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1. Introduction 

Simple multi-visit attribute grammars were introduced in [1]. An attribute 
grammar is simple multi-visit if each nonterminal has a fixed visit-number associated 
with it such that, during attribute evaluation, the attributes of a node which have 
visit-number j are computed in the7-th visit to the node. Putting in one class the attri-
butes having the same visit-number we get an ordered partition of the attributes of 
the nonterminal. Thus, a visit to a node is a sequence of actions consisting of-(a) 

- - computing all the inherited attributes contained in the class corresponding to the visit, 
(b) making some visits to the sons of the node and (c) computing all the synthesized 
attributes of the class. This evaluation strategy can be implemented in a natural way 
translating visits to recursive procedures, where inherited and synthesized attributes 
correspond to input and output parameters, respectively. It was proved in [1] that the 
problem whether an attribute grammar is simple multi-visit is NP (time) — complete. 

In [2] Kastens introduced a subclass of simple multi-visit attributed grammars 
and called them ordered. The problem whether an attribute grammar is ordered can 
already be decided in polynomial time, but the choise of this subclass seems rather 
heuristic. A somewhat larger subclass, which is still decidable in polynomial time was 
investigated in [3]. However, because of the NP-completeness mentioned above there 
is no reason to work out further improvements. 

In this paper we investigate a class of attribute grammars that can be evaluated 
by a multi-visit type strategy associating a fixed set of visits with each nonterminal, 
but the order of these visits need not be predetermined. We call these grammars 
generalized simple multi-visit. It turns out that this class of attribute grammars 
coincides with the class of absolutely noncircular attribute grammars, for which a 
more complicated tree-walking evaluator was given in [4]. 

It is known that the problem whether an attribute grammar is absolutely non-
circular is decidable in polynomial time. However we shall show that the problem 
whether an attribute grammar is generalized simple m-visit for a fixed m (even for 
m=2) is still NP-complete. This means that, instead of trying to minimize the number 
of visits, it is more useful to execute them in parallel if possible. In section 5 we des-
cribe two such parallel evaluation strategies. 

2» 
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It was shown in [1] that an attribute grammar is simple multi-visit iff it is /-order-
ed, i.e. for each nonterminal a linear order of its attributes exists such that the attri-
butes of a node can always be evaluated in that order. Let us call an attribute grammar 
top-down controlled /-ordered if there exists a finite state deterministic top-down tree 
automaton such that the state in which the automaton reaches a node of a derivation 
tree determines the evaluation order of the attributes of the node. As it is to be 
expected, the class of absolutely noncircular attribute grammars coincides with the 
class of top-down controlled /-ordered attribute grammars, too. 

2. Preliminaries 

Since we are dealing with almost the same notions as those defined in [1] (e.g. 
computation sequences, visit sequences, etc.), we adopt the main terminology intro-
duced in that paper. 

An attribute grammar G consists of: 
(i) A reduced context free grammar G0—(T,N,P,Z), where T and N 

denote the set of terminal and nonterminal symbols, respectively, P is the set of 
productions (syntactic rules) and Z £ N is the start symbol. We shall denote nonter-
minal symbols always by capital letters, while terminal strings by small ones. 

(ii) A set A of attributes, which is the union of two disjoint finite sets As and At. 
The elements of As and At are called synthesized and inherited attributes, respectively 
(shortly s- and /-attributes). A function v assigns each nonterminal F a set 1(F) of 
inherited and a set S(F) of synthesized attributes, i.e. v(F)—l(F)US(F). An 
attribute a(iv(F) will be referenced as a(F). The start symbol Z has only one ¿-att-
ribute, and it does not occur on the right-hand side of any production. 

(iii) A set V(a) of possible values for each attribute a. 
(iv) A set rp of semantic rules associated with each production p. If p is of the 

form p: F0—w0F1... F„ w„ , then a semantic rule of rp is an equation: a0(Fil) = 
where 0 a n d / : V(a1)X...XV(an)-V(a0) is a 

(recursive) function. This equation is interpreted by saying that attribute a0(Flo) 
depends on attributes a^F^), ..., am(Fin) in p. We assume that G is in Bochmann 
normal from, i.e. the rules of rp assign all and only the attributes in S(F0) and I(Fj) 
(y'Sl) using as argument only attributes in 1(F0) and S(Fj). 

The production graph of p: FQ—wQF1...Fnw„p (denoted by pg(p)) has as 
nodes the disjoint union of v (F;), 0^iSnp. and there is an edge from ax(Fi 
to a2(Fk) iff a2(Fh) depends on at(FiJ in p. For a derivation tree t of G0 we get the 
derivation tree graph of t (denoted by dtg(t)) by pasting together the pg's of all the 
productions t consist of. G is noncircular if none of the derivation trees of G0 has an 
oriented cycle in its dtg. In the sequel, if no confusion arises we identify a nonterminal 
node of a derivation tree with its label. 

3. The generalized simple multi-visit property 

To describe an attribute evaluation strategy we define computation sequences 
similar to those introduced in [1]. A computation sequence is a sequence of so called 
basic actions, where each basic action is either the evaluation of some /-attributes of 
a node, called entering the node, or the evaluation of some s-attributes of a node, 
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called exiting the node. Thus, a basic action can be represented by a basic action sym-
bol (ba-symbol) /(«, A) or s(n, A), where n denotes a nonterminal node in a deriva-
tion tree and A is a subset of I(n) or S(n), respectively. Our computation sequences, 
however, allow redundant computations, too. 

Let G = (G0=(T, N, P, Z), A, v, {V(a)\a£A}, {rp\p£P}) be an attribute gram-
mar, fixed in the rest of this section, and t a derivation tree of G0. We always assume 
that a derivation tree is complete, i.e. its root is Z and its leaves are in T. 

Definition 3.1. A computation sequence for / is a string h of ba-symbols, which 
satisfies the following four conditions. 

(1) Start-end condition: the first and the last ba-symbols are i(Z, 0) and s(Z, 0). 
(2) Sequentiality condition: for any two contiguous ba-symbols x ^ n ^ A ^ 

x2(n2, A2) in h one of the following conditions holds. 

(i) n2 is a son of rtx and x1=x2—i', 
(ii) n2 is the father of nx and Xx— x2— si 

(iii) n2 ^ a brother of nx and xx=s and x2=/; 
(iv) n2 — nx and x 19ix2. 

(3) Feasibility condition: For any production p consider an arbitrary occurrence 
of p in t, and let n1 and n2 be any such nonterminal nodes of this occurrence that ^ (» i ) 
depends on a2(n2) in p for some attributes ax and a2. Then the first ba-symbol in h 
which contains a2(n2) cannot precede the first such ba-symbol that contains ¿^(«J. 

(4) Completeness condition: For each node n of t, if i(n, Bt), s(n, A,), ..., 
..., /(«, Bk), s(n, Ak) is the sequence of the ba-symbols of n occurring in h, then 
U 1 ] ) is a partition of v(n); furthermore AkUBk=Q. The set 
J7(«)=U(K-U5,.}|/€[fc]) will be called the visit set o f « and each A ^ B i (/€ [-fc]) 
a visit element. Since U ({Ail)B)\i€.[k — 1]) is a partition, each visit element, except 
one is a nonvoid subset of v(m). v£II(ri) will be referenced as v(n) or v(F), if F i s the 
nonterminal label of n. 

The (simple multi-visit) completeness condition in [1] required U ^ |/G [A:]} 
to be an ordered partition of v(n). The main point of our modification is that we allow 
making the same visit to a node several times. 

Let n0 be a node of t having sons nx, ..., nm, v=AUB€II(n0) and h a compu-
tation sequence for t. A visit trace of v(n0) in h, denoted by tr(v(n0)) is a substring of 
h beginning with i(n0,B) and ending with s(nQ, A) such that there is no further 
ba-symbol of n0 between these two ones. By the definition of a computation sequence 
tr(v{n0))—tr(v1(nii))...tr(vi(ni)), where v1,...,vl are certain visit elements of 
nh, respectively. The sequence vi(jii^...vl(ni^ will be called a visit sequence 
of v(n0). (Note that I might be 0, and a visit element might have several visit traces 
and visit sequences so far.) 

Let II: N-2P(SP(A)) be a function such that for every F£N II(F)=nU{Q}, 
where n is a partition of v(F). Furthermore, let q be a set of functions {qp\p£P} 
such that if p: F0-*w0F1 . . . F„ w„p, then qp assigns each v£lI(F0) a sequence 
vl(Fh)...vl(Fh) (1*0), where ^ 6 7 7 ( F , J («€[/], /m€[«P]) and all the rra-s are dif-
ferent. II will be called a collection of visit sets for G and Q a visit description function 
for n . 
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Definition 3.2. Given a collection 77 of visit sets for G, a visit description func-
tion g for 77 and a derivation tree t, a computation sequence h for t respects g if the 
following condition holds. For each nonterminal node n of t, if n is the left-hand 
side occurrence of a production p : F0 — w0 ... F„pwnp, then n(n) — Il(F0) and 
each t>£77(n) has a unique visit sequence in h which is equal to Qp(v). 

Note that there exists at most one computation sequence for t respecting g. 
g is called a generalized simple multi-visit description function for II if each derivation 
tree of G has a computation sequence for it respecting g. 

Definition 3.3. G is a generalized simple multi-visit (gsmv) attribute grammar 
if there exist a collection 77 of visit sets and a gsmv visit description function g for 77. 
G is generalized simple m-visit (w£N) if ||77(F)|| + 1 for each FÇ.N. 

From this definition it is clear that the only essential difference between smv and 
gsmv evaluation strategies is that in the latter one each visit to a node must be made 
only if this has not been done before. 

Example 3.4. Let Z , A, B and C be the nonterminals of the underlying grammar 
with the following attributes. S(Z) = S(B) = {s1}, I(Z)=I(B)=Ç>, S(A) = {sx, i2}, 
1(A) = 1^, /2}. The productions and the corresponding production graphs are listed 
below. 

A • • 
h ix si s2 ;2 i\ 

1:Z-+ AA 

a) 

Si Si l2 'l 

st 

2:A aB 

b) 

Si 

3\A bB 
c) 

4 :2? — X 

d) 
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If n(Z)=II(B)—{{s1}, 0} and n(A) = {{i1,s1), {i2,s2},0j, then let (e1({j1}= 
= {/2, {/ls J j ^ i ) {/'i, {i2, ¿s}(A), Qi(0)=0Ui)0(^2), e2({'is ¿1}) = 
=e 1 ( {*2 , i . } )={ i i }W, e2(0)=0(JB), 03({ ' i , i i } )=e3({4 , i 2 } )=K}(5) , e3(0)=0CB), 
e4(K»=e4(0)=A-

It is clear that q is a gsmv description function for /7. However, G is not smv, 
because the visit elements of A cannot be evaluated in a fixed order. That is why we 
had to put the single visit element of B into both g2(3)({'i> ¿i}) and e2(3)({4> ¿2})-

The following example shows that the void visit element is necessary. 

Example 3.5. Let Z, A and B be the nonterminals of the underlying grammar 
with the following attributes 5 (Z) = {j}, S(A)=S(B) = s2}, / ( Z ) = 0 , 1{A) = 
— {*i> h}> 1(B) —{h h , 4}- The productions and the corresponding production graphs 
are listed below. 

J 
Z . 

• • » 
•Sj_ s2 I2 

1:Z — aA 
a) 

• • 
h sx 

• • 
S2 '2 

2:Z — bA 
b) 

h si S2 fg 
A • • • • 

-D • • , • 
h si i sz /2 

3:A-B 
C ) 

G is clearly gsmv, but in the production A -+B the useless attribute i(B) can be 
evaluated only in the void visit of A. 

To define the absolutely noncircular (anc) property we use the concept of induced 
production graph (ipg) introduced in [5]. These graphs can be obtained by adding 
some further edges to the production graphs. More exactly, considering a graph as 
a relation we get the ipg graphs by taking the least fixpoint of the following system of 
equations. 

ipg(p)=Pg(p)V{(a(Fi),b(Fi))\p: F0-w0F1...F„w , /€[«,] and there is a q£P 
with left-hand side F{ such that (a(F^b(F^ipg(q)Jr). 

h -si f s2 i2 

W 
• • 

4:2? — X 

d) 
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G is anc if for each p£P ipg(p) is acychc. 
Let II be a collection of visit sets for G. 17 defines for every F£N a set B(F) 

of nonvoid basic action symbols as follows. If 11(F)— {v1, ..., v„), then B ( F ) — 
= {j(F,^,) | /6[«], u . - z t . U ^ , B^IiF), {¿(F, Bj)\j€[n], Vj=AjUBj, AjQ 
QS(F), 

The production graph over the nonvoid ba-symbols of p:F0-*w0F1...F„wnp 
(denoted by pgbn(p)) is the following graph. The set of its nodes is the disjoint union 
of B(F,),0^iSn„, and there is an edge from x^F^, A J to x2(FLV A2) iff G2(F,2) 
depends on fli(FFL) in p for some a1£A1, a2£A2. From these graphs we construct the 
induced production graphs {ipgb„(p)lp€P} as above, i.e. by taking the least fixpoint 
of the following system of equations. 

ipgbn(p)^pgbn(p)^{(i(Fi,B),s(Fi,A))\0^np, and A\JB€ 
€/7(F, )}U {</(F„ Blt s(Ft , A2)), <J(F ; , AX), i(F„ BJ)\ none of A, and Bt ( / = 1, 2) 
is 0, {AiUBi\i=\, 2}G/7(F,) and there is a g£P with left-hand side F, such that 
</(F„ BJ, s(FF , Aj)Zipgbn(g)*}-

Remark 3.6. If for each F£N I7(F)={{a}|a6v(F)}U {0}, then ipgbK(p)'~ipg(p) 
for every p£ P. 

The following alogrithm can be used to compute the ipgbn relations. 

Algorithm 3.7. 

Step 1. For each p£P set ipgb0(p)=pgba(p)U {(i(F, B), s(F, A))\F occurs 
in p,A^d, 5 ^ 0 and ,AI)B£I1(F)} 

Step 2. If j^O, then for each p£P let ipgbj+1(p)=ipgbj(p)U {(i(F, Bx), 
s(F,A2)),(s(F,A1), i(F,B^))\ none of At,B,(i= 1,2) is 0, {¿,115,11 = 1 ,2}Q 
Qil(F), F occurs on the right-hand side of p and on the left-hand side of such a 
q£P for which (i(F,Bj), s(F, A2))€ipgbj(q)+} 

Repeat step 2 until such a j is found for which ipgbj(p)=ipgbj+1(p) for all p£P. 
Then ipgb„(p)=ipgbj(p). 

It is easy to see that the time complexity of this algorithm is polynomial in the 
parameters of G. 

Lemma 3.8. Given a collection 77 of visit sets for G, there exists a gsmv descrip-
tion function Q for II iff ipgbn(p) is acyclic for every p£P. 

Proof, (a) (e exists =*ipgbK is acyclic) 
It is enough to prove that if (x±(F, AJ, x2(F, A2))^ipgb^(p)\pgb7l(p), then 

for every derivation tree t and F-labelled node n0 of t the following statement holds. 
If h is the computation sequence for t respecting Q, then the first occurrence of 
xx(nprecedes that of x2(n0, AJ in h. We shall prove this statement by an 
induction following algorithm 3.7. First we make the following observation. 

If AxQvl(n0) and A 2 ^vl (n 0 ) for some t)J, r ^ i7 (« 0 ) , then consider the se-
quence ti„,...,nm (m^O) of nodes and the sequences vl(n0), ..., v}„(nm) and 
uo("o)> •••>vm(nm) of visit elements with the following properties. 

1) For each n i + 1 is the father of /7; and tf/+1(wi+1) ( j = l , 2) are those 
visit elements for which the ba-symbols of u,(h,) can be found in the visit trace cor-
responding to u/+ i (« I + 1) as first occurrences in h. 
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2) a) vl,(nm) = v2
m(nj = vm but v}(n,) ^ «¡(»¡) if i < m, or 

b) nm=Z and vl(Z) * vl(Z). 

It is important to note that the correct choice of in 1) can also be done 
by stepping upwards in t, following the nodes 

Now it is clear that the first occurrence of Xi(«0, A^ precedes that of x2(n0, A^ 
in h iff one of the following three conditions holds. 

(i) i n = 0 ; 

(ii) m^l, vl=vl and v1
m_1 precedes v2

m_1 in ¡ ? 0 J ; 

(iii) nm=Z, 4 = 0 -

This means that the order of the first occurrence of x^n^, Aj) and x2(n0, A2) in h 
does not depend on the subtree of t below »„. 

As a basis of our induction let (xi(F, x2(F, A2))£ipgba(p). The only pos-
sible case x2=s and A ^ J A ^ n i F ) is trivial. 

Now let (x^F, Ax), x2(F, A2))£ipgbJ+1(p)\ipgbj(p) O'=0), and suppose that 
the statement holds for every appropriate <*i(F', AQ, x2(F', AQ)€ipgbj(p'). Again, 
we can restrict ourselves to the 

s and A1UA2^n(F). Then F is a 
right-hand side nonterminal of p. If n0 is an occurrence ol a right-hand side nontermi-
nal of some r£P, then by construction (i(F, Ax), s(F, A2))£ipgbJ+1(r), too. Let 
q£P such that the left-hand side of q is F and (i(F, A J, s(F, A2))£ipgbj(q)+. Then 
there exists a sequence of nonvoid ba-symbols x0(F0,2?0)...:*-,(F(, Bt) such that 

- x0(-F0-, B0)=i(F, A,), x,(F„ B,)=s(F, A2) and -6,-1), x,(F„ 
£ipgbj(q) for each /€[/]. Change the subtree below ti0 to an arbitrary subtree with 
top production q. If t' is the resulting subtree and ti is the computation sequence for 
t' respecting Q, then we have again that the order of the first occurrence of i(F, A J 
and s(F, A2) is the same in h' as in h. On the olher hand, the inductive hypothesis and 
the feasibility condition imply that for each /£[/] the first occurrence of x ^ ^ F ^ - i , 
2?j_i) precedes that of ^¡(F;, Bt) in h', so we are through. (b) (ipgbn is acyclic=>0 exists) 

For p: F0-~w0F1...FnwHp£P, v0=A(JB£IJ(F0) (AQS(F 0 ) , B ^ / ( F 0 ) ) we 
construct Q(V0) as follows. Let s(Fh, AJ,..., s(Flk, Ak), i(Fh, BJ, ...,i(FJm,Bm) 
be all the nonvoid ba-symbols that can be reached on a reversed path from s(F0, A) 
in ipgb„(p) (provided it is a nonvoid ba-symbol). Then define e(i)0(F0))=u1(Fn i). . . 
- M F n i ) so that 

(i) Ui(Fni),..., vt(Fn) are all the visit elements of the right-hand side nontermi-
nals such that F„=Fir and vi(Fn)C\Ar(Fir)?iW for some or F„t=Fj and 
vi(.F„)r\B s(F j s)7iQ for some s£[m\-, 

(ii) if *i(F„ (, AJ and x2(Fnj, A2) are nonvoid ba-symbols of u,(Fn.) 
and VJ(Fnj), respectively, then (x2(Fnj, A))$ipgb„(p)+. 

Those nonvoid visit elements of the right-hand side nonterminals that are not 
listed in (i) for any v£lI(F0) are put into (?(0(FO)) in an arbitrary order satisfying (ii). 
Finally, the tail of e(0(Fo)) is 0(F1)...0(F„p). It is easy to check that such a Q is indeed 
a gsmv description function for II. 

The proof of the following lemma is left to the reader. 
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Lemma 3.9. If Л is a collection of visit sets for G such that ipgbK(p) is acyclic for 
every />£ P, then G is anc. 

Our main theorem is now an immediate consequence of lemmas 3.8, 3.9 and 
remark 3.6. 

Theorem 3.10. G is gsmv iff it is anc. 

4. The top-down controlled /-ordered property 

A deterministic finite state derivation tree automaton (dfsdt) for a context free 
grammar G0—(N, T, P, Z) is a triple Q = ( Q , q, {up\p£P}), where Q is a finite set 
(the set of states), q£Q is the initial state, and if p: F0-*w0F1... Fnw„£P, then up 
is a set of so called transition rules of the form qo(F^-*q1(F^)...qnp(Fn^ iq£Q) , 
where each a£_ O occurs at most once on the left-hand side of these rules. Q functions 
in the following well-known way on an input derivation tree / of G0. It starts by assign-
ing state q to the root of t, then, if a nonterminal node n0 of t has already been assign-
ed a state q0, it assigns states (if possible) to the nonterminal sons of n0 as follows. If 
n0 is an occurrence of the left-hand side of p: F0—w0F1... F„pw„p, nx, ...,n„p are the 
corresponding occurences of Fl3 ..., F„p, respectively and q0(F0)—qi(Fl)...qnp(Fnp)(i 
dup, then for each Q assigns qi to nt. t is accepted by Q iff it is able to assign 
a state to each nonterminal node of it in the above way. 

Given an attribute grammar G and a dfsdt Q for G0, a Q-defined /-ordering of G 
is a partial function O which assigns for some pairs (q, F) (q€Q, F(iN) a linear 
order of v(F). 

Definition 4.1. An attribute grammar G is top-down controlled /-ordered 
(tcl-ordered) iff there is a dfsdt Q for G0 and a Q-defined /-ordering O of G such that 
for every derivation tree t of G0 there exists a linear order O, of the nodes of dtg (?) 
with the following properties. 

(i) if a depends on b in a production occurring in t, then for the corresponding 
occurrences of a and b in dtg (t) we have a<b in O, (feasibility); 

(ii) Q accepts all the derivation trees of G0 (completeness); 
(iii) if n is an F-labelled node in t and Q assigns state q to «,< then 0(q, F) is 

defined, and a<b in 0(q, F) iff a<b in O, (O is respected). 

Theorem 4.2. G is gsmv iff it is tcl-ordered. 

Proof. We show the equivalence of anc and tcl-ordered properties. 
(a) (tcl-ordered => anc) 
It is enough to prove that for every derivation tree t, if n is an F-labelled node in 

t and Q assigns state q to n, then the following statement holds. If <a(F), b(F))£ 
dipg (p) for some p£P with a£I(F) and b£S(F), then a<b in 0(q, F). We omit 
the proof of this statement since it is analogous to that of lemma 3.8/(a). 

(b) (anc=>tcl-ordered) 
Let U ( 0 ( F ) F£N), where 0(F) is the set of/-orderings of v(F). We 

construct {rp\p£P} and HQQXN by the following procedure. 

Step 1. Put (q, Z ) into H, where q is the unique /-ordering of v(Z). 
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Step 2. If (q0, F0)£H Jjj0 is an /-ordering of v(F0)), p: F0-+w1F1... Fnpw„p, 
then construct the graph ipg(p)=>pg(p)U {(a(F0), b(F0))\a<b in For each 

choose an arbitrary /-ordering qt of v(F;) that extends the partial order 
ipg(j>) + \v(Fi). Then add {(qu Fi)|/e[«p]} to / / a n d q^FJ-q^FJ ...q„p(Fnp) to rp. 

Repeat step 2 until no more new elements can be added to H. 
It is easy to see that if G is anc, then the graph ipg(p) constructed in step 2 is 

always acyclic, so the automaton Q=(£>, q, {rp\p£P}) and the Q-defined /-ordering 
0 = {({q, F), q)\(q, F)£H} satisfy the requirements of definition 4.1. 

5. Implementations of the gsmv strategy 

1) Implementation using recursive procedures. 
Let G=(G0=(T, N, P, Z),A, v, {rp\p£P}) a gsmv attribute grammar, 77 a 

collection of visit sets of G and q a gsmv visit description function for 77. We assume 
that before starting attribute evaluation we are given a structure tree, the nodes of 
which are represented by suitable data structures (e.g. records) with components for 
the attributes, references to the sons, a rule indicator that indicates the production 
applied to the node and a boolean flag for each visit element of the node which is true 
iff the visit has already been executed. The initial value of these flags is false. Then for 
each p: F0—w0F1... F„p w„p £P and u0€77(F0) we have a 

procedure VISIT-/;-t>0(/î0); node (n0)\ 
comment eP(v0)=v1(Fmi)...vl(Fmi); 
begin 

compute all the /-attributes of u0 at n0 
for k=\ to I 

comment let n l5 ..., n„p be the sons of n0 having 
labels Flt ..., F„p, respectively; 

begin 
if 1 flag-Ufc • nmk then 

begin 
flag-vk-nmk=true; 
case rule indicator • nmy of 

comment let qlt ..., q} be all the productions with left-hand side Fmk; 
qy. VISIT-qx-v^n^y, 

qj: VlSYT-qrvk(nmky, 
esac 

end; 
end; 

compute all the ¿-attributes of v0 at n0 
end 

2) Implementation using a system of tasks with parameters. 
Here we assume that each node n of the structure tree has the following binary 

semaphores beyond the components (exept the flags) defined so far 
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(i) binary semaphores /'(«, v) and s(n, v) for each v£ll(ri) such that /'(«, v) 
J((«> v)) is true iff the evaluation of all the /-attributes (¿-attributes, respectively) has 
already terminated. We do not need i(n, v) (s(n, u)) if there are no /'-attributes (s-
attributes, respectively) in v(«). 

(ii) a binary semaphore x(n, v), which is true iff the evaluation of v has already 
begun. 

The initial value of these semaphores is clearly false. We treat semaphores i(n, v) 
and s(n, v) by the following primitives: 

wait (iv): L: if w=0 then goto L 
send (vv) : w : = 1 

Semaphores x(n, v) will be treated by the indivisible Boolean procedure TS(x) 
(cf. [6]) of the form : 

Boolean procedure TS(x) 
Boolean x; 

begin 
TS. — x', 
x: = true; 

end 

Now for each p: F0—w0F1...F„pwnp and v^TI(F0) we have a task: 

TPiV(n0); node n0; 
wait (i(m0, vl)); ... ; wait (i(m0, 4)); 

comment: m0 is the father of h0, it is a left-hand side occurrence of q£P and 
{i(m0, are all the semaphores such that some a£v depends on 
some b€î ó in 

wait ' (s(mh, t>y); ...; wait (s(mit, vl
it)); 

comment: m1, ..., m„q are all the sons of m0(n0=mj for some j£[nq]), /S€[«J 
for each s£[l] and {i(m,s, u,s)|j€[/]} are all the semaphores such that some 
aÇv depends on some b£vs¡s in q\ 

compute all the /-attributes of v; 
send (i(n, v)); 
for 7 = 1 to i 

begin 
comment: Q{v) = vx(Fr^...vt(Fr), ..., n„p are the sons of n0 such that ns 

is a left-hand side occurrence of qs£P; 

if TS(x(nrj, vj)) then activate Tqr^.(nr.y, 
end; 

wait (s(nri, yj); ...; wait (s(nr., v¡))-
compute all the s-attributes of v, 
send s(n0, v) 

We omitted the two case statements that should be applied to find the rules q 
and [/€[/]}• 

3) Implementation using a task system so that overlaps are allowed among the 
visit sets. 



A multi-visit characterization of absolutely noncircular attribute grammars 29 

For any nonterminal F choose a production pF such that F occurs on the right-
hand side of pF. For each ¿-attribute a£v(F) let va— {a, b1, ..., bm}, where {¿¡|/€ 
€[m]} are all the /-attributes of F such that a depends on in ipg(pF). Clearly, va 
does not depend on the choice of pF• Let I1(F) = {va\a£S(F)}. Now we assume that 
each attribute a€v(n) has own semaphores x(n,a) and y(n, a) at node n of the 
structure tree. y(n, a) is true iff the evaluation of a has terminated at node n. If a£At, 
then x(n, a) is true iff the evaluation of a has already begun at n, and if a€As, then 
x(n, a) is true iff the evaluation of va has already begun. It p: F0 ->- vv0 jF\ ... F„pw„pd P 
and va£lI(F0), then we have the following task: 

Tp,Va(n0)-, node (n0); 
for 7 = 1 to m 

comment: va={a,bi, bm); 
if 1 TS(x(n0, bj)) then 

begin wait (y(m0,bJ)); ...; wait (y(m0,bJ
k)); 

wait (y(mfp; a{)); wait (y(mf/>, a/)); 
comment: m0 is the father of n0, it is a left-hand side occurrence of q£P, 

m t , . . . , m„q are the sons of m0 and {¿>/|/£[/c]}U {ai|i€[/]} are all the attri-
butes bj depends on in q; 

compute bj; 
send (y(n0,bj)); 

end; 
comment: au aie all the ¿-attributes a depends on in p, ..., n„p are 

the sons of «o such that ns is the left-hand side of qs£P, aj£v(Frj) for each 
- - /€[ / ] ; 

if 1 TS(x(nrj, aj)) then activate Tqr<a.\ 
wait (y (nri, flj ); ...; wait (y (n,t, at)); 
compute a; 
send (>>(«o, a)) 

6. NP-compIeteness 

We have seen that the problem whether an attribute grammar is gsmv can be 
decided in polynomial time. However, we shall prove that it is NP-complete to decide 
whether an attribute grammar is generalized simple m-visit for a fixed m S 2 . 

Theorem 6.1. The problem whether an attribute grammar is generalized simple 
2 visit is NP-complete. 

Proof: This problem is in NP, since we can guess an appropriate collection of 
visit sets II by a nondeterministic algorithm in polynomial time and check whether 
ipgbn is acyclic using algorithm 3.7. 

To prove NP-completeness we construct for every Boolean formula F0 in con-
junctive normal form an attribute grammar G(F0) such that F0 is satisfiable iff 
G(F0) is gs-2-visit. 

Let F0 be a Boolean formula which is a product of sums of literals. A literal is 
either P or not P for some Boolean variable P. If F 0 = F , * •••* Fn and Fl=L[+ ,.,+L^, 
/£[«], then in G(F0) we have a nonterminal P f o r each variable P, nonterminals Ft, ..., 
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..., F„ for each factor, nonterminals L\, ..., L[t, i£[n] for each literal and nontermina, 
F0, which is the start symbol. If P is a variable nonterminal, then l(P) = {i\, /2}1 

{i, Sx, s2}, F0 has sx and all the other nonterminals have ix and The pro-
ductions and the corresponding production graphs are the following. 

' • Si h Ji 
A « • y f\ / K 

•/ •• ! 's s* • • • • • 'i h Ji s ¡\ ¡t j, s 

LJ-~P L'j - not P 

¡1 it s2 Si s 

P-X 
e) 

Let G'(F0) be the attribute grammar which differs from G(F0) only in that v(P) — 
= {i\, /2, st, i2} for each Boolean variable Pof F0. The pg's of G'(F0) are the restric-
tions of the pg's of G(F0) to this set of attributes. It was shown in [1] (Theorem 4.1) 
that G'(F0) is simple multi visit iff F0 is satisfiable. On the other hand G(F0) is gS-2 
visit iff G'(F0) is simple multi visit. Indeed, if G'(F0) is smv, then we can fix U (P) = 
={{/'i, su i}, {/2, i2}} or n(P)={{i1, ¿ J , {t2, j2 , s}} for each variable P. If G'(F0) 
is not smv, then there are at least two occurrences of a variable P in the derivation 
tree of G'(F0) such that the visits {/j, and {/2, i2} of P must be evaluated in dif-
ferent order at these occurrences. Hence s cannot be put into any of these two visit 
sets, it must be evaluated in a third visit. 
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To show NP-completeness for m > 2 we only have to define m—2 preliminary 
visits to the variable nonterminals so that e.g. for m = 3 the last three pg-graphs of 
the previons figure should be 

Ly 
c) 

h 

sr 

Abstract 

The concept of smv attribute grammar is generalized by using redundant computation sequences 
in the specification of visit sets and visit sequences. It is proved that these gsmv attribute grammars 
are the same as the absolutely noncircular ones. 

An attribute grammar is top-down controlled /-ordered if there is a deterministic finite state 
top-down tree automaton such that for every node of every derivation tree, the order in which the 
attributes of the node must be evaluated is determined by the state in which the automaton passes 
through the node. It is proved that an attribute grammar is generalized smv iff it is top-down con-
trolled /-ordered. 

Finally it Is shown that the problem, whether an attribute grammar is gs m-visit for a fixed 
/a s 2 is NP-complete. 

R E S E A R C H G R O U P O N T H E O R Y O F A U T O M A T A 
H U N G A R I A N A C A D E M Y O F SCIENCES 
SOMOGYI U. 7. 
SZEGED, H U N G A R Y 
H-6720 

DEPT. O F C O M P U T E R SCIENCE 
A. JÓZSEF UNIVERSITY 
A R A D I V É R T A N Ü K T E R E 1. 
SZEGED, H U N G A R Y 
H-6720 

References 

[1] ENGELFRIET, J. and FILE, G . , Simple multi-visit attribute grammars, Journal of Computer and 
System Sciences, v. 24, 1982, pp. 283—314. 

[2] KASTENS, U., Ordered attribute grammars, Acta Informática, v. 13, 1980, pp. 229—256. 
[3] GYIMÓTHY, T . , SIMON, E . and MAKAY, A., An implementation of the H L P , Acta Cybernetica, 

v. 6 , 1983 . 
[4] KENNEDY, K. and WARREN, S. K., Automatic generation of efficient evaluators for attribute 

grammars, Conf. Record of the Third ACM Symp. on Principles of Programming Languages, 
1 9 7 6 , p p . 3 2 — 4 9 . 

[5] KNUTH, D. E., Semantics of context-free languages, Math. Systems Theory, v. 2,1968, pp. 127— 
145. 

[6] SHAW, A. C., The logical design of operating systems, Prentice-Hall, Inc., 1974. 

(Received Nov. 17, 1983) 


