Indexed LL (k) Grammars

R. PARCHMANN, J. DUSKE, J. SPECHT

1. Introduction

In the literature a number of extensions of context-free languages have been
proposed. The motivation for this is to describe certain constructs of ptogramming
languages which are not context-free. An impo1tant class of such an extension are
the indexed languages introduced by Aho [1].

In the area of context-free languages, the LL (k) languages are of special interest.
In[10] and [11] proposals have been made to generalize this notion to the indexed case.

Indexed languages coincide with the I0-macro languages introduced in [2]. In_
'[6], Mehlhorn defined the notion of a strong LL{k) macro grammar and investigated
this class of grammars. Furthermore he defined the notion of a general LL(k) macro
grammar and stated the following problems for these classes of grammars:

(a) Is the class of languages defined by the strong LL(k) condition equal to the
class of languages defined by the general LL(k) condition?

(b) Is the general LL(k) condition decidable for a given k?

In [10], Sebesta and Jones gave a positive answer to question (b) for indexed
grammars without e-productions in the case k=1.

In this paper we will answer completely these two questions for indexed LL(k)
grammars.

In Section 2, basic notions and definitions will be given and compared with those
introduced in {10] and [11].

In Section 3 it will be proved that the strong indexed LL(k) property is decidable
for a given k.

In Section 4 we will show that the strong indexed LL(k) languages are determi-
nistic indexed languages which were introduced in [7]. In Section 5 deterministic
context-free languages will be characterized as right linear strong indexed LL(1)
languages.

In Section 7 the main result of this paper, namely the decidability of the general
indexed LL(k) property will be proved. This will be shown by using a general transfor-
mation on indexed grammars given in Section 6. This transformation converts an
arbitrary indexed grammar into an equivalent grammar which is a strong indexed
LL(k) grammar iff the original one is a general indexed LL(k) grammar. This answers
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the question (a) posed above. The decidability of the strong indexed LL(k) property
then implies the decidability of the general indexed LL(k) property, which answers
question (b).

2. Definitions of indexed L.1(k) grammars

In this section we will consider subclasses of indexed grammars. Aho [1] intro-
duced indexed grammars and languages. We will state these notions in the following
form:

Definition 2.1. An indexed grammar is a 5-tuple G=(N, 7,1, P, S), where

(1) N, T, I are finite pairwise disjoint sets; the sets of variables, terminals, and
indices, respectively. ‘

(2) P is a finite set of pairs (Af, &), AEN, feIU{e}, a€(NI*UT)*, the set of
productions. (Af, o) is denoted by Af—a.

(3) SeN, the start variable.

Let a=u1B1ﬂ1u2B2ﬁ2...Bkﬁkuk+1 With uiET* for le[l: k+1], and BJEN,
B;€I* for j€[l: k] with k=0 be an element of (N/*UT)* andlet ycI*. Then we
set

a:y = uy By fryusBofsy ... By Prytigss-

For u, ve(NI*UT)* we set u=v iff u=@,Afyp,, v=¢,(0:7)@, with @,, @€

€(NI*UT)* and Af—acP. = is the n-fold product and = is the reflexive, transitive
closure of =.

The language L(G) generated by an indexed grammar G=(N, T,1, P, S) is
the set L(G)={wlweT* and S>w). A language L is called an indexed language
iff L=L(G) for an indexed grammar G.

The subclasses of indexed grammars considered in this paper are the indexed
LL(k) — and strong indexed LL (k) grammars, whose definitions are generalizations
of the corresponding context-free notions. Furthermore we will compare these defini-
tions with the corresponding definitions introduced in [10] and [11]. First we will
introduce some basic notions.

Let ~ be an alphabet and let k=1 be an integer. ®Z* denotes the set of all
words w over X with |w|=k, where |w| denotes the length of w. The function
®: p*~x* s the identity on ¥ X* and assigns to each we€Z* with |w|>k the
prefix of w of length k.

Now let G=(N, T, I, P, S) be an indexed grammar. Let n: Af—f be a pro-
duction, let k=1, and let y€I*. Then we set

First, (1) = {Pu|S *= wAa ™= wl *= wu),
First, (7, ) = {Pu|Ay*= 0 *= u},

where w, u€T*, and where *= and "= are leftmost derivations. Furthermore we
set for OE(NI*UT)*

First, () = {Pu|0*= u} with wuecT*.

From now on, all derivations are assumed to be leftmost derivations.
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Now we define the notion of an indexed LL(k) grammar (ILL(k) grammar).
This notion corresponds to the context-free LL(k) grammars.

Definition 2.2. Let G=(N, T, 1, P, S) be an indexed grammar and let k=1
be an integer. G is called an ILL(k) grammar if the following holds:
Let
S *= wAdya "= wl,*=> wx and

S *=> wAyo T= wl, *='wy

be two leftmost derivations with A€EN, yel*, «c(NI*UT)*, and w, x, yeT*.
Then ®x=®y implies n=n".

(Note: I=0 yields the context-free LL(k) grammars.)

Remark. Let G be an ILL (k) grammar. Then for each word we€L(G) there is
exactly one leftmost derivation according to G.

Example 2.1. Consider the indexed grammar G=(N, T, I, P, S) with N=
={S,4,B,C}, T={a, b, c} and I={f, g}. The productions in P are =,: S—~aAf,
Ty: S—~bAg, ny: A—~B, ny: A~C, mns: Bf—a, ng: Cf—b, n;: Cg—~a, and ng:
Bg—c. Only the following derivations are possible:

S =aAf = aBf = aa,

S = adf=aCf= ab,
- : : S=bAg =bBg = bc,

S =bAg = bCg = ba.

Obviously G is an ILL(J) grammar.
As for the context-free case it is possible to define the notion of a strong ILL(k)

grammar.

Definition 2.3. Let G=(N,T,I, P, S) be an indexed grammar and let k=1
be an integer. G is called a strong ILL(k) grammar if First,(n) NFirst,(n")=0 holds
for all productions m=n" which possess the same lefthand side or are of the form
n: A—a, n'; Af—-ao’ with fE€L :

(Note: I=9 yields the context-free strong LL(k) grammars.)

Remark. It is easy to see that strong ILL(k) grammars are ILL(k) grammars.
The ILL(1) grammar G of Example 2.1 is not a strong ILL(1) grammar because
First,(n;)={a, ¢} and First,(n,)={a, b}. This shows that an ILL(k) grammar is
not necessarily a strong 1ILL(k) grammar even for k=1. This differs from the con-
text free case.

We can state:

Theorem 2.1. 1) A strong ILL(k) grammar is an ILL(k) grammar. 2) An ILL(1)
grammar is not necessarily a strong ILL(1) grammar.

We will call a language a (strong) ILL(k) language if there exists a (strong)
ILL(k) grammar generating this language.

3
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We will now compare our definition of ILL(k) — and strong ILL(k) grammars
with the definitions of indexed LL2(k) — and indexed LL1(k) grammars introduced
in [10]. '

Obviously, an ILL(k) grammar is an indexed LL2(k) grammar. On the other
hand consider the indexed grammar given by the productions n,: S—Af, n,: 4A—a,
and my: Af—a. The two possible leftmost derivations

S "= Af "= a,
Sm=> Af = a

of the same word a according to this grammar show that it is not an ILL(1) grammar,
but the LL2(1) condition is still satisfied.

The notion of a strong ILL(k) grammar and that of an LL1(k) grammar are in-
comparable.

The indexed grammar G, given by the productions z,: S—adf, n,: S—~bAg,
ng: Af-ab, and my: Ag—ac is obviously a strong ILL(1) grammar.

G, is not an indexed LL1(1) grammar, since BASE(G,) (see [10]) is not a context-
free strong LL(1) grammar. This stems from the fact that in leftmost derivations
according to G,, applicability of n, excludes applicability of 7, and vice versa. On the
other hand consider the indexed grammar G, given by the productions =,: S—A4f,
7t,: S—~Ag, and my: A-a in P. G, is not a strong ILL(1) grammar, since
First, (n,) NFirst, ()= {a}. G, obviously is an indexed LL1(1) grammar.

Furthermore, G, is not an indexed LL2(1) grammar, which shows that Theorem
4 in [10] is false.

In [11], three types of indexed LL(k) grammars, the a, §, y-ILL(k) grammars
were introduced. It is easy to see that the definitions of a-ILL(k)- and ILL(k) gram-
mars and those of B-ILL(k)- and strong ILL(k) grammars coincide. These notions
are defined but are not investigated further in [11], where only y-ILL(k) grammars
are investigated. These grammars do not even include all context-free LL(k) gram-
mars.

3. Properties of strong ILL(k) grammars and languages

In this section we will first show that, given an indexed grammar G and a pro-
duction n€P, the language First,(n) can be given effectively. This result implies
that it is decidable whether a given indexed grammar is a strong ILL(k) grammar for
a given k. Furthermore, we will call an indexed grammar “‘reduced”, if each produc-
tion occurs in at least one derivation of a terminal word. With the aid of First,(n),
we can construct, given an indexed grammar G, an equivalent reduced indexed
grammar.

Theorem 3.1. Let an indexed grammar G=(N, T, I, P, S), a. production
n€ P, and an integer k=1 be given. Then an indexed grammar G” with L(G")=
=First,(z) can be constructed effectively.

Proof. Construct the indexed grammar G'=(N,T’,I,P’,S) with T’'=
=TU{#}, and P’=PU{n"} where n": Af— 4o if n: Af-a. It is easy to con-
struct a finite transducer M with M(L(G’))=First,(n). Here we use the notion
“finite transducer” as given in [1].
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From Theorem 3.1 and Lemma 3.2 in [1] it follows that we can construct effecti-
vely an indexed grammar G” with L(G")=M(L(G’))=First,(r).
Now we can state

Corollary 3.1. Let G=(N, T, I, P, S) be an indexed grammar, 7 a productlon
of G, k=1 an integer, y€I*, and BE(NI*UT)* Given a v€®T* it is decidable
whether

(1) v€First, (), (2) v€First, (), (3) v€First,(n,y) holds.

Proof. (1) Construct an indexed grammar G” with L(G”)=First,(n). In [5]
it is shown that the membership problem for indexed languages is decidable.

(2) With the aid of G construct the indexed grammarG’—(N U{S'}. T, 1, P, S")
where S’ is a new start variable and P’=PU{r’} where n’: $'—~0 isa new produc-
tion. Then we have First,(8)=First, ().

(3) Let Afbe the lefthand side of the production 7. If z cannot be applied to Ay,
then we have First,(n,y)=0. If Ay*=0, then First,(r, y)=First,(§) holds.

Corollary 3.2. Let G=(N, T, 1, P, S) be an indexed grammar and k=1 be
an integer. It is decidable whether G is a strong ILL(k) grammar.

Since the language First,(n) can be given effectively for an indexed grammar G,
it is possible to single out all productions of G which never appear in derivations
of terminal words. We will call an indexed grammar without such productions
“reduced”.

_ Definition 3.1. An indexed grammar G=(N,T,I, P,S) with L(G)=0 is
called reduced if for each n€ P there exists a derivation of a terminal word in which
7 is. applied.

Theorem 3.2. Let G=(N, T, 1, P, S) be an indexed grammar with L(G)=0.
Then it is possible to construct a reduced indexed grammar G'=(N, T, 1, P’, S)
which is equivalent to G.

Proof. Determine for each production = the language First,(n). If First,(x)=0
then remove the production. The grammar G’ obtained in this way is reduced and
obviously L(G)=L(G") holds. .

4. Strong ILL(k) languages are deterministic indexed languages

In [7] an indexed pushdown automaton (IPDA) has been defined, and it has been
shown that these automata accept exactly the indexed languages.

Furthermore, a deterministic IPDA (d-IPDA) has been introduced in [7]. The
class of languages accepted by these automata is called the class of deterministic
indexed languages (DIL’s). This class has properties similar to those of the class of
deterministic context-free languages [7, 8]. In this section we will show that the strong
ILL(k) languages form a subclass of the DIL’s.

Theorem 4.1, If G=(N, T, I, P,S) is a strong ILL(k) grammar then L(G)
is a deterministic indexed language.
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Proof. We will construct a d-IPDA K which accepts the language L(G)$*
where $ is an endmarker not in T. Since the deterministic indexed languages are closed
under right quotient with regular sets {8], the language L(G) is a DIL.

The states of K are the contents of a buffer of length k. This buffer contains a
lookahead of k input symbols. Furthermore, the automaton simulates leftmost deri-
vations according to G.

Set K=(Z, X,Iy, Ty, 0,2, Ay, 8, F) with Z=®X*U{z,}, X=TU{8},
Ih=NUTU{4,}, where 4, is a new element, I';=1I, zy=g,=e, F={z,;}, and ¢
will be defined as follows:

(1) For all ucX* with |u|=k-—2 and acX set
| (ua, (Ao, ©)€5(u, a, (Ao, ©)).
For all yeX®Y, acX set
(ua, (S, €)(4y, €))€d(u, a, (4,, €)).

(2) Let n: Af—B,y,...B,y, be a production of G, r=0, B£NUT, and
y:€I* for i€[l: r]. Then set (v, (By,71)...(B,,7,))E(v, e, (4, 1)) if |v|=k "and
v€ First,(n), where © is the maximal prefix of v with o€ T™*.

(3) For all b€X, acT, and u€X*~! set (ub, e)€5(au, b, (a, €)).

4) (2, €)€6(3, e, (4o, ©)).

Obviously, we have L(K)=L(G)$*. Since G is a strong ILL(k) grammar, we
have |8(z, x, (B, g))|=1 for all z€Z, x¢XU{e}, Ber,, and g€lIU{e}. (For
example: 6(v, e, (4, €)) with -A€N can only be defined in (2). If [8(, e, (4, €))|>1
we have a contradiction to the strong ILL(k) condition.)

It is easy to see that in each configuration (z, w, 6) of K at most one move is
possible. (For example: 6(v, e, (4, €))=0 and 6(v, e, (4,f))#9 in (2) for AEN
and f€I leads to a contradiction to the strong ILL(k) condition.)

Therefore K is a deterministic IPDA.

5. Strong ILL(k) languages and deterministic context-free languages

Theorem 4.1. shows that the class of strong ILL(k) languages is contained in the
class of DIL’s. The DIL’s include all deterministic context-free languages, which we
will now characterize as a special class of strong ILL(1) languages.

Theorem 5.1. For each deterministic context-free language L there exists a
strong ILL(1) grammar G with L=L(G).

. Proof. Choose-a deterministic pda K=(Z, T, T, 6, zy, Ay, F) with- L=L(K).
We may assume that in a final state, K may make no e-move (see [4], p. 239). Now
construct- the following indexed grammar G=(N, T, I, P,S) with N=ZU{S}
and I=T. The productions of G will be defined as follows:

2) If 6(z,a,A)=(z, B,...B,), then the production zA4A—+az’B,...B, is in P.
3) For each z€F the production z—e is in P.
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Obviously, G is a strong ILL(1) grammar generating L.
The productlons of the indexed grammar G in the foregoing proof are of a spe-
cial “right linear” form. Let us define:

Definition 5.1. An indexed grammar G=(N, T, I, P, S) is called a right linear
indexed grammar, if each production in P has one of the forms A4f—aBy or Af—a
with A4, BEN, felU{e}, acTU{e}, and yel*.

Recall that an indexed grammar G=(N, T, 1, P, S) is called an RIR grammar
(right linear indexed right linear) if all productions in P are of one of the forms
Af—-aB, Af~a, or A—aBf, where A, BEN, acTU{e}, and felU{e}.

RIR grammars generate exactly the context-free languages. (see [1]).

Obviously, each RIR grammar is a right linear indexed grammar. On the other
hand, it is easy to show that for each right linear indexed grammar there is an equiv-
alent RIR grammar.

Therefore we can state:

Theorem 5.2. Right linear indexed grammars generate exactly the context-free

languages.
Now we can state:

Corollary 5.1. Each deterministic context-free language is generated by a right

linear strong ILL(1) grammar.
To prove the converse of this statement, we first need the following lemma.

Lemma 5.1. For each right linear indexed grammar G=(N, T, I, P, S) there
_exists an equivalent right linear indexed ‘grammar G’ with the following properties:

1) There is exactly one start production.
2) All the other productions are of the form Af—a with fe.
3) If G is a strong ILL(k) grammar, then G’ is a strong ILL(k) grammar.

Proof. Set G'=(N',T,I’,P’,S’) with N'=NU{S’), I'=IU{#} and
P'={S’>S4#}UP", where P” is defined as follows:

a) If Af—-a€P, f#e, then Af—-acP”.

b) If A--a€P, then Ag—a: geP” for all gel'.

Obviously, G’ is a right linear indexed grammar which satisfies 1) and 2), and
is equlvalent to G. Furthermore, it is easy to see that if G is a strong ILL(k) grammar,
then G’ is a strong ILL(k) grammar too.

Now we can prove:

Theorem 5.3. Each right linear indexed grammar G=(N, 7,1, P, §) which
is a strong ILL(1) grammar, generates a deterministic context-free language.

Proof. If L(G)=0 then L(G) is a deterministic context-free language. If L(G)##

#0, construct G'=(N", T, I’, P’, §") according to the proof of Lemma 5.1. Further-

«more we can assume w.l.0.g. that G’ is reduced. We will define a pda K which accepts

the language L(G")$, where $ is a new symbol. K buffers a lookahead of length oneé

in its states and simulates leftmost derivations according to G’. The strong ILL(1)
property of G’ then implies that K is a deterministic pda.

Set. K=(Z, X, T, 0,2, %, F) with Z=N"X(TU{e,$PU{z,}, X=TU{S},

r=r, z,=(S’,e), F= {z,} and define & as follows: :
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(1) For all c€X let ((S,c), #)€6((S",e), ¢, %)
(2) Let n: Af—aBy be a production in P with A=S’.
(a) If as£e then ((B,c),7)€d((4,a),c,f) for all c€X.
(b) If a=e then ((B,b),7)€d((4, b), e,f) for all beWFirst,(n)S.
(3) Let mn: Af-+a be a production in P.
(@) If a=e then (z,,€)€d((4, a),$,f)
(b) If a=e then (z;,e)€6((4,83),e,f).
First we make the following observations concerning K:

Claim 1. 1If 6((4, a), ¢, f)#9 for a, c€ X then thereis a production n: Af—~ax
and {a}=First,(n)=®First,(n)$.

Claim 2. If 5((A, a),e,f)#0 for acX then there is a production n: Af—«
with a=e or the first symbol of « is in N and furthermore a¢ WFirst,(n)$.

Claim 1 and Claim 2 correspond to the subcases (2) and {b) respectively in the
above definition of é.

Claim 3. For all z€Z, c€XU{e}, and feI' we have [6(z, c,f)|=1.

If z=(S",e) then |6(z,¢,f)|=1 obviously holds. Now assume z=(4, a)
with a€X and [6(z, ¢, f)|>1. Then there are productions « and =’ with ns=7" and
ac ™ (Firsty(m)$ )@ (First,(n’)$). This is a contradiction to the strong ILL(1) pro-
perty of G.

Now consider z=(A4, @) with a€X and fe€I. If d(z, e, f)#0 and 6(z, c,f) =0
for a c€X then Claim 1 and Claim 2 state the existence of two productions 7 and 7’
with n>n’ and furthermore a€®(Firsty(n)$)N® (First,(z')$). But this is a con-
tradiction to the strong ILL(1) property of G.

If z=(S’, ) then 6(z, e, /)=0 holds. Together with Claim 3 this shows that X
is a deterministic pda.

To prove L(K)=L(G)$ we need

Claim 4. If S#">wAy#*>wv, w,v€T*, AEN, according to G’ then
(25, w08, #) FEL (4, 0,0,y # ) according to K, and cv’=v$ with cse.

The claim will be proved by induction on n.

If n=0 then w=y=e and A=s. According to K we have

((S’, €), v8, #)((S, o), v, #) with ¢’ =v$ and c #e.

Assume the claim holds for all k=n.

Let S#">wAdy#">waBy #*>wav be given where acTU{e}. From the
induction hypothesis  (z,, wav$, %) - ((4, ¢’), v”, y#) with ¢’v"=av$ and
¢’#e follows. If now a€T then ¢’=a and v”=v$ holds. According to K the move
(4, @), 08,y ) ((B, ¢), v',y’# ) with cv'=0v$ and cse is possible. If a=e
then c¢'v”"=v$ and c¢’€®(First;(7)$) holds. According to K the move
(A4, N, v", 74 )= ((B, ¢’), v”, ¥’ # ) is possible. This completes the induction.

Now, by induction on n we will show

Claim 5. If (zy, wo8, #) F=2= (4, ¢),v',y# ) with w,v€T*, cv'=v$ and
c#e holds according to K then Si#">wdy4 holds according to G.
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If n=0 then we have ((S’, €), wv8, % )i ((S, ¢), v', y % ) with cv'=v$ accord-
ing to K. This implies w=y=e and S#°>wSy# holds according to G. Assume
the claim holds for all k=n and let (zy, wo$, %) F2 (47, ¢), 0%, ¥ % )
(4, 0,v,y#) with c’=0v$ and cs#e be given.

[PW 2

If v"=v" then c¢=c’ and cv"=v$ holds. From the induction hypothesis
S#">wd’y # follows. Since ((4', ¢),v",y" # ) ((4, ¢),v", y %) holds, there is a
production © with wA’y #"=>wAy .

If v”#v" then v”"=cv” and w=w'c’. From the induction hypothesis S #"=>
">w'A’y’ % follows. Since ((4’,c"),v",7" %) ((4,¢),v",y#) holds there is a
production 7 with w’ A’y #"=>w'c’Ay % =wAy #. This completes the induction.

Now let wEL(K), i.e. (zg, w, #) += (4, ©),d, y % )~(z,, e,7"). Here we have
cither d=3% or d=e and ¢=$. If d=$ then w=w’c$. Obviously, w'ccT*
holds. Therefore the derivation S#*=w'Ady# exists according to Claim 5. Since
((4,¢), 8,y )~ (zs, &, ) holds, there is a production n: Af—c with w'Ay#m=>
*»w’c. Therefore wc€L(G) and w=w'c$€¢L(G)$. If d=e and c¢=$ then
w=w'$ with w'€T™, and the derivation S *=>w'Ay# exists according to Claim
5. Since ((4,9), e, 74 ) (zs, e,7") holds there is a production n:4f—+e with
w'Ay #*>w’. Therefore w'€L(G’) and w=w'$<L(G")$, and hence L(K)S L(G)S.

Conversely, let weL(G'), ie. S#*3wdys=>w=w'¢’, ¢’¢TU{e}. Then
(20, W'¢’S, #) X ((4, ©), d, y 4 ) with cd=c’$ and c>e holds according to Claim 4.
If ¢’=e then ¢=$ and d=e hold. Hence the move ((4,3),e,7% )(zs,¢,7)
exists. If ¢’€T then c=c’, d=$, and the move ((4,¢),$,y# )(z,, e, 7)) exists.

Therefore w$€L(K) and hence L(G)$& L(K). N :
. Together ‘with the inclusion L(K)S L(G)$ this shows L(K)=L(G)S.

Since K is a deterministic pda, L(G)$ is a deterministic context-free language
which implies that L(G’) is a deterministic context-free language as well (see [3],
Theorem 11.2.2). :

Combining Corollary 5.1 and Theorem 5.3 we can state

Theorem 5.4. The class of deterministic context-free languages is exactly the
class of right linear indexed strong ILL(1) languages.
~ The indexed grammar for the language {a"b"c"|n=1} given in [1] is a strong
ILL(1) grammar. This proves :

Theorem 5.5. The class of strong ILL(1) languages properly contains the class
of the deterministic context-free languages.

6. A general transformation of indexed grammars

In Section 3 it was shown that the strong indexed LL(k) property is decidable.
This will be used in Section 7 to prove the main result of this paper, namely the de-
cidability of the (general) indexed LL(k) property.

To this end we first investigate in this section properties of two functions which
are defined with respect to a given indexed grammar. Let G=(N, T, 1, P, S) be an
indexed grammar and let A: 7*—~L and u: (NI*UT)*~M be two functions in
two finite nonempty sets L and M. 1 and g can be interpreted as assigning information
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4(y) and u(0) from finite domains L and M to words y€I* and O€(NI*UT)*, res-
pectively. If 2. and u satisfy certain compatibility conditions C, and C,, then it is pos-
sible to construct a grammar G, equivalent to G which simulates the derivations of G
and attaches in left sentential forms wAy8 of G the information A(y) and u(6) to the
variable 4. This means that the values of the functions 4 and g can be “computed™
during leftmost derivations.

Let us now state the compatibility conditions C; and C,.

(C) ¥ A(y)=A(y) then A(fy) =A(fyo) for all y,y,€I% and fel
(C) If A(n) =A@y and pu(0) = p(0y) then u(0:y,6)) = u(0:9,6,) for
all 8, 0,6(NI*UT)*, 0 NI*UT, and vy, y.,€1"

Note: If C, is satisfied then it is easy to see that l(yl) A(yy) implies A(ay)=
=A(ay,) for all a€l*. Furthermore it easy to prove that if C, holds then A(y,)=
—(y2) and p(6)=p(By) imply p(0:7,0)=p(0:y,60) for all He(NI*UT)*.
We will now give examples for functions 2 and u satisfying the conditions C;
and C,. .

Example 6.1. Let G=(N, T, I, P, S) be an indexed grammar. Set L=2(N),
the power set of N, and set A1(y)={4]|4y*=>e}. We will show that A satisfies condi-
tion C,. For this purpose let y,, y.€I* with A(y)=A(ys), f€I and A€i(fy,) be
given. Since A€A(fyy), there exists a derivation Afy,*»e. If Af*=>e, then
A€A(fys) obviously holds. Otherwise there exists a derivation Af*=B,...B, with
BEN, i€ll: n] and By,*=e for i€[l: n] holds. Therefore B,€A(y)= A(yz) and
hence B;y,*=e for i€[1: n] holds too. Consequently we have Afy,*=B,7y,...
...B,,y2*=>e and A€A(fy,) follows. This shows A(fy)SA(fyd)- The converse
inclusion follows by symmetry.

Example 6.2. Let G,=(N, T, P, §) be a context-free grammar which can be
interpreted as an indexed grammar G=(N, T, I, P, S) with I=0. Let L be a finite
nonempty set and let A: 7*—~L be defined by A(e)=¢q for a g€L. Obviously A
satisfies condition C;. Fora k=1 set M="T* and define u(6)= {u|6*=>v, veT™,

u=®p}=First,(6) for all 8¢(NUT)*. We will show that p satisfies condition C,,.
Let 0,, 0,6(NUT)* with p(6;)=p(8,) be given. Let §¢(NUT)* and let vEy(GBl)
Hence there exists a derivation 80,*=w with v=%®w. This derivation can be writ-
ten as 00,*s>u, 0 > wuu,=w. If |u;|=k then v=®u,€u(60,) holds. Now assume
|uy]<k. We can state the existence of a derivation 0,*=>d, with ®j,=®uy, since
1(0)=u(8;). Hence 00,*=>u,0,*>u i, and ®u,ii,=v€u(60,) holds. Therefore we
have p(66,)S 1(60,). The converse inclusion simply holds by symmetry.*

This completes the examples and we return to the general discussion.

Let L=LU{g} where g is a new element. With the aid of 1 the function
A1: I*XL—L is defined for all y€I* and g€L by

I, @) =A0yy) if g=21(G") fora yer*
=g otherwise.

If 2 satisfies the condition C; then ] is well defined.
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Now set M=M U {m} where /i is a new element and define the function
g (NI*UTY*XMXL—+M for all ¢(NI*UT)*, méM, and gc¢L by :

B0, m,q) = pu@:90) if qg=4Ai(y) for a yeI*
and m=pu@) for a 6,€(NI*UT)
=m otherwise.

If p satisfies the condition C, then i is well defined. Now we can state

Lemma 6.1.

(1) If 2 is effectively computable and satisfies the condition C, then A(I*) and
are effectively computable, too.

(2) If A and p are effectively computable and satisfy the conditions C,; and C,
then p((N/*UT)*) and j are effectively computable, too.

Proof. (1) We will first show that the value of A for an index word with. length
greater tlhan or equal to |L| can be obtained by applying A to a word of length less
than |L

Let 1 be effectively computable, i.e. there is an algorithm 4, which determines for
each given y€I* the value A(y). With the aid of A4, determine the.set A((UL1-DJ¥),
(Recall that (IHI=D]* denotes the set of all words over / with length less than or equal
to |[L|—1.) : - .

Let y=f;...f1€I* with r§|L| be given and let ¢q,=A(f;...fy) for k€[0:r).
There exist i, j€{0:r] with i<j and ¢;,=g; because |L|=r. Since A satisfies the
condition C, we have A(y)=A(f,...fj+1fi---f)- Hence A(I*)=A(UEI=DI*) and this
implies that A(I*) is effectlvely computable.

To show that 1 is effectively computable let yc/* and g€L be given. If
q¢A(I*) then I(y,q)=g holds. Otherwise, if q€A(I*), determine a y’€(LI-Df*
with "A(y")=¢ and compute the value l(yy ) with the aid of A4,. This completes the
proof of (1).

(2) We will first show that for each BE(NI *UT)* there exists a 0’¢(NI*UT)*
with p(0)=pu(6"), and with the length of the index words in 8’ restricted by |L|.
In the next step we show that it suffices to compute the values of u for words over
(NI*UT)* with length less than {M|.

Let A be effectively computable and let 4 and x satlsfy the condltlons C,and C,.
First we will show by induction on the length that for each 8¢(NI*UT)* there
exists a 0’€ (N(IL-DI*UT)* with u(@)=p(6"). In case 6=e the assertion is
trivial. Let 0=0, 0, with 0,6 NI*UT and 0,c(NI*UT)*. The 1nduct10n hypothesis
guarantees the existence of a 03¢ (N(UH-DI*YUT)* with p(6,)=p(

If 0,=acT then u@)=p(ad)=p(ad)=pu@) with ¢ (N((”“l 1)I*)UT)*
since y satisfies condition C,,.

Now let 0,=AycNI*. Part (1) of this lemma guarantees the existence of a

Y’ €UL-DI* with A(y)=A(y’). Since y satisfies the condition C,, we have u(6)=
—/,t(A y0)=u(A:y'0)=p(0") with 6’¢ (N((“‘I DroyuT)t.

Now let u be effectively computable, i.e. there is an algorithm A4, which determi-
nes for each O€(NI*UT)* the value p(f). With the aid of 4, determine the set

p(IMI=D(N(L=D*YJ T)*). We will show that this set equals p((NT*UT)*).
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Let a 8¢ (NI*UT)* be given. We have proved above the existence of a
0 (N(UH-DMUT)* with u(@)=p(8). Let 6’=6,...6, with §ENI*UT for
k€{l: r] and r=|M|. If we set m=u(6;...0,) for k€[0: r] then there exist
i,je[0: r] with i<j and m;=m;. Since p satisfies the condition C,, we have
#(0’)=ﬂ(0’ ee 0j+10i .o 01).

This implies p((N/*UT)*)=p(UMI-DN(IL-DI*)UT)*) and therefore
u((NI*UT)*) is effectively computable.

It remains to be shown that j is effectively computable. Let 8€(N/*UT)*,
méM, and g€L be given. If mep((NI*UT)*) and g€A(/*) then determine a 6,
with p(6,)=m and ay with A(y)=g and compute the value u(8:y0,)=p(6, m,q)
with the aid of 4,. Otherwise, if m=m or g=g, we have j(0, m,q)=m. This
completes the proof of the lemma.

Starting with an indexed grammar G=(N, T, 1, P, S) and functions 1 and u
satisfying C, and C,, we will construct an indexed grammar G,,=(N’, T, I’, P’, §”).
This grammar is structurally equivaient to G, i.e. generates the same set of terminal
strings and the same set of derivation trees (ignoring the labels of the intermediate
nodes).

Define N'=NXMXL, I'=IXL and S’=(S,m,,q,) with my=p(e) and
qo=4(e).

For the definition of P° we need two functions ¢ and . The function
@: I*XL—~(IXL)*=I"* attaches a second component to each index f; in an index
word f;...f,. For a given g€L the second component of f; will be value A(f;.;...
wiSns @), 1.e. @ is defined by

¢(e,q)=e, and
o(f ) =10 @)o(r. q) for all yeI*, fel, and g¢€L.

The function y: (NI*UTY*XM XL~ (NXMXL)(IXD*UT)=(N'I"*UT)*
attaches two components to the variables 4; in a word A;y,A4,y,...4,y, of (NI*U
UT)* with 4,6 NUT, y,€I* for i€[l: n]. For a given mé M and g€L the values
of these components will be f(4;,1%i41.--A4,¥s>» M, q) and I(y;, q) respectively.
Furthermore the y; will be replaced by ¢(y;, g) for j€[l: n], i.e. ¥ is defined by

yle,m q) =e
V(ab, m,q) =ay(0, m,q) and

Y (A0, m, q) = (4, 50, m, q), 1(v, D)o, QY (6, m, g);

for all AEN, yeI*, 8e(NI*UT)*, meM, q€L, and a€T.
Now we are able to define the productions of G;,. Let n: 4f—~f be a production
of P. Then for all meu((NI*UT)*) and g€A(I*) the production

a4 Y (Af,m, q) ~¥ (B, m, q) isin P

Note that y(Af, m, g)=(4, m, 1(f, 9)) o (/. PEN’XI’U{e}), since o(f,q)=e
if f=e, or o(f,9)=(f,9) if f+e.

G, is called the Au-grammar of G. If the functions A and u are effectively compu-
table, then the function ¥ is also effectively computable and the grammar G,, can be
constructed effectively. :
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The homomorphism é: (N'UI'UT)*~(NUIUT)* defined by 6(4, m, g)=A,
8(f, q)=/f, and d(a)=a forall A€ N,meM, q€L, fel, acT, deletes the components
attached to variables A¢N and indices f¢l. Obviously, if 6] *™'=0; according
to G,,, where 67, 0;¢(N’I"*UT)*, then 6(0;)"=56(0y) holds according to G.

Furthermore for all 0¢(NI*UT)*, meM, q€L, we have (¥ (6, m,q))=60.

mg,q Mps Gy . . . .
If S'=(S,mq, q0) ™ =06,..." =6, is a leftmost derivation according to
G, then

ST =8(0) = ...% = 8(6))

is called the corresponding leftmost derivation according to G.

In the following two lemmas we will make precise the structural equivalence of
the grammars G and G,,,. To prove these lemmas we need a number of facts concern-
jng the functions 1, fi, ¢, and .

Claim 1. For all 0, 0,, 0,¢(NI*UT)*, and y, y,€I* we have

@ e, A(0) = A(),

(i) (7, 90) = A(y) where g, = A(e),
(iii) (1, A, 9)) = A(n7, g) for all ¢€L,
(iv) i(e, u(6), 2() = n(0),

) A6, mg, go) = u(6) where m,=p(e) and gq,=A1(e),
(vi) 76,0, m, q) = ji(6, 5(0, m, q), q) for all mcM and g¢€L,
(vii)  [E(0:y, m, q) = (0, m; X(y, q)) for al meM and g€L.

These identities are easily obtained from the definitions of the functions 1 and f.
The following three claims state properties of the functions ¢ and . All claims
are proved by induction on the length of words over 7 and NI*UT respectively.

Claim 2. For all y,y,€I* and g€L we have
@, ) = 0(r, 101, D)o (1, 9).
Proof. The assertion holds for y=e. If y=fy" with f€I then
(fi'ns @) = (£,20" 7, 9)e (1, 9)
= (£ 20/, 20, D))o (¥ 2015 9)) 0 (015 @)
(see Claim 1 (iii) and induction hypothesis)

. = o, 201, D)o (1, 9)
(see definition of ¢).

Claim 3. For all 0, 0,6(NI*UT)*, mecM, qc L we have
l/’(6109 m: q) = l//(el, ﬁ(B, m, Q), q)‘/’(e: m’ Q)-
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Proof. The assertion holds for 8;=e. Assume that ,=af; with acT and that
the assertion holds for 8;6. Then, by the definition of ¥ we can conclude

¥ (ab16, m, q) = ay (6,6, m, q)
= ay(61, £(8, m, q), q)¥ (6, m, q)
= y(abf, i(6, m, q), q)¥ (6, m, q)

Now assume 0,=Ayf, with AycNI* and 0;€(NI*UT)*, and assume the
assertion holds for 6;6. Then, by the definition of  and Claim 1 (vi) we can conclude

W (Ay6{0, m, q) = (4, 7(676, m, 9), 2(v, 9)) o (v, 9)¥ (610, m, q)
= (4, 1616, m, ), X(v, 9))o (v, Y (61, (6, m, q), 9)¥ (8. m, q) |
= (4, 1(65, (0, m, 9), @), X(v, ) o (v, Y (61, (6, m, q), )Y (6, m, q)
=y (40, 50, m, q), Q)¢ (8, m, q).
Claim 4. For all 0e(NI*UT)*, yeI*, mé M, and g€L we have
W(O: v, m, @) = (8, m, 1(v, 9)): 0, 9)-

Proof. The assertion holds for #=e. Assume §=af); with a€T and the asser-
tion holds for 8,. From the definition of ¢ it follows:

¥((ab):y, m, ¢) = Y(a(6y: ¥), m, q) = ay(6: 7, m, q)
= a(Y (01, m, X(v, 9)): (1, )=
= (ay (61, m, A(v, 9))): 0 (3, 9) =
= y(aby, m, 2(3, 9)): ¢ 9)

Now assume 0=Ay,0, with Ay, NI*, 6,¢(NI*UT)* and assume that the
assertion holds for 6,. Then, by the definition of ¥, Claim 1 (iii), Claim 1 (vii), and
Claim 2 we have

Y ((4710):7, m, ) = Y(49,7(6:: 7), m, q)
= (4, £(0:: 7, m, @), X117, )@ (117 Y (02 v, m, q)
= (4, @61, m, 2(v, 9))» 2(17> D)2 (01, 2> 20 (s W (61, m, 1(v, 9)): (1, q)
= ((4, 56y, m, 13, @), X1(31, 2(v, @)@ (11, 23, D) (01, m, 2(3, 9))): @, q)
= Y(Ay,0,, m, (v, 9)): o, 9)-

For the remainder of this section we will use the following general assumptions:
(*) Let G=(N,T,1, P,S) be an indexed grammar and let A: I*~L and
u: (NI*UT)*—~M be two functions in two finite sets L and M satisfying the con-
ditions C; and C,. Let L=LU{g} and M=MU {f} where § and i are new ele-
ments and let G,,=(N’,T,I’, P’, S”) be the iu-grammar of G. i
The next lemma establishes a correspondence between a leftmost derivation step
in G and an analogous leftmost derivation step in G,,,.
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Lemma 6.2. Under the assumptions (*) for all weT*, yeI*, 8¢(NI*UT)*
the following holds: . :

If n: Af—~p€P and wAfy0*=>wp:y0 according to G, then for all m,€u((NI*U
UT)*) and ¢,€A(I*) we have Y (wAfy8, my, q)=™ >y (wB:y0, my, q,), where
m=ﬁ(0> m, ql) and q=1(?, ql)

Proof. Since m€u((NI*UT)*) and q,€A(I*), the same holds for m and g,
hence a™4¢P’. Consider n™%: (A4, m, 1(f, q))o(f,q)~¥ (B, m,q)€¢P’. By the
definitions of ¢ and  and Claim 1 (iii) we have

Y wAfHO, my, g1) = w(d, m, 2(fy, 90) 0 (fy, g (6, my, g1 =
= W(As m, I(f; Q))fl’(f, q)go(y, ‘h)'ﬁ(e’ my, ql)

This shows that 7™¢ is applicable to ¥ (wAfyf, my, g,), i.e. the following left-
most derivation step is possible:

w(d, m, 2(f; D)o (f, D)o (s ) ¥ (6, my, q)
il q=> Wl/l (B’ m, 4) QD(')), ql)lp(ea mla ql)
Using the Claims 3 and 4 we have
Wlp(ﬂ’ m, 4)‘1’()’, ql)‘p(69 ml’ ql) = WW(ﬂi}'a m, ql)lp(e’ m19 ql.)
= Y (wh,0, my, q,).

This completes the proof. ,
- The following lemma is in some sense the converse of Lemma 6.2 and describes
the simulation of a leftmost derivation step according to G,, in the grammar G.

Lemma 6.3. Under the asumptions (*) the following holds for all
weT*, yel*, and Oc(NI*UT)*: If =™ Y(Af,m,q)~y (B, m,q)¢P’ and
Y(WAS8, my, g)) "™ '=>0, where mEp((NI*UT)*) and ¢,€A(I*), then m=
=ﬁ(95 m, ql)s q=Z('Y5 ql), and 9=l//(Wﬁ’))e, m19 ql . '

Proof. Since Y (wAfy0, m,, g,)=
w(d, (0, my, 1), 2(fy, q0) @ (frs g ¥ (6, my; q1) =
w(4, B0, my, 1), 2(f, 1, g (£, X(v, 90) 0 (v, 4DV (6, my, g
(see Claim 1 (iii)) we have m=[(0, my, ¢,) and q=I(y, ).
Furthermore, with the aid of Claims 3 and 4 we have:
0=wy(B,m, q): o, gV (0, my, 1) = wy(B:y, m, q)¥ (6, my, gy)
=y (wb,0, my, qy)

This completes the proof.
The repeated application of Lemma 6.2 yields

Corollary 6.1. Under the assumptions (*) we have: If § *>wAdyb acccording
to G with weT* A€N, yel*, and O¢(NI*UT)* then S'=(S, my,qp)*=>
*> 1 (wAy0, my, q) according to G,,,.
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Remark. Since
Y (wAy0, my, go) = w(A, 10, my, qo), 2(7, 90))0 (¥, g)¥ (6, My, go) =
= w(4, u(0), 2(»)e G, 90 ¥ (0, my, qo)

holds, we conclude: G,, simulates the leftmost derivations of left sentential forms
wAy8 of G and attaches the information A(y) and u(6) to the variable 4.
Repeated application of Lemma 6.3 yields

Corollary 6.2. Let S’=(S, my, qo) *=0" be a leftmost derivation according to
G,, and let S*=>0 be the corresponding leftmost derivation according to G. Then
8 =y (0, my, q,) holds.

Furthermore, with Lemma 6.2 we obtain

Corollary 6.3. Under the assumptions (*) we have: If 0¢ (NI*U T)*, me u((NI*V
UT)*), geA(I*), and v€T* then ¥(6, m, g)*>v according to G,, iff §*>v
according to G. In particular L(G)=L(G,,) holds.

Remark. The underlying principle of this construction is applied for example in
[1, 9]. In[1]the function A of Example 6.1 is used for constructing a normal form of
an indexed grammar. In [9] the function u of Example 6.2 is used in investigations of
context-free LL(k) grammars.

A construction similar to the construction of G, can be applied to indexed push-
down automata and pushdown automata. The principles of this construction are used
in [7, 8} in the indexed case and, for example, to prove closure properties of determi-
nistic languages in the context-free case (cf. [3], Section 11.2).

7. Decidability of indexed LL(k)

In this section we will prove our main theorem concerning the connection between
ILL(k) and strong ILL(k) grammars. For this purpose we will introduce two special
functions A and g in the following manner.

Let G=(N,T,I,P,S) be an indexed grammar with P={m,n,, ..., 7,}.
Set L=(2(®MT™)), the set of all p-vectors, whose components are subsets of V7%,
and M=22(®T*) with k=1.

Define A: I*~L by A(»)=(q1,....q,) where g;=First,(n;,y) holds for
i€[1: p]. Furthermore define u: (NI*UT)*—~M by u(f)=First,(6). From Corol-
lary 3.1 we know that 1 and p are effectively computable.

First we want to show that A satisfies condition C,. For this purpose let y,, y,€1*
with A(y)=A(yy) be given, i.e. First, (n;,y,)=First,(xn;, o) holds for all i€{1: p].
Under this assumption we will show by induction on # that for each y¢I* and each
production 7; the following holds:

If

Ayy, ™= 6,"=> u with u€T* then

Ayyam= 0, *=> v with 0€T* and ®y = Ky,

(Recall, "> denotes a leftmost derivation in » steps.)
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Obviously this assertion holds for n=0. Now let Ayy,%=60, "tl>u with
u€T* be given.
If y=e, the assertion follows from A(y)=2A(yy).
If ys£e, no index of y, can be consumed in the first step of the derivation. There-
fore we have
0, = B,B, ... B,f, with B¢ NUT,r>0, and

B:=7viy with yjer* if BN
= e otherwise.

In addition B;f; "=>u; with m;=n+1 holds for i¢[l: r] where u=u,...u,.
Since y#e it is possible to apply m; to Ayy, which yields

Ayys ™= B, 1 ... B,; = 0, with
Bi = viv. with yleI* if Bi€N
= e otherwise.
The induction hypothesis quarantees the existence of the derivations
BB *=>v; with v,€T* and Wy, =®y, for i€[l: r].
" Consequently we have
Ay 5= 0 *> vy .., =v with ®p = Ry,
This completes the induction, and hence
First, (m;, yy0) S First, (n;, y79)-

The converse inclusion holds by symmetry. The special case €7 shows that A
satisfies condition C,.

We now prove that yu satisfies condition C,.

Let y;,7:€/" with A(yD=A(y») and 6, 62€(NI*UT)* with u(0)=u(6y)
be given, i.e. for all productions 7, we have First,(n;, y,)=First,(r;, 7,), and further-
more First,(8;)=First,(6,) holds

Now for each OeNI*UT the equality First,(0:y,6,)=First,(6:y,0,) has to
be shown.

If 0¢T this assertion holds obviously.
If 8=Aye€ NI* then observe that Fxrstk(Ayyl) U First,(x;, yy,) holds where

J is the set of all numbers of productions with lefthand side Af, feIU{e}. Since
A(p)=A(y2) and 2 satisfies condition C,, we have A(yy;)=A(yys). Hence we have

First, (4yy,) = U First, (n;, yy2) = First, (Ayyy).
ied

4 Acta Cybernetica VIIf}
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This equality enables us to conclude

First, (Ayy,0,) = ®(First, (4yy,) First, (6,))
= ®(First, (Ayyy) First, (6,))
= First, (Ayy,6,).

Consequently u satisfies the condition C,,.

According to Lemma 6.1 we observe that )(1*) Z, p((NI*UT)*), and i are
effectively computable.

The Ap-grammar of G defined by these special functions 4 and p will be called
the S,-grammar of G and denoted by S, (G).

Now we can state our main theorem.

Theorem 7.1. Let G=(N, T, I, P, S) be an indexed grammar and let k=1.
S.(G), the S,-grammar of G, is a strong ILL(k) grammar iff G is an ILL(k) grammar.

Proof. (a) Let G be an ILL(k) grammar. If S,(G) does not satisfy the strong
ILL(k) condition, then the following two cases are possible.

(1) There are two productlons e Yy (Af,m, @)~y (B, m,q) and w9
Y (Af, m, )~ (By, m, g) in P’ with the same lefthand side, where I#j, ft EIU{e}
and Firstk(n;""*)ﬂFirstg(n}“")#@, i.e. there are two leftmost derivations

S * = wi (Af, m, @)y 0™ "= w0 *= wub’ *= wuy (7.1)
and

S’ *= w (Af, m, @)y ™7 "= wlL0 *= wud = wuo (7.2)
according to S,(G) with w, w, u, i, v, 5€ T*, ¥, ¥ €1’*, and
0,0,,0,0,¢(NI'*UT), where
01*=>u, 0 *=>y,
0 *=> i, 0 *=7,
and Pup=®gs holds.
Consider the derivation (7.1). We have the corresponding leftmost derivation
S *= wAfy0 m= wl, 6 *= wul *= wuv,
where y=4(y"), 0,=46(0;), and 6=4(0").
Then from Corollary 6.2 we conclude wy(Af, m, q)y'0" =y (wAfy0, my, q,).

Since Y (wAfy0, my, go) ™ =>wb0’ we have from Lemma 6.3 m=j(0, m,, qo)=

=pu(6), and g=21(y, g)=2().
Analogously, considering the derivation (7.2), we have a correspondmg leftmost
derivation

S *= wAf 90 7= wh, 0 *= wub *= wuv,

where 7=6(7), 8,=58(8;), and 8=6(9). Furthermore we have m= y(@) and
g=A3)-

Since A(y)=4(7) we have in particular First,(n;, fy)=First,(n;, f/7) and since
u(@=u@ we have First, (f)=First,(d).
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If |u]>k then (")uGFlrstk(n,, f7) and therefore ®acFirst, (n;, fy), le.
Afymi= By y*=>it according to G with ®g=®)y,
Then the following derivation according to G is possible:

- S *= wAfy0 "= wh,: 90 *= witv

with ®gp=®jz=®yy, But this is a contradiction to the ILL(k) property of G.
If |u|<k then @€First,(n;,f7) and therefore u€First,(m;, fy), 1.e. Afym=
7B, y*=>it according to G. Since First,(6)=First,(§) there exists 8*=p
according to G with ®p=®35, Then the following derivation according to G is
possible:
S *= wAO "= why 1 y0 Y= will *= wiid

with ®ap=™®g5=®yy, This is a contradiction to the ILL(k) property of G.
(2) There are product.ions e Y(Af,m, @)~y (B, m, q), f€I, and nT7:
¥(4, m, )~y (B, m, g') in P’ with ¢’=A(f,q) and

S *=> wr(Af, m, )y 0 ™ "= w00 *= wub *= wuv (1.3)
and
= wi (4, m, @)Y 0 > woL0 *=> wul *=> wuv (7.4)

according to S, (G) with w, w, u, , v, 6€T™, ', 7 €I,
' 0,,0,0,, #c(NI'*UT)* where
[ *=>u, &>,
9=, 0*=>b

and ®uv=®ip holds. .
Consider the derivation (7.3). We have the correspondmg leftmost derivation

S *= wAfyl == w, 0 *= wub *= wuv,

where y=68(y"), 6;=38(0;), and 0=05(0"). As above we conclude- m=u(6) and

q=®) :
Considering the derivation (7.4), we have the corresponding leftmost denvatlon

S *=> wAy = w0, 0 *= wub’ *= wuv,
where 7=06(7), 6,=8(0)), and 8=06(8"). Furthermore m=u(@) and ¢ 'A(y)
Since A(fy)=A(f, 9)=q =A(3) wehavein particular First,(n;, 7)=First,(z;, fy)
and since u(B)=pd) we have First, (9) =First, (6).
If |u|>k then ®i¢First,(n;,7) and therefore ®ucFirst,(n;, fy), i.e. Afy";=>

T By fy*od with Wg=®g,
Hence the derivation

S *= wAfy0 "i= why 1 fy0 *= wii0 *= wilv
according to G is possible with ®gv=®"g=®g=™W®yy, This is a contradiction to the
ILL(k) property of G. _

4*
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If li|<k then acFirst,(n;,7) and therefore uacFirst,(n;, fy), ie. Afy==
== B,: fy*=>i holds according to G. Since First,(0)=First,(§) we have 0*=9
with ®p=®p, Hence

S*= wAfy0 = wh,y: fr8 *= witf *= wiid
is possible according to G with ®ip=®gi=®yp which contradicts the ILL(k) po-
perty of G.

(b) Let S;(G) be a strong ILL(k) grammar. Assume that G is not an ILL(k)
grammar, i.e. there are two leftmost derivations

S *=> wAy0 "= wh, *=wx and
S *= wAy0 = wly, "= wy
with AEN, 9yer*, 0, RL,e(NIFUTY, w,x, yeT* ®x=®™yp and i3]
Let us consider the case that the lefthand side of the two productions are dif-

ferent, i.e. m;: A—f, and n;: Af—B, with fe€l. Hence y=fy" holds. Set m=

=p(0)=0(0, my, 90), ' =A0")=1(¥, o) and g=A()=1(, g)=1(/, ).
In P’ there are the productions

n:'"’q: 'p(As m, ¢I) g l/’(ﬁl, m, CI)
7Pl y(Af, m, @) =~ Y (B, m, ).

With Corollary 6.1, Lemma 6.2 and Corollary 6.3 the existence of the leftmost
derivations

and

S = Y (wAYY, my, o) = Y (why, my, go) *=> wx  and

S *= Y (wAY, my, gp) ™" "= Y (why, my, go) *=> wy

according to S, (G) follows.

Since ®Mx=®y we have First,(n?9)NFirst,(n™%)=0 which is a contradiction
to the strong ILL(k) property of S.(G).

In a similar manner the case that «; and 7; posess the same lefthand side yield
a contradiction.

This completes the proof of the theorem.

Now we can easily derive the following decidability result.

Theorem 7.2. Given an indexed grammar G and an integer k=1. It is then
decidable whether G is an ILL(k) grammar.

Proof. S,-grammar of G is effectively constructable since the functions 4 and u
defining this grammar are effectively computable. Furthermore it is decidable whether
Sy(G) is a strong ILL(k) grammar (cf. Corollary 3.2).

Clearly, given an indexed grammar G, it is not decidable whether there exists a k
such that G is an indexed LL(k) grammar, for otherwise this question would be decid-
able in the contextfree case.

Furthermore, the construction used in the proof of Theorem 7.1 shows

Theorem 7.3. The classes of ILL(k) and strong ILL(k) languages coincide.
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Abstract

The classes of indexed LL(k) grammars and strong indexed LL(k) grammars are defined. First
the class of strong indexed LL(k) grammars is investigated. In particular it is shown that the strong
indexed LL(k) property is decidable and that the class of strong indexed LL(k) languages is contained
in the class of deterministic indexed languages. Furthermore it is proved that the deterministic
contect-free languages coincide with the right linear strong indexed LL(1) languages and are a proper
subclass of the strong indexed LL(1) languages. The remainder of the paper is devoted to proving the
decidability of the (general) indexed LL(k) property. To prove this result,a general transformation of
indexed grammars is introduced. This transformation unifies proof techniques used in the context-
free and indexed areas.
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