the diagram with respect to the axis $S_3 - P_3$.

For |A|=3, \mathcal{L}_A is a finite lattice of power 2986 and it has 44 atoms and dual atoms (see [2], [3] and [4]).

In general we have the following.

Theorem 3. If A is a finite set, then the closure operator $F \rightarrow F^{**}$ is algebraic, and \mathscr{L}_A is an atomic and dually atomic algebraic lattice. If A is infinite, then the closure operator $F \rightarrow F^{**}$ is not algebraic.

Proof. First let A be a finite set. A. V. Kuznecov showed in [5] that $F = F^{**}$ if and only if F contains every operation parametrically generated by F. From this it follows that the closure operator $F \rightarrow F^{**}$ is algebraic. Thus \mathscr{L}_A is an algebraic lattice. It is well-known that there are finite sets $F \subseteq O_A$ such that $F^{**} = O_A$ (see e.g. [4]). Therefore \mathscr{L}_A is dually atomic. Since \mathscr{L}_A is dually isomorphic to itself, it is atomic, too.

A. F. Danil'cenko proved in [4] that if $|A| \ge 3$ then every dual atom of \mathscr{L}_A is of the form $\{f\}^*$ where $f \in O_A$ is an at most |A|-ary operation. From this it follows that \mathscr{L}_A has finitely many dual atoms and atoms (the numbers of atoms and dual atoms are equal).

Now let A be an infinite set and let $x_1, x_2, ... \in A$ be pairwise distinct elements. Put $X_i = \{x_i, x_{i+1}, ...\}$, i = 1, 2, ... Then, by Example 1, $I_{X_i} \in \mathscr{L}_A$, i = 1, 2, ...and clearly $I_{X_1} \subseteq I_{X_2} \subseteq ...$ Furthermore $\bigcup_{i=1}^{\infty} I_{X_i} \neq O_A$ and $(\bigcup_{i=1}^{\infty} I_{X_i})^{**} = (\bigcap_{i=1}^{\infty} I_{X_i}^*)^* = (\bigcap_{i=1}^{\infty} [C_{X_i}])^* P_A^* = O_A$. It follows that the closure operator $F \to F^{**}$ is not algebraic. \Box

Theorem 4. If $|A| \ge 5$, then H_A is an atom and $[S_A \cup C_A]$ is a dual atom in \mathscr{L}_A .

Proof. First we show that if d is the ternary dual discriminator and $l_n (3 \le n \le |A|)$ is a near-projection then $\{d\}^* = \{l_n\}^* = [S_A \cup C_A]$. The inclusions $\{d\}^* \supseteq [S_A \cup C_A]$ and $\{l_n\}^* \supseteq [S_A \cup C_A]$ are obvious. Let $f \in O_A \setminus [S_A \cup C_A]$ be an *m*-ary operation. If f depends on one variable only then we can assume without loss of generality that f is a unary operation. Since f is non-injective and non-constant, there are pairwise distinct elements $a, b, c \in A$ such that $f(a) \ne f(b) = f(c)$. Furthermore choose elements $x_4, \ldots, x_n \in A$ such that $a, b, c, x_4, \ldots, x_n$ are pairwise distinct. Then $f(d(a, b, c)) = f(a) \ne f(c) = d(f(a), f(b), f(c))$ and $f(l_n(a, b, x_4, \ldots, \ldots, x_n, c)) = f(a) \ne f(c) = l_n(f(a), f(b), f(x_4), \ldots, f(x_n), f(c))$ showing that f does not commute with d and l_n , i.e. $f \notin \{d\}^*$ and $f \notin \{l_n\}^*$. Now suppose that f depends on at least two variables, among others on the first. Therefore there are elements $a_2, \ldots, a_n \in A$ such that the unary operation $g(x) = f(x, a_2, \ldots, a_n)$ is not a constant. If f takes on at least $n \in \exists 3$ values. Since f depends on at least two variables, there are elements $a_1, \ldots, a_m, b_1, \ldots, b_m, a, b, c \in A$ such that a, b and c are pairwise distinct and $a = f(a_1, \ldots, a_m)$, $b = f(b_1, a_2, \ldots, a_m)$, $c = f(a_1, b_2, \ldots, b_m)$

(see e.g. [6]). Then $d(f(a_1, b_2, ..., b_m), f(b_1, a_2, ..., a_m), f(a_1, ..., a_m)) = d(c, b, a) = = c \neq a = f(a_1, ..., a_m) = f(d(a_1, b_1, a_1), d(b_2, a_2, a_2), ..., d(b_m, a_m, a_m))$ showing that $f \notin \{d\}^*$. Finally, since f takes on at least n values, there are elements $x_{i1}, ..., x_{im} \in A$, i=4, ..., n, such that $a, b, c, x_4, ..., x_n$ are pairwise distinct elements where $x_i = f(x_{i1}, ..., x_{im})$. Now consider the following $n \times m$ matrix M.

$$M = \begin{pmatrix} x_{41} \dots & x_{4m} \\ \vdots & \vdots \\ x_{n1} \dots & x_{nm} \\ a_1 & a_2 \dots & a_m \\ b_1 & a_2 \dots & a_m \\ a_1 & b_2 \dots & b_m \end{pmatrix}.$$

Then $(f(M))l_n = l_n(x_4, ..., x_n, a, b, c) = x_4 \neq c = f(a_1, b_2, ..., b_m) = f((M)l_n)$ showing that f and l_n do not commute. This completes the proof of the equalities $\{d\}^* = [S_A \cup C_A]$ and $\{l_n\}^* = [S_A \cup C_A]$.

Now we are ready to prove the theorem. Since $H_A^* = [S_A \cup C_A]$, it is enough to show that H_A is an atom in \mathscr{L}_A , i.e. for any nontrivial operation $f \in H_A$ we have $\{f\}^{**} = H_A$ or equivalently $\{f\}^* = [S_A \cup C_A]$. In [1] and [7] it is shown that if $|A| \ge 5$ then every non-trivial clone of homogeneous operations contains the dual discriminator or a near-projection. Therefore, if $f \in H_A$ is a non-trivial operation and $d \in [\{f\}]$ then $[S_A \cup C_A] \subseteq \{f\}^* = [\{f\}]^* \subseteq \{d\}^* = [S_A \cup C_A]$. If $l_n \in [\{f\}]$ for some $n \ge 3$, then $[S_A \cup C_A] \subseteq \{f\}^* = [\{f\}]^* \subseteq \{l_n\}^* = [S_A \cup C_A]$. Hence $\{f\}^* = [S_A \cup C_A]$, which completes the proof. \Box

Theorem 5. There exists a function $f \in O_A$ such that $\{f\}^{**} = O_A$.

Proof. If A is a finite set then let $f \in O_A$ be a Sheffer function, i.e. an operation f for which $[\{f\}] = O_A$. Then $[\{f\}^{**} = [\{f\}]^{**} = O_A^{**} = O_A$.

Now let A be an infinite set. In [12] it is proved that there exists a binary rigid relation ϱ on A (ϱ is rigid if the identity operation is the only unary operation preserving ϱ). Choose a rigid relation ϱ and define a binary operation h as follows: h(x, y) = x if $(x, y) \in \varrho$ and h(x, y) = y if $(x, y) \notin \varrho$. We show that $\{h\}^* \cap S_A =$ $= \{id_A\}$. Indeed, let $t \in S_A$ and $t \neq id_A$. Then there is a pair $(x, y) \in \varrho$ such that $(t(x), t(y)) \notin \varrho$. Clearly $x \neq y$, since otherwise the unary constant operation $A \to \{x\}$ preserves ϱ . It follows that $t(h(x, y)) = t(x) \neq t(y) = h(t(x), t(y))$ and $t \notin \{h\}^*$. Let $g \in O_A$ be a fixed point free permutation whose cycles are all infinite.

Furthermore, let $a, b \in A$ with $a \neq b$.

Now we are ready to define an operation f such that $\{f\}^{**} = O_A$. Let

$$f(x, y, z, u) = \begin{cases} g(x) & \text{if } x = y = z = u, \\ d(y, z, u) & \text{if } y = g(x), \\ h(z, u) & \text{if } x = g(y), \\ a & \text{if } y = g(g(x)), \\ b & \text{if } x = g(g(y)), \\ x & \text{otherwise.} \end{cases}$$

Denote by c_a and c_b the unary constant operations with values a and b, respectively. Then $g, d, h, c_a, c_b \in [\{f\}]$ since f(x, x, x, x) = g(x), f(x, g(x), y, z) = d(x, y, z), f(g(x), x, x, y) = h(x, y), $f(x, g(g(x)), x, x) = c_a(x)$ and f(g(g(x)), x) = f(x, y).

x, x, x = $c_b(x)$. If $t \in \{f\}^*$ then $t \in \{d, h, c_a, c_b\}^*$. Since $t \in \{d\}^*$, by Theorem 4, $t \in [S_A \cup C_A]$. We can suppose that t is unary. If $t \in S_A$ then $t \in \{h\}^*$ implies $t = id_A$. If $t \in C_A$, i.e. t is a constant operation with value x_0 then we have that $a = c_a(t(a)) =$ $=t(c_a(a))=x_0=t(c_b(a))=c_b(t(a))=b \text{ which is a contradiction. Thus we have}$ $\{f\}^*=P_A \text{ and } \{f\}^{**}=P_A^*=O_A. \square$

Let $B \subseteq A(B \neq \emptyset)$ and let s be a mapping from A onto B such that s(b) = bfor every $b \in B$. For any operation $f \in O_B^{(n)}$, $n \ge 1$, let us define an operation $f^s \in O_A$ as follows: $f^{S}(a_{1}, ..., a_{n}) = f(s(a_{1}), ..., s(a_{n}))$ for any $a_{1}, ..., a_{n} \in A$. For any $F \subseteq O_{B}$ let $F^{S} = P_{A} \cup \{f^{S} | f \in F\}$.

Theorem 6. Let $F \subseteq O_B$ such that $id_B \in F$. Then $(F^S)^{**} = (F^{**})^S$. In particular, if $F = F^{**}$ then $F^{S} = (F^{S})^{**}$.

Proof. We shall prove the theorem through some statements:

(1) $s \in F^s$ and $s \in (F^s)^*$.

Since $id_B \in F$, we have $s = id_B^S \notin F^S$. Let $g \in F$. If $g \in P_A$ then, clearly, s commutes with g. If $g = f^S$ for some $f \in F$, then for any $a_1, \ldots, a_n \in A$ we have $s(g(a_1, \ldots, a_n)) = s(f^S(a_1, \ldots, a_n)) = s(f(s(a_1), \ldots, s(a_n))) = f(s(s(a_1)), \ldots, s(s(a_n))) = g(s(a_1), \ldots, s(a_n))$. Hence s commutes with g and $s \in (F^S)^*$.

(2) If $g \in (F^S)^*$ then g preserves B.

Indeed, if g is n-ary and $b_1, ..., b_n \in B$ then $g(b_1, ..., b_n) = g(s(b_1), ..., s(b_n)) =$ $=s(g(b_1, ..., b_n)) \in B.$ (3) $g \in (F^S)^*$ if and only if $g_B \in F^*$ and g commutes with s.

First suppose that $g \in (F^S)^*$. Then g commutes with s, since $s \in F^S$. If $f \in F$, then g commutes with f^{S} . By (2), we have $g_B \in O_B$, and clearly the restriction of f^{s} to B coincides with f. These facts imply that g_{B} commutes with f. Hence $g_B \in F^*$. Now suppose that $g_B \in F^*$, g commutes with s, and $f^S \in F^S(f \in F)$. Let g and f be m-ary and n-ary, respectively, and choose arbitrary elements $a_{i1}, \dots, a_{im} \in A$, i = 1, ..., n. Then

$$f^{S}(g(a_{11}, ..., a_{1m}), ..., g(a_{n1}, ..., a_{nm})) = f(s(g(a_{11}, ..., a_{1m})), ..., s(g(a_{n1}, ..., a_{nm}))) =$$

= $f(g_{B}(s(a_{11}), ..., s(a_{1m})), ..., g_{B}(s(a_{n1}), ..., s(a_{nm}))) =$
= $g_{B}(f(s(a_{11}), ..., s(a_{n1}))), ..., f(s(a_{1m}), ..., s(a_{nm})) =$
= $g(f^{S}(a_{11}, ..., a_{n1}), ..., f^{S}(a_{1m}, ..., a_{nm})).$

Hence g commutes with f^{S} and $g \in (F^{S})^{*}$.

(4) If $f \in F^*$ then $f^S \in (F^S)^*$. Clearly, the restriction f^S_B to B coincides with f, and f^S commutes with s. Therefore, by (3), we have $f^{S} \in (F^{S})^{*}$.

(5) If $g \in (F^S)^{**}$ then $g \in P_A$ or g maps into B.

Suppose $g \in (F^S)^{**} \setminus P_A$ is an *n*-ary operation which takes on a value from $A \setminus B$. Since g is not a projection, for every $i \in \{1, ..., n\}$ there are $a_{i1}, ..., a_{in} \in A$ such that $a_i = g(a_{i1}, ..., a_{in}) \neq a_{il}$. Furthermore let $a_{n+1,1}, ..., a_{n+1,n} \in A$ such that $g(a_{n+1,1}, ..., a_{n+1,n}) = a_{n+1} \notin B$. Let us define an (n+1)-ary operation $h \in O_A$ as follows:

$$h(x_1, ..., x_{n+1}) = \begin{cases} s(a_{n+1}) & \text{if } (x_1, ..., x_{n+1}) = (a_1, ..., a_{n+1}), \\ x_{n+1} & \text{otherwise.} \end{cases}$$

Then h commutes with s, and h_B , being a projection, belongs to F^* . Therefore, by (3), $h \in (F^S)^*$. Now $g(h(a_{11}, \ldots, a_{n+1,1}), \ldots, h(a_{1n}, \ldots, a_{n+1,n})) = g(a_{n+1,1}, \ldots, a_{n+1,n}) = a_{n+1} \neq s(a_{n+1}) = h(a_1, \ldots, a_{n+1}) = h(g(a_{11}, \ldots, a_{1n}), \ldots, g(a_{n+1,1}, \ldots, a_{n+1,n}))$. It follows that g does not commute with h, which is a contradiction.

(6) If $g \in (F^S)^{**}$ then g preserves B.

This follows from (5)

(7) If $g \in (F^S)^{**}$ then $g_B \in F^{**}$.

Let $g \in (F^S)^{**}$ and let f be an arbitrary operation in F^* . Then, by (4), we have that g commutes with f^S . Taking into consideration (6), this implies that $g_B \in O_B$ commutes with f (the restriction of f^S to B). It follows that $g_B \in F^{**}$.

Now we are ready to prove the theorem. First let $g \in (F^S)^{**}$. If $g \in P_A$ then clearly $g \in (F^{**})^S$. Suppose that $g \notin P_A$ and let $g_B = f$. Taking into consideration (5), (1) and (7), we have that g maps into B, g commutes with s, and $f \in F^{**}$. Thus if g is *n*-ary then for any $a_1, \ldots, a_n \in A$ we have $g(a_1, \ldots, a_n) = s(g(a_1, \ldots, a_n)) = g(s(a_1), \ldots, s(a_n)) = f(s(a_1), \ldots, s(a_n))$ showing that $g = f^S$ and $g \in (F^{**})^S$. Finally let $g \in (F^{**})^S$. If $g \in P_A$ then $g \in (F^S)^{**}$. If $g \notin P_A$ then there is an $f \in F^{**}$ such that $g = f^S$. Take an arbitrary operation h from $(F^S)^*$. Then, by (3), h commutes with s and $h_B \in F^*$. It follows that h_B commutes with f $(h_B \in F^* = (F^{**})^*)$. Let g and h be m-ary and n-ary, respectively, and choose arbitrary elements $a_{i1}, \ldots, \ldots, a_{im} \in A, i = 1, ..., n$. Now

$$h(g(a_{11}, ..., a_{1m}), ..., g(a_{n1}, ..., a_{nm})) = h_B(f(s(a_{11}), ..., s(a_{1m})), f(s(a_{n1}), ..., s(a_{nm}))) =$$

= $f(h_B(s(a_{11}), ..., s(a_{n1})), ..., h_B(s(a_{1m}), ..., s(a_{nm}))) =$
- $= f(h(s(a_{11}), ..., s(a_{n1})), ..., h(s(a_{1m}), ..., s(a_{nm}))) =$

 $= f(s(h(a_{11}, ..., a_{n1})), ..., s(h(a_{1m}, ..., a_{nm}))) = g(h(a_{11}, ..., a_{n1}), ..., h(a_{1m}, ..., a_{nm})).$

It follows that g commutes with h and $g \in (F^{S})^{**}$. \Box

Corollary 7. The mapping $F \to F^S$ from \mathscr{L}_B into \mathscr{L}_A is an isomorphism.

Proof. From Theorem 6 it follows that if $F \in \mathscr{L}_B$ then $F^S \in \mathscr{L}_A$. Observe that $(F_1 \cap F_2)^S = F_1^S \cap F_2^S$ and $(F_1 \cup F_2)^S = F_1^S \cup F_2^S$ for any $F_1, F_2 \in \mathscr{L}_B$. Therefore taking into consideration Theorem 6, for any $F_1, F_2 \in \mathscr{L}_B$ we have that $(F_1 \wedge F_2)^S = (F_1 \cap F_2)^S = F_1^S \cap F_2^S = F_1^S \wedge F_2^S$ and $(F_1 \vee F_2)^S = ((F_1 \cup F_2)^{**})^S = ((F_1 \cup F_2)^S)^{**} = (F_1^S \cup F_2^S)^{**} = F_1^S \vee F_2^S$. Finally, it is obvious that the mapping $F \to F^S$ is injective. \Box

Corollary 8. If $s \neq id_A$ then [{s}] is an atom in \mathscr{L}_A .

Proof. Let $P_B \subseteq O_B$ be the set of projections on B. Then $P_B^S = [\{s\}]$ and therefore, by Theorem 6, $[\{s\}] \in \mathscr{L}_A$. It is trivial that $[\{s\}]$ is an atom in \mathscr{L}_A . \Box

BOLYAI INSTITUTE ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY

References

- B. CSÁKÁNY and T. GAVALCOVÁ, Finite homogeneous algebras. I, Acta Sci. Math., 42 (1980), 57-63.
- [2] A. F. DANIL'ČENKO, On the parametrical expressibility of functions of three-valued logic (in Russian), Algebra i logika, 16/4 (1977), 379-494.
- [3] A. F. DANIL'ČENKO, Parametrically closed classes of functions of three-valued logic (in Russian), Izv. Akad. Nauk Moldav. SSR, 1978, no. 2, 13-20.
- [4] A. F. DANIL'ČENKO, On parametrical expressibility of the functions of k-valued logic, in: Finite Algebra and Multiple-valued Logic (Proc. Conf. Szeged, 1979). Colloq. Math. Soc. J. Bolyai, vol. 28, North-Holland (Amsterdam, 1981), 147-159.
- [5] A. V. KUZNECOV, On detecting non-deducibility and non-expressibility (in Russian), in: Logical deduction, Nauka, Moscow (1979), 5-33.
- [6] A. I. MAL^{*}CEV, A strengthening of the theorems of Słupecki and Jablonskii (in Russian), Algebra i Logika 6, no. 3 (1967), 61-75.
- [7] S. S. MARČENKOV, On homogeneous algebras (in Russian), Dokl. Acad. Nauk SSSR, 256 (1981), 787-790.
- [8] E. Post, The two-valued iterative systems of mathematical logic, Ann. Math. Studies 5, Princeton (1941).
- [9] R. PÖSCHEL und L. A. KALUŽNIN, Functionen- und Relationenalgebren, Ein Kapitel der diskreten Mathematik, Math. Monographien B. 15, Berlin (1979).
- [10] L. SZABÓ, Endomorphism monoids and clones, Acta Math. Acad. Sci. Hungar., 26 (1975), 279-280.
- [11] L. SZABÓ, Concrete representation of related structures of universal algebras. I, Acta Sci. Math., 40 (1978).
- [12] P. VOPENKA, A. PULTR and Z. HEDRLIN, A rigid relation exists on any set, Comment. Math. Univ. Carolinae, 6 (1965), 149-155.

Received Agust 30, 1983.