On the number of zero order interp'olantsv
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1; ‘Introduction

Our motivation for. determining the set of all interpolants of arbitrarily-given
sentences ¢ and ¥ is twofold, both originating in computer-science.

Firstly, according to the well:known method of Floyd—Hoare in the' theory
of program verification, a program (or more precisely, a program schema) must be
associated by so called assertions, which are, actually, first order -open formulae.
This association can be partially mechanized; the difficulty arises in associating
assertions to loops. If ¢ is the assertion immediately before the loop-and ¥ is the
oone_immediately after it, then the assertion’associated to-the loop is not so easy
to look for. One possible escape is provided by the theory of interpolation:i the
assertion to be associated to the loop must be an interpolant of ‘¢ and . ‘The
celebrated model theoretic result of W: Craig states the existence of an interpolant
if @ and  are first order sentences and ¢ is a logical consequence of ‘. In'the
above mentioned problem, however, one needs more than one (possibly, all of the)
interpolants to support the choice of the loop-assertion, on the one hand, and then,
obviously, he must generalize to open formulae. At the first stage of this process,
we aim the investigation of the set of all interpolants of any two first order sentences
¢ and Y. Our method is traditional: we reduce ¢ and Y into the zero order
language, where matters are very much smoother. - Thus, algorithniic-generation
of the set of all zero order interpolants of any two zero order sentences, the toplc
of the present paper, is a part of our treatment of the first order case.

Our second motivation can be paraphrased as follows: on the zero order level,
an interpolant of ¢ and - can be considered as a generalization (or a relativization)

- of the well-known concept of “implicant”. Indeed, taking. ¢ as the false formula,
the set of interpolants of ¢ and Y concides with the set of implicants of:y. This
_observation provides us with the-possibility to. consider “‘implicants of - ¢ . relative
to ¢”, which, in turn, may yield to a better understanding of synthesis problems
of truth—functlons and automata.

These considerations, however, will remain in the background in the present
paper and will be published elsewhere. Our purpose here is much simpler: to
investigate the case of zero order sentences and to present an algorithm which returns
the set of all interpolants of arbitrarily given zero- order:sentences. ;
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The method employed here is based on the isomorphism between the zero order
Lindenbaum—Tarski algebra and the Boolean algebra of truth-functions associated
to the equivalence classes of zero order sentences.

By an interpolant of ¢ and ¥, we mean a zero order sentence y which is an
interpolant in the sense of Craig [1] and x is equivalent neither to ¢ nor to i;
i.e. y is proper. According to this strengthening, Craig’s Theorem on the existence
of (proper) interpolants no longer holds without additional assumptions: it may
well happen, that for fixed ¢ and ¥, no proper interpolant exists: i.e. any inter-
polant (which exists in the sense of Craig) is equivalent to either ¢ or .

To study the Boolean algebra of truth functions, we shall use trees. To every
truth function, we associate a binary tree, the *“‘valuation tree” of the function at
band. The valuation tree associated to a function is a compressed form of the truth-
table of that function. Being so, the tree contains every information (up to logical
equivalence) about the function [2]; and since interpolants are defined by means
of logical consequence, the trees associated to (the arbitrarily given) ¢ and
contain every information about the set of their interpolants. On the other hand;
the “geometrical content” of trees gives us the possibility of expressing semantical
properties.of functions, and in particular, of interpolants in a simple and ‘visualiz-
able” way. Additionally, an easy method is imposed to calculate the exact number
as well as the number and length of maximal chains of equivalence classes of inter-
polants. The conditions under which proper interpolants exist are formulated in
terms of trees; they have however, a natural and easily comprehensxble meaning
for sentences, too..

The organization of the paper’is as follows. In the next sectlon we concretize
our terminology and notations. In Section 3 we give conditions which are equi-
valent to the existence of proper interpolants. The method developed there will be
applied to obtain our main results in Section 4 on the number of interpolants and
chains of interpolants, respectively. We conclude a next to trivial consequence on
the algebraic structure of interpolants in Section 5. Finally, we reformulate our
results for sentences in terms of model theory, in Section 6. : e

2. Preliminaries

Throughout the paper we keep fixed a countably infinite set S, which will
play the role of sentence symbols when we are dealing with formulae, whlle in'case
of truth functions, S will be considered as a set of .variables.

2.1. Let F be the set of zero order sentences over S. Let = denote thé logical
equivalence relation on F. Clearly, = is an equivalence relation indeed; let us
denote by [¢] the eqmvalence class containing ¢ (@€F). 1t is well-known, that
F=(F/=, A, V, 1,0,1) is a Boolean algebra, the so called Lindenbaum-—Tarski
algebra of F [1], where 0 denotes the class of unsatisfiable elements of F while
1 stands for the class of valid ones; the operations being defined i in the natural way:
el =(10), [P AWV] =[o AV, [p]VI¥]=[0 V).

' 2.2. Let B= U ‘B,, where B,={f|f:2"+2;2={0,1}}, the set of Boolean

functions of ﬁmte number of variables taken from S. By an assignment we mean
an element of the set #2={(£, &, ...)|6:€{0, 1} for i€w}. The value of f€B
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under an assignment ¢€“2 (in notation: f(£)) is obtained firstly, by substituting
for all icw, the i-th component &; of ¢ for the i-th variable s;(€S) everywhere
in f provided s occurs in f (otherwise the i-th component of ¢ has no effect
on the value of f) and secondly, by calculating that value. We say, that f and
g (€B) are equivalent, in notation: f~g, iff f(&)=g(£) for all &e»2. It follows,
that ~ is an equivalence relation over B; the equivalence classes are denoted as
those in F: ie. for fe€B, the equivalence class containing f is denoted by [f].
We shall use the symbols 0 and 1 in B, too: 0={f]|f({)=0 for all £e«2}
and 1={f|f(&)=1 for all &€«2}. For g,fc¢B, we can define the operations
+,+, and ~(bar) as follows: for €2, f()+g(&)=max {f({), g(&)}, f(§)-8(&)=
=min {f(£), g(&)} and f(&)=1—g(£), respectively. Since ~ is compatible with
these operations, we can carry them over classesin B/~ : [f1=[f), [f]-[g]l=L/f" g],
[ f 1+[gl= f+g] What is-obtained is the well-known Boolean algebra

=(B/~, -, +,7,0,1). Obviously, & is isomorphic to Z. For the sake of Simp11c1ty,
from now on, when we speak about functions, we shall tacitly mean the equi-
valence classes they do represent, and we shall omit brackets in notations, i.e. f€#
is always to be understood as [ f]€B/~. Legality of this seemingly abuse of ter-
minology will be justified in Section 5, Theorem 14.

2.3. By a full binary tree of level n (n€w) we mean an ordered pair T=(V, E)

where ¥V, the set of vertices is defined by

n 2 N
= .U U {ij}
Jj=0k=1
and E, the set of edges is
- E= {( e Vil =j+1,1=2.k—B where 0=j=n—1, 1=k=2, BE{O 1}}

In particular, if n=0, then V={V,}, E=0, ie. the full binary tree of level 0 is
a point. The indices j, k of a vertex V,€V mean that Vi is the k-th pomt of
T on the j-th level. We shall label the edge Vi, Visne-p) by sty Note,
that the label s#,, does not depend on k.

Let T= (V E) be a full binary. tree of level n. By a path pin T we mean
a sequence of vertices Vo , Vi, ---» Vo, Such that ky=1 andforall j(0=j=n-1),
( J,,J,V(,H),‘J”)EE The set of paths in 7 will be denoted by Pr. Clearly,
card Pr=2". If P& Py, then P determmes in ‘the natural way a subtree of T.
If we write “T; is a tree of level »”’, then we always mean, that T, is determined
by a subset of paths P of a full binary tree T of level n. Similarly, “T, is a sub-
tree of T, is to be understood, as both, T; and T, are determined by subsets
P, and P, of a full binary tree T such that P,S P, (ie. T;,T, and T are of
the same level). The set of all subtrees of a full binary tree T will be denoted by
Sub T, and in each element of Sub T, the vertices will be indexed by the same
indices as they were in T, If T;€Sub T and T;#T, then we write T,CT. Similar
notation applies to arbitrary binary tree. Obv1ously, if T is a full binary tree of
level n, then card (Sub T)=2?2".

Let T=(V,FE) be a full binary tree of level n and (I/Oko,. o Vikgs vees I/,',k")
be a path of 7. By FBT (V) we mean a subtree of T, the vertices of which 1s
determined by the set

k,2"1

{Vilkoa . _,k_,}U U U {Vtr}

t=j+1 r=(k;—12t /41

7
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and the set of edges is defined in the natural way; in other words, FBT (V) is
determined by those paths of T, the initial segment of which is (Vo ..., Vi J)
and are continued in all possible ways allowed by T.

2.4. Let n€w and T be a full binary tree of level n. We can define a mapping

B,/~ —~Sub T by the following recurrence. Let sfi=s; if ;=1 and other-
wise sH=§;. ‘

(1) 7,(0)=9, t1(1)=T-

(i) If f——.s"'x woo ~Spr€B,, thenlet p=(Vy, ..., ¥, > be that path of T for
which (¥, Vj+14,,n is labelled by s for all j(0=j=n—1) and define
w(f)=p.

(iii) Let g= f1+f2+ .+fn where each f; is of the form s, -s;:" and
define

u(®= U (/)

Since the cardinalities of B,/~ ané Sub T are equal, and.every g€ B, has a form,
determined uniquely up to the ordering of the variables, requlred by the clauses
of the recursion, it follows that t, is one-one and onto.

Let us define 74: B,/~ ~Sub T by 1,(f)= 7 (f) f) where 7,( f ) denotes a subtree
of T determined by all paths of T which is not contained in 7,(f); i.e. by the
complement of 7,(f) with respect to P;. We have immediately,

Lemma 1. For all f¢B,/~

@ (H=0(),

(i) (=0 (f).

Lemma 2 [4, Theorem 1]. Let T,€Sub T and assume, that T, is determined

by the set of paths {p,, ..., p,} and let si¥, ..., 53’ be the labels associated to the
edges in p;. Then,

C a[3dew)-n

We call r{l(Tl)¥Z’( IT s%x) the function to which 7, is associated. Using
k=1 j=1

Lemma 1 above, the dual of this assertion is easily obtained. In the sequel when
speaking about associating a tree T to a function f€Z# it will always mean the
tree assigned by t,. (The duals of the assertions will not be mentioned because
of being obtainable immediately.)

", 2.5. Let, f€#. We say, that f does not depend on the variable s5;€S, in other
words, s; is dummy for f, iff s; occurs in f and for all ¢,¢& E“’Z for which
&i=1— é and &=¢&, if ksj we have f(&)= f(é) It is easy to construct an
algorlthmlc function 4, such that for all f€%, 6(f) is the set of variables occuring
in f which are not dummy for f. Clearly, dummy variables do not effect the values
of functions and thus they can freely be omitted ‘or mtroduced when necessary. Let
pl_<V0k0" sV;k,, V(l+l)kj+1" s nk> and p2_<I/0k01 tres JkJ’ V(]+l)lj+1"' V >be
two paths in a full binary tree T. We say, that p, and p, are amlcable paths
w.r.t. j iff all pairs of edges of the form (¥, , Vi1, and Vo, Vs,
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are labelled by the same label (which, of course depends on r) provided r#j
and either [; ,=k;,1+1 or k; =l ;+1.

A path p=<JV0ko, cors Viskys oos Voi,»  goes through ¥, iff for some
JO=j=n) r=j.

By definitions, we have

Lemma-3 [2, Special case of Theorem 15]. Let f€# and assume that T,=
‘=(W, E,) is the tree associated to f. Then, for some j(1=;=n), s; is dummy
for f iff for all k& such that ¥j;_,),€¥;, all amicable paths w.r.t. j—1 going
through V;_,y, are paths of T;. '

2.6. Let f,gcd. We shall use.the. following notations: 4., for §(f)Nd(g),
the set of variables which are not dummy in both f and g. Let &,,=6(f)—4,,
and I';,=0(g)—4,,, the sets of variables which are not dummy for. f but do not
occur in g and for g but do not oceur in f, respectively. For the sake of con-
venience, we shall denote the elements of 4,, by Xgs X1, ..., the elements of &,
by Yo, 1, ... and the elements of I'y, by 2z, z, ... throughout the paper; e.g.
any appearence of x; will always be meant as an element of 4., S e.t.c. Moreover,
we tacitly assume that an ordering is fixed on these sets. _ ‘

Since for given f, gc%, the case when 4,,=# is of no interest from our
point of view, i.e. from the point of view of interpolants, we shall suppose that
4;,#9 and distinguish the following four cases: ’

Case 1: ®py=TI,,=0.

Case 2: &, 70, [';,=0.

Case 3: ®,,=0, I';,#0D.

Case 4: &,,70, I ;;#0. .

- = - - Let f, gc¢#8. We shallsupply both f-and -g with all variables from 4, U® U
UTI';,. One can distinguish the functions obtained in this way by f and g, however,
such distinction is not necessary. Indeed, by definition, the variables of @, will
be dummy for g (and that of I'y, for f), hence f and f (similarly, g and g)
do represent the same equivalence class, thus, by our agreement on terminology,
we can choose f as the representative of that class. In fact, we shall do, and simply
write f for f (gfor §). Weshall fix an ordering of the variables occuring in f and
g as follows: all elements of A4,, precede all elements of * &,, which, in turn,
precede all elements of I';, while we keep the previously fixed orderings inside
d;4, ®;, and I'y,. By this fixing of ordering, the construction of trees associated
to f and g will be definitive. :

Let n=card (4,,U®,,Url) and i=card 4,, (recall, that 4,0, hence
I=i=n follows) and consider a full binary tree T of level n. For f, let T,=
=(¥;, E;) be that subtree of T which is associated to f. We introduce the follow-
Ing notations: '

V) = alVae V. 1 = k=29,

U(f) = {ValVa€¥(f) and FBT(#)¢SubT,, 1=k=2}
_[¥(H-u(f) provided i n,
= {"V(f ) otherwise.

In the rest of the paper we shall keep the reference of ‘the (lower case) letter
i fixed, namely, i=card 4,, and every occurence of i' not in English words will
always refer to this cardinality.
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3. Existence of interpolants

3.1. Let f, g€B. We write f=g iff 4,70 and for all £€2, f(¢)=1 entails
g(&)=1; and f<g iff f=g but f+g The following assertion is immediate
by definitions.

Lemma 4. Let f, g€# and assume that T, and T, are the trees associated
to f and g, respectively. Then f=g iff T,¢SubT,; in particular, f<g iff
T,CT,.

d From now on, we shall fix (arbitrarily) f, g€# such that f<g, /=0, g=£1.
All assertions in the rest are valid under these assumptions only, but, for the sake
of being short we shall omit them everywhere when stating lemmata or theorems
formally. Accordingly, every formal assertion is to be read as “If f, g€4%, f<g,
f#0,g=1 then” followed by the assertion written as such. This remark applies
also for definitions.

First we set 1, =!hlh€AB, f<h, h<g and §(k)S 4.} We say, that hcZ
is an interpolant of f and g iff h€/,,. By Lemma 4, we have

Corollary 5. Let h¢# and T,,T,, T, be the trees associated to f, g, h,
respectively. Then,
(1) hely, implies T,CT,CT,, and
(2 T,cT,cT, and W (h)=7 (h) together imply h¢l,.

The following two lemmata readily follow from definitions by Lemma 4 and
Corollary 5.

Lemma 6. Let h€# and h¢l,,. Then,
(1) Y(NHESVh),

@ w(Hcwh),

3 rim=wh),

@ WHhS#(g), and

(5) YWY ().

Lemma 7. Let heB. If

(1) #()W®h),

@) ¥(h)=w(h), and

G) Y=Y (g)
are satisfied, then h€l,,. .

3.2. Recall that &, =TI, =0 in Case 1; &,,#0, I';,=0 in Case 2; &P,,=0,
I;y#9 in Case 3; and &,,#0, I';,#0 in Case 4.

Lemma 8.

) %(f)=%(g)=9 in Case 1.

2 «(f)=9 in Cases 2 and 4,
U(f)=0 in Case 3.

(3) u(g)=0b in Cases 3 and 4,
U(g)=0 in Case 2.

@ 7(=7(g) in Cases 1 and 2.
6y v(NH=7Y{) in Cases 1 and 3.
©®) #(g)—¥(f)=0 in Case 1.

() w(g)—¥(f)#9 in Cases 3 and 4.
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Proof. All statements exept (7) in Case 4 readily follow from Lemma 3 by
definitions.

For proving (7) in Case 4, let us suppose, that %(g)—¥"(f)=0 and let V, ;€% (g).
We have either V;€%(f) or V;€#(f), immediately. Let us suppose first, that

Vj€%(f) and let k=card @,,. Since f does not depend on elements of I,

there exists an | (1=I= 2'+") by Lemma 3, such that FBT (¥;1)€Sub Ty
(where T; is the tree associated to f). On the other hand, since g does depend
on elements of I'j,, itis 1mpos51ble again by Lemma 3, that the same is true for
T, (T, being associated to g); i.e. there exist some vertices in FBT(¥.4y) which
are not contained in 7. It follows, that T,¢T,, a contradiction to Lemma 4.
If V,;€#(f) then, using a similar argument, the assertlon follows.

The next theorem gives necessary and sufficiant conditions under which proper
interpolants exist.

Theorem 9. /=9 iff card (#(g)—¥(f))=a, where a=2 in Case 1, a=1
in Cases 2 and 3 and ‘=0 in Case 4.

Proof. Let T, and T, be the trees associated to f and g, respectively.

For Cases 2 and 4, let T, be the tree obtained from 7T, by adjoining FBT
(Vi) for all V;e%(f) to T;. By Lemma 8 (2), we have %(f)>0 and hence,
T, CT1 in both cases. In Case 4, T, T, follows from Lemma 8 (7). In Case 2,
W (g) Y(f)#0 by assumption, thus TICT Let h be the function to which
T, is associated. By the construction of Tl, we have #'(h)=%"(h), hence heI,g,
by Corollary 5 (2).

For Cases 1 and 3, let T, be constructed from T, by adding to T the tree
FBT(V,;) for some V€% (g)—¥(f). Since #(g)—¥(f) is not empty by as-
sumption, we have immediately, that T,CT; (recall, that FBT(V;) is the path
ending in ¥; in Case 1). In Case 3, T,CT, is obtained by Lemma 8 (7), while
in Case I, this proper inclussion is entailed by the assumption, namely, by the fact,
that #7(g)— 7 (f)—{V;}=@ (where ¥;; is the vertex used .in the construction
of T;). Again, denoting by # the function to which T, is associated, hélj,
follows from Corollary 5 (2) since # (h)y=%"(h).

To prove the converse, let /,,#0 and assume that hely,.

Case 1. card (¥ (g)—¥ (h))=1 and card (¥'(h)~¥'(f))=1 thus card ("//f(g)—
—7(f))=2 by Lemma 8 (4).

© Case 2. “V(f)C"V(h) #(h) by Lemma 6 (1 and 3); “//(h)C“V(g) by Lemma 6
(5) and ¥(g)=%#(g) by Lemma 8 (4). Summarizing up, 7 (f)Cc#(g) and hence
card (W (g)—7 () =1.

Case 3. ¥ (f)=w(f) by Lemma 8 (5), #(f)yc#(h)=¥"(h) by Lemma 6
(2 and 3) and finally, #(h)S#°(g) by Lemma 6 (4). We have then ¥ (f)C#(g)
which implies card (#(g)—7¥(f))=1.

3.3. We present here some counterexamples thus illustrating the very nature
of proper interpolants.

Let the following functions be given: fi=x;-X,, g=x;- x2+x1 X5 f2=
=X1-Xq+ Y1, Eo=X1-Xg; and f3=X; X, 8§a=X;-X,+X, - Xy z;. The trees associated
to these functions are indicated in bold line by Figs 1, 2 and 3, respectively.
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Fig. 1

Fig. 2

Fig. 3

It is clear, that &, =l =0; ¥(g)—¥(f)=#(g)—¥ ()= and
card (W (g)—¥(f))=1, nevertheless I, ,=0. Similarly, Drp={n} Tfy=0
and 'V(gz)—"//(fz)='ﬂ/(gz)_"//(f2)=ﬂ and Ifzgz=ﬂ' Finally’ 4sf:saa:'g’ rf393= Z
and #(g)—7(f)=0, thus I, =0.
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4. The number of interpolants

41. -
Theorem 10. Let m=card (#(g)—¥'(f)). Then,

card(I;) =2"—a

where =2 in Case 1, a=1 in Cases 2 and 3 and «=0 in Case 4.

Proof. Let M=w(g)—¥(f). In all cases, if M0 (M=0 can occur in
Cases 2, 3 and 4 only, by Lemma 8 (6)), then the whole set / s €an be constructed
by the following recurrence.

Let us denote by T, the tree obtained by adjoining FBT (V) to the tree T,
associated to f for all V3€%(f). Obviously, T,S T;.

Let T, be a tree such that T'ET,E T, and T, is associated to an inter-
polant h, of f and g (or, to f if T,=T,=7T;) and suppose, that ¥;cM. Let
T3 be constructed from T, by adding FBT (¥j;) to T,.. Clearly, T,CT,CT,
and, for the function h; to which T, is associated, ¥ (hy))=Y (hs). It follows
from Corollary 5, that hycl,, iff T,CT,, and from Lemma 4, that h,<h;. Let
M,=M—{V,;} and repeat this procedure with V€M, and w1th T3 (in place
of Tp) until M is emptied.

Summarizing up, starting from T, and taking in all possible ways one, two, ..., m
distinct elements from M (provided M=@) and proceeding as described above
we can produce a set of functions I'={t, ..., t,} and it follows from the construc-
" tion, “that TU{f, g}=1,U{f, g}, "ie. any function which can be constructed in
this way is either an element of I,, or of {f,g}. Since one, two, ..., m distinct

elements can be chosen from M in (mJ , (m) yeers (m) possible ways, and Zm' [’7] =

1 2
=2"—1, we have card J=2". :
It remains to investigate whether f and g do or do not appear in I. This
will be done case by case.

Case 1. We have %(f)=0 by Lemma 8 (1), hence T,=T,, ie. fél. On
the other hand, taking all elements from M, we obviously obtain a tree identical
to T,, thus g€l. All the other elements of I are proper interpolants, indeed, that
is I;,=I—-{f,g}. It follows, that -card (/,,)=2"-2. .

Case 2. By Lemma 8 (2), %(f)#% which entails T,CT,, ie. the function
to which T, is associated isin I, (cf. the proof of Theorem 9). Taking all elements
from M in the procedure above, we arrive to 7, by Lemma 8 (3), hence g¢l.
We have I;,,=I—{g}, hence card (I;)=2"—1.

"Case 3. %(f)=9, by Lemma 8 (2), which implies Ty=T; and thus fcl.
Let 7, be the tree obtained by the procedure using all elements of M. Then by
Lemma 8 (3) 7,CT,. That is g¢l,I;,=I—{f} and we have card (I;,)=2"—1.

Case 4. Since %(f)=9® by Lemma 8 (2), we have T,CT,, ie. f¢I. On the
other hand, taking all elements in M and constructing the tree 7, by the procedure,
by Lemma 8 (3), T, 7, holds. We obtain, that g¢/ and so I =1
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4.2. By a chain of interpolants we mean a finite sequence of distinct functions
hg, ..., h, such that the following clauses are satisfied:

(1) hO'—f h =8,

(2) hel,, 1,.“1 for 1<j=<t.
A chain ho, ..., h, of interpolants is maximal iff for every ;j (0=j<1?), Ly, ,,=9.

Corollary 11. Every maximal chain of interpolants of f and g has length
card (#(g)—7(f))+p where =1 in Case 1, f=2 in Cases 2 and 3 and =3
in Case 4.

Proof. Immediate by the proof of Theorem 10.

Fig. 4 below indicates all of the four cases. h, stands for the function obtained
from T, in the proof of the previous theorem, and h,, denotes the function which
is constructed by using the whole set M.

Corollary 12. The set of all maximal chains of interpolants of f and g has

cardinality given by
(card (¥ (g)—7 ()"

Proof. The second (in Cases 1, 3) or the third member (in Case 2, 4) of a parti-
cular maximal chain is obtained by using exactly one element from the set M=
=W(g)—7(f); this element can: be taken in card M different ways. The next
member of the chain can be taken in card M —1 different ways, and so on. The
assertion follows by induction. :

? = = 1 = = . = ’ 1’ -

hy=h =g ThM h =g h =g h =g

¢ 4 h
oy "o

) b ]

. . - ! -

p ¢ L ? s

ohz 1h1 'h2 'hl

{hy=h =t J.hoff b h=h, =f Jh0=

Case 1 Case 2 Case 3 ,Cése} 4
Fig. 4 .
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5. The algebra of interpolants

Theorem 13. The algebra S£=(I,,U{f,g},-, +,f,8) is a distributive sub-
lattice of the Boolean algebra £2=(B/~, -, 4+, ~, 0, 1) with zero element f and unit
element g.

Proof. The only thing to be proved is that /,,U{f, g} is closed under + and -
This is, however, obvious from the construction outlined in the proof of Theorem 10.

It is relatively easy to show using Lemma 1 and the construction of I, that
1,,U{f. g} is not closed under negation: the algebra .# is not a Boolean algebra.

Theorem 14. Let hy, h€1,,U{f, g}. Then in the Boolean algebra %, the
two equivalence classes [h,] and [h;] are identical iff their representatives h, and
h, are such; i.e. [h))=[h,] ff hy=h,.

Proof. Obvious, by Lemma 2 and the construction of I,,.

6. Conclusions

By using the isomorphism between % and %, to every ¢@&%, there cor-
responds a class in # denoted by f,, and conversely, for f€% one can associate
an element @, in #.

By a zero order model A4 we simply mean a subset of the set of sentence sym-
bols S. Observe, that every assignment &£¢€<2 represents a zero order model in
the sense of [1]: let Ag={si|s.€S and ;=1} where ¢&; is the i-th component of ¢.
The converse is also valid: every model ACS can be associated by an assignment
&, defined by

_ {1 iff s;€4,
% =10 otherwise.

Clearly, for every ¢ and A4, we have Ak=¢ iff f(¢)=1. Weset 4,={A4|ACS,
A= o).

Let ¢ and { be two assignments and @€%. We say that the models A,
and A, are g-equivalent with respect to a subset 4 of 6(f), the set of nondummy
variables of f, iff A;N4=A4,NA. This is indeed an equivalence relation and being
so we can set for ACS, p€F and Aco(f):

[413={B|BcS and" B is g-equivalent to A4 with respect to 4}.

Notice, that by choosing 4=48(f), the class [A4)2U+ is represented by one
path in the tree T, associated to f,.

Let f,gc% and consider the sets of variables, 4., &, and I'y,. Then,
clearly, card ¥'(f)=card ( {[A]ﬂfg}) and similarly, card ¥ (g)=card ({[A]"”}),
that is, ¥(f) and ¥(g) 1dent1fy all ¢,-equivalent and @, -equivalent classes of
models with respect to the common set of nondummy variables of f and g,4,,
respectively.

By definition, Z(f)N#(f)=0, #(HU#(f)=¥(f) and similar equations
hold for g. If for some k, V;€#7(g), then FBT (V) is a subtree of the tree T
associated to g, and all paths of FBT (V) represent the same ¢,-equivalence
class of models with respect to the set of all nondummy variables of g, d(g), while
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if V,4#(g) and hence V,€%(g), then the paths of T, going through ¥V, will
represent different classes (with respect to d(g)). We say that A is a respectable
model (for ¢,) iff

41420 = [4)3.

Since interpolants of f and g (hence of ¢, and ¢,) can depend on the variables
of 4,, only, respectable models for ¢, are exactly the ones which are of interest
from the point of view of interpolants.

The ¢,-equivalence classes of respectable models for ¢,, however, are identified
by elements of #(g), according to the remark above. .

Let us introduce the following notations:

AyP={[A]s37| A is a respectable model for g} and 4, —{[A]f,‘”] A€A, ).
Then, the set W (8)—7"(f), playing a central role in our 1nvest1gat10ns ldentlﬁes
those respectable model classes for ¢, which are not models of ¢,, and

card (W(g) -7 (f))=card (45" —4,,) hence a reformulation of Theorem 9 in
model theoretic terms can be eas1ly obtained.

Summing up the results of the paper, for any two zero order formulae ¢ and
¥ such that @ =y, = ¢, ¥, we can decide whether does or does not exist a proper
interpolant for ¢ and  and if the answer is affirmative, we can give the number
of equivalence classes of proper interpolants immediately, or we can construct the
whole lattice of equivalence classes of interpolants when necessary. The method
developed in the paper is much more effective (even if it is considered as inefficient
in the more strict sense of [5]) than the one presented in [3].

- Abstract

The number of equivalence classes of interpolants for arbitrarily given two zero order sentences
are calculated using tree-theoretic arguments. As a by-product, the number of maximal chains
and the algebraic structure of equivalence classes of interpolants are determined.
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