On the lattice of clones acting bicentrally
By LAszLO SzABG

1. Introduction

For a set F of operations on a set A the centralizer F* of F is the set of
operations on A4 commuting with every member of F. If F=F** then we say
that F acts bicentrally. The sets of operations on A4 acting bicentrally forms
a complete lattice &, with respect to <.

The sets of operations acting bicentrally were characterized in [5] and [11].
For |A|=3 the lattice %, is completely described in [2] and [3). The aim of this
paper is to investigate the lattice %£,. Among others we show that for any set
A there exists a single operation f such that {f}** is the set of all operations of
A (Theorem 5). Furthermore, it is proved that if B& A then % can be embedded
into %, (Corollary 7).

2. Preliminaries

Let A be an at least two element set which will be fixed in the sequel. The set
of n-ary operations on 4 will be denoted by 0%’ (n=1). Furthermore, we set

0,= U 09. A set FS0, is said to be a clone if it contains all projections and

n=1 . .
is closed with respect to superpositions of operations. Denote by [F]. the clone
generated by F. Let f and g be operations of arites n and m, respectively.
If M isan mXn matrix of elements of A4, we can apply f to each row of M to
obtain a column vector consisting of m elements, which will be denoted by f(M).
Similarly, we can apply g to each column of M to obtain a row vector of n ele-
ments, which will be denoted by (M)g. We say that f and g commute if for every
mXn matrix M over A, wehave (f(M))g=/f((M)g).

By the centralizer of a set FE 0, we mean the set F*S0, consisting of all
operations on A that commute with every member of F. It can be shown by
a simple computation that F*=[F]*=[F*] for every FESO,. The mapping
F—F* defines a Galois-connection between the subsets of O,. Indeed, F;C F,

implies Ff2F; and FC(F*)*=F** for every F,,F,, FEO,. From this
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it follows that F*=F*** forevery FSO,. Thusthe mapping F—F** isa closure
operator on the subsets of O,. The set F** is called the bicentralizer of F. If
F=F** then we say that F acts bicentrally. The sets of operations on A acting
bicentrally form a complete lattice with respect to €. Denote by ZA this lattice.
In %, we have /\F NF, VF (UF)** and (VF) -—/\ ,(/\F)*
i€l
=V F. It follows that the mappmg F—»F *(Fe&)) 1s a dual automorphnsm
i€l

of Z,.

The set of all projections, and the set of all injective unary operations on A
will be denoted by P, and S,, respectively. An operation f€F is said to be
homogeneous if f€S%. The symbol H, denotes the set of all homogeneous opera-
tions, i.e., H,=S%.

We say that an operation f€0, is parametrically expressible or generated by
aset F& O, ifthe predicate f(x,, ..., x,)=y is equivalent to a predicate of the form

(30) . G0) (= BIA . A4y, = By)
where A4; and B; contain only operation symbols from F, variables x, ..., x,,
¥, t, ..., 4}, commas and round brackets.

For 3=n=|4| denote by I, the n-ary near-projection, i.e. the n-ary operation
defined as follows:

Li(xyy ey x) = {

We need the ternary dual discriminator-function d which is defined in the following
way:

x if x#x;, 1=i<j=n,
x, otherwise.

x if y#z

d(x,y,z)={z if y=z.

If f€0, and BS A4 then fp denotes the restriction of f to B.

3. Results

First we give two examples. For every subset XS A4 let Cy be the set of all
unary constant operations with value belonging to X. Furthermore, let Iy be
the set of all operations f€O, for which f(x, ..., x)=x for every x€X.

Example 1. For every subset XS 4 we have Cy=Iy and I3=[Cy]. In partl-
cular, P¥=0, and O%=P,.

Proof. C3x=1Ix and I32[Cy] are obvious. Now let f€I; be an n-ary opera-
_tion and suppose that f¢[Cx]. Then f is neither a projection nor a constant opera-
tion with value belonging to X. Therefore there are elements ay, ..., a;,€4,

i=1,...,n42, such that a=f(ay, ..., 0,)=a;, i=1,..,n, and (@,,;1,82)=
=_(f(an+1,l- --'9an+l,n)s f(an+2 1s =+ n+2 n))&{(x X)IXEX} Let M (au)(n+2;xn
“Since (ay, ..., a, )¢ {(x, --.» x)|xEX b and (ais ..., G,19) is distinct from each

¢olumn of M there exists an (n+2)-ary operation g€ly such that (f(M))g=
=glay, ... ,,+2);éf((M)g) showing that f and g do not commute and f¢I3.
This contradlctlon shows that” I3S[Cx]. Hence I}f=[Cy].
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Finally if X=@ then we have Iy=0, and [C]=[0]=P,. O
Example 2. If [4]|=3 then (SAUC;,)*=HA and H;=[S,UC,].

Proof. 1t is well known that H,S1, if |4|=3 (see e.g. [1]). Therefore
(S, UCH)*=s NCi=H,NI,=H,. In [10] it is proved that [S,UC,] acts
bicentrally, Thus Hji=((S,UC)*)*=[S,UCI*=[S,UC,. 0O

For {A4|=2, E. Post [8] described the lattice of clones over 4. Using this result
the lattice %, can be determined by routine. Figure 1 is the diagram of %, in
case |A|=2. (We use the notation of [9]).
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Considering the diagram we can observe the following facts: if |4|=2 then
%, has 25 elements, six atoms (O,, O;, Oq, S, P;, Ly, and six dual atoms
(D, C,, Csy, S, Ps, Ly). Remark that the dual automorphism F--F* coincides
with the reflection of the diagram with respect to the axis S;— Ps. ,

For |4|=3, &, is a finite lattice of power 2986 and it has 44 atoms and dual
atoms (see {2], {3] and [4]).

In general we have the following.

. Theorem 3. If A is a finite set, then the closure operator F-F** is algebraic,
and %, is an atomic and dually atomic algebraic lattice. If A is infinite, then the
closure operator F--F** is not algebraic.

Proof. Firstlet 4 be a finite set. A. V. Kuznecov showed in [5] that F =F**
if and only if F contains every operation parametrically generated by F. From
this it follows that the closure operator F—F** is algebraic. Thus %, is an al-
gebraic lattice. It is well-known that there are finite seis FS 0, suchthat F**=0,
(see e.g. [4]). Therefore &, is dually atomic. Since %, is dually isomorphic to
itself, it is atomic, too.

A. F. Danil’cenko proved in [4] that if [4|=3 then every dual atom of %,
is of the form {f}* where f€0, is an at most |A[|-ary operation. From this it
follows that %, has finitely many dual atoms and atoms (the numbers of atoms
and dual atoms are equal).

- Nowlet 4 be an infinite set and let x,, x,, ...€A4 be pairwise distinct elements.
Put X;={x;, x;41, ...}, i=1,2,.... Then, by Example 1, Ix€%,, i=1,2,..

and clearly Iy S1Ix,S.... Furthermore CJIX‘¢0A and (D L)y =(N1Z)=
i=1 i=1 i=1

= (ﬁ [Cx])*Pf=0,. It follows that the closure operator F—F** is not
i=1
algebraic. [0
Theorem 4. If |4|=5, then H, isanatomand [S,UC,] is a dual atomin &,.

Proof. ‘First we show that if 4 is the ternary dual discriminator and
I, (3=n=|4|) is a near-projection then {d}*={l,}*=[S,UC,]. The inclusions
{d}y*2[s,uUC,] and {,}*2[S,UC,] are obvious. Let f€0O,\[S,UC,] be an
m-ary operation. If f depends on one variable only then we can assume without
loss of generality that f is a unary operation. Since f is non-injective and non-
constant, there are pairwise distinct elements a, b, c€ 4 such that f(a)s= f(b)=f(c).
Furthermore choose elements x,, ..., X,€4 such that a, b, c, x,, ..., X, are pairwise
distinct. Then f(d(a, b, ¢))=f(a) # f(c)=d(f(a), f(b), f(c)) and f(l,(a,b, x,, ...
vees Xns )= (@ #f()=1,(f(a), f(),[(xa); ..., f(x,), f(c)) showing that f does not
commute with d and /,, i.e. f¢ {d}* and f¢ {l,}*. Now suppose that f depends on
at least two variables, among others on the first. Therefore there are elements
as, ..., a,€ A such that the unary operation g(x)=f{(x, a,, ..., a,) is not a constant.
If f takes on at most n—1 elements from™ 4 then g is not injective. Therefore
g¢{d}* and g¢ {I,}*. From thisit follows that f¢ {d}* and f¢ {l,}*. Finallysuppose
that f takes on at least n(=3) values. Since f depends on at least two variables,
there are elements a,...,a,,b,, ..., b,,a,b,c€A such that a,b and c¢ are
pairwise distinct and a=f(a,, ..., a,), b=f(by, as, ..., a,), c=f(ay, by, ..., b,)
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(See €.g. [6]) Then d(f(als b2a eeey bm)a f(bls gy «eey am) f(ala m)) d(C, b a)_.
_c¢a'—f(a15 (A ] am) f(d(ala bl, al) d(b2’ as, 02)1 EEEE) ( ms Om>s am)) ShOWIng that
feldy. Fmally, since f takes on atleast n values, there are elements x;, ..., X;,€4,
i=4,...,n, such that a,b,c,x,, ..., x, -are pairwise distinct- elements where
x;= f(x,-l, vevs Xim). NOW con51der the following nXm matrix M. - :

X414+ Xam
'M= Xp1 oo Xpm
a,qs...a,
b, a;...a,
ab,... b,

Then (f(M),=1,(xq, ..., Xy, 8, b, c)=Xs#c=f(ay, by, ..., b,)= f((M)l) showmg
that f and I, do not commute. This completes the proof of the equalities {d}*=
=[S,UC,] and {Ly =[S.UC4l.

Now we are ready to prove the theorem. Since Hi=[S,UC,], it is enough
to show that H, isanatomin %,, i.c. for any nontrivial operation fE€H, we have
{f¥*=H, or equivalently {f}*=[S,UC,]. In[1] and [7] it is shown that if |4|=5
then every non-trivial clone of homogeneous operatlons contains the dual discrimi-
nator or a near-projection. Therefore, if fCH, is a non-trivial operation ‘and
del{ff) then [S,UCLS (f1*=[{f)*S (@}*=[S,UCL. If Le[{f}] for some
n=3, then [S,UCUHS{f}'=[{/N"S{L}"=[S.UCJ Hence {f}'=[S,UC4l,
which completes the proof. [ :

_Theorem 5. There exists a function f€0, such that {f}*=

Proof. If A is a finite set then let f€O0, be a Sheﬂ'er functlon i.e.an operatlon.
f for which [{f}}=0,. Then [{f}*=[{fI"™"=04"=0,.

Now let” 4 be an infinite set. In[12] it is proved that there exists a bmary r1g1d
relation ¢ on A (¢ is rigid if the identity operation is the only unary operation
preserving g). Choose a rigid relation ¢ and define a binary operation h as follows:
h(x, y)=x if (x,y)€¢ and h(x,y)=y if (x,y)¢o. We show that {h}*NS,=
={id,}. Indeed, let t¢S, and t=id,. Then there is a pair (x; y)€¢ such that
(t(x), 1(»)g 0. Clearly x>y, since otherwise the unary constant operation 4 {x}
preserves  o. It follows that t(i(x, y))=1(x)=t(y)=h(t(x), t(y)) and t¢{h}*.

Let gc0O, be a fixed point free permutation whose cycles are all 1nﬁmte
Furthermore, let a, b€ A with a>=b. : v

Now we are ready to define an operatlon f such that {fy*=0,. Let

g if x —-"y =z=u,
;ilgy, ;’ u) - ,if = gEx))
_ zZ,U 1 X = s
f(x5y92 u)= a _ . lf y:gg(éy(x))’
b if x=g(g(),
x . otherwise. . -

Denote by ¢, and ¢, the unary constant operations with values a and b, rel
spectively. Then g, d, b, cay GE[{f}] since f(x, x, x, x)=g(x), f(%,. g(x), y, z)—
=d(x,y,2), f(&x), %, x, y)=h(x, ), :f(x, g(g(x), X, ¥)=c,(x) and " f(g(e(x)),
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x, x, x)=cy(x). If te{f}* then tc{d,h,c,,c,}*. Since r€{d}*, by Theorem 4,
te[S,UC,). We can suppose that ¢t is unary. If t€S, then s {h}* implies t=id,.
If 1€C,, i.e. t isaconstant operation with value x, then we have that a=c,(t(a))=
=t(c(a))=xy=1 fc,,(a)) =c,(t(a))=b which is a contradiction. Thus we have
{f¥=P, and {f}*=P;=0,. O

Let BS A(B#0) and let s be a mapping from 4 onto B such that s(b)=»5
for every b€ B. For any operation f€O{), n=1, let us define an operation f5¢0,
as follows: fS(ay, ..., a,)=f(s(a), ..., s(a,)) for any a,, ...,a,6A. For any FC O,
let FS=P,U{f5|fcF}.

Theorem 6. Let FS Oy such that idgc F. Then (FSy**=(F**)S. In parti-
cular, if F=F** then F5=(FS)**

Proof. We shall prove the theorem through some statements:

(1) s€FS and sc(F5*

Since idg€ F, we have s=id$¢ FS. Let g€ F. If g€ P, then, clearly, s com-
mutes with g. If g=f5 for some f¢F, then for any a,...,a,6A we have
5(2(@rs s 8)) = $(5(@rs -..r 3)) = $(F(5(@)s s 5(an)) = f(5(5(@D), s 5(5(an))) =
=g(s(ay), ..., s(a,)). Hence s commutes with g and se(F5)*.

(2) If ge(FS)* then g preserves B.

Indeed, if g is n-ary and by, ..., b,€B then g(b, ..., b)=g(s(b1), ..., s(b,))=
=s(g(by, ..., b))€B.

(3) g¢(FS* if and only if gz€ F* and g commutes with s.

First suppose that ge(F%)*. Then g commutes with s, since s€FS. If f¢F,
then g commutes with f5. By (2), we have gg€ Oy, and clearly the restriction of
/S5 to B coincides with f. These facts imply that gz commutes with f. Hence
gs€ F*. Now suppose that gz€ F*, g commutes with s, and fSc FS(f€F). Let
g and f be m-ary and n-ary, respectively, and choose arbitrary elements g;,, ...,q;,€ 4,
i=1,...,n. Then

fs(g(all’ sy alm)’ ceey g(anl, cees anm)) = f(s(g(a119 (RS ] alm))9 cevy s(g(anla rey anm))) =
= f(gB(s(all)a ey s(alm))’ sy gB(s(anl), sres s(anm))) =
= gB(f(s(all)s ceey S(anl)))a .. 'sf(s(alm)9 eeey s(anm)) =
= g(f5@us s @)y s L5 @ims -0 Gum))-
Hence g commutes with /5 and ge(FS)*.

(4) If feF* then fS¢(F5)*.

Clearly, the restriction f§ to B coincides with f, and f5 commutes with . s.
Therefore, by (3), we have f>¢(F5)*.

(5) If ge(F5)** then g€ P, or g maps into B.

Suppose g€(FS)**\ P, is an n-ary operation which takes on a value from 4\ 5.
Since g is not a projection, for every i€{l,...,n} there are a,...,a,€A4 such
that a;=g(ay, ..., @) #a,. Furthermore let a,,y,,...,4,4;,64 such that
8(ay41,15 s Gni1,M)=08n11¢B. Let us define an (n4-1)-ary operation heO, as
follows:

— s(an+l) if (xl’ AR xn+1) =(al’ AR an+l)’
B oo Xarr) = {x,,+1 otherwise.
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Then h commutes with s, and hy, being a projection, belongs to F*. Therefore, by
(3)3 hE(FS)* Now g(h(alla e an+1,1)7 Tt h(aln, R an+1,n))=g(an+l,1’ “eey an+1,n)=
= Upt1 = s(an+1) = h(als (R an+1) = h(g(alla S aln), LS g(an+1,1’ () an+1,n) It
follows that g does not commute with A, which is a contradiction.

(6) If ge(F5)** then g preserves B.

This follows from (5)

(7) If ge(F5)** then gz€ F**.

Let gc(FS)** andlet f be an arbitrary operationin F*. Then, by (4), we have
that g commutes with 5. Taking into consideration (6), this implies that gz (€ Op)
commutes with f (the restriction of f° to B). It follows that gz€ F**.

Now we are ready to prove the theorem. First let ge(FSy**. If g€ P, then
clearly ge(F**)S. Suppose that g¢ P, and let gz=f Taking into consideration
(5), (1) and (7), we have that g maps into B,g commutes with s, and feF**
Thusif g isn-ary then for any a,, ..., a,€ 4 wehave g(ay, ..., a,)=s(g(ay, -.., a))=
=g(s(@)s ..., s(@))=f(s(@), ..., s(a,)) showing that g=/5 and g€(F**)°. Finally
let g€(F**)5. If gc P, then ge€(FS)**. If g4 P, then there is an f€ F** such that
g=f%. Take an arbitrary operation h from (FS)*. Then, by (3), & commutes
with s and hze F*. It follows that hy commutes with [ (hg€ F*=(F**)*). Let
g and h be m-ary and n-ary, respectively, and choose arbitrary elements ay, ...
vees A€ A, i=1, ..., n. Now

h(g(qll, cees Ai)s o5 &A1y oons Auny)) = Hp(f(5(a11), ..., (@), F(5(01), ..., 5(@nm))) =
= f(hs(s(ary), ---» 5(@n1))s -+ hp($(@1)s o os 5(@nm))) =

e = f(h(s(aw), - 5(@))s -y h(s(alm), ey S(@nm))) = -

= fls(h(@uss -5 @)y «-os S(h(Q1ms o3 Gugy))) = &M (@11, ooy Gar)s ooos K@y .5 Guy)).

" It follows that g commutes with 4 and g€(FSy**. 0O

Corollary 7. The mapping F—F5 from %, into %, is an isomorphism,

Proof. From Theorem 6 it follows that if Fe % then FS¢%,. Observe that
(FNEY=FNF’ and (RUF)S=F;UF§ for any F,, F,6%. Therefore
taking into consideration Theorem 6, for any F,, F,€.%; we have that (FyAFp)S=
—(F,NF)S=F;NF§=FSAFS and (F,VF)S=((F,UF)*"*)=((F,UF)")*=
=(F$UF$**=F§VF5. Finally, it is obvious that the mapping F— F® 1s injective. [J

Corollary 8. If s»id, then [{s}] is an atomin %Z,.
Proof. Let P;C Op be the set of projections on B. Then P§=[{s}] and there-
fore, by Theorem 6, [{s}]€ %, . Itis trivial that [{s}] is an atomin %,. 0O
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