On ν_{1}-products of commutative automata

By F. GÉCseg

The aim of this paper is to show the existence of commutative automata such that each of them forms a homomorphically complete system with respect to the v_{1} product in the class of all commutative automata.

By an automaton we mean a system $\mathrm{A}=(X, A ; \delta)$, where X is a nonvoid finite set of input signals, A is a nonvoid finite set of states, and $\delta: A \times X \rightarrow A$ is the transition function. The automaton \mathbf{A} is commutative if $\delta(a, x y)=\delta(a, y x)$ holds for arbitrary $a \in A$ and $x, y \in X$. (The transition $\delta(a, p)\left(a \in A, p \in X^{*}\right)$ is defined by $\delta(a, e)=$ $=a$ and $\delta(a, q x)=\delta(\delta(a, q), x)\left(a \in A, q \in X^{*}, x \in X\right)$, where X^{*} is the set of all finite words over X and e denotes the empty word.)

Since automata can be considered unary algebras (cf. for instance [5]) the concept of a subautomaton of an automaton, and those of isomorphism and homomorphism of automata can be defined in a natural way.

Let $\mathbf{A}_{i}=\left(X_{i}, A_{i}, \delta_{i}\right)(i=1, \ldots, k)$ be a system of automata, X a nonvoid finite set and $\varphi: A_{1} \times \ldots \times A_{k} \times X \rightarrow X_{1} \times \ldots \times X_{k}$ a function. Take the automaton $\mathbf{A}=$ $=(X, A, \delta)$ given by $A=A_{1} \times \ldots \times A_{k} \quad$ and $\quad \delta\left(\left(a_{1}, \ldots, a_{k}\right), x\right)=\left(\delta_{1}\left(a_{1}, x_{1}\right), \ldots\right.$ $\left.\ldots, \delta_{k}\left(a_{k}, x_{k}\right)\right) \quad\left(\left(a_{1}, \ldots, a_{k}\right) \in A, x \in X\right)$, where $\quad\left(x_{1}, \ldots, x_{k}\right)=\varphi\left(a_{1}, \ldots, a_{k}, x\right)=$ $=\left(\varphi_{1}\left(a_{1}, \ldots, a_{k}, x\right), \ldots, \varphi_{k}\left(a_{1}, \ldots, a_{k}, x\right)\right)$. Then \mathbf{A} is called the product of $\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}$ with respect to X and φ, and we denote it by

$$
\prod_{i=1}^{k} \mathbf{A}_{i}[X, \varphi]
$$

Consider the above product \mathbf{A}, and take a non-negative integer i. We say that \mathbf{A} is an α_{i}-product if for every $t(1 \leqq t \leqq k), \varphi_{t}$ is independent of its $j^{\text {th }}$ component ($1 \leqq j \leqq k$) whenever $t \geqq j+i$. Moreover, if for all $t(=1, \ldots, k),\left(a_{1}, \ldots, a_{k}\right) \in A$ and $x \in X, \varphi_{t}\left(a_{1}, \ldots, a_{k}, x\right)$ may depend on x only then \mathbf{A} is a quasi-direct product.

Again take the product \mathbf{A} above. Moreover, let $v: N_{k} \rightarrow \mathfrak{P}\left(N_{k}\right)$ be a mapping, where N_{k} is the set of the first k positive integers and \mathfrak{P} is the powerset-operator. If i is a non-negative integer such that for every $t \in N_{k},|v(t)| \leqq i$ and φ_{t} is independent of its $j^{\text {th }}$ component ($1 \leqq j \leqq k$) whenever $j \notin v(t)$ then \mathbf{A} is called a $v_{i}-$ product (see [1]). If $\mathbf{A}_{1}=\ldots=\mathbf{A}_{k}=\mathbf{B}$ then \mathbf{A} is a v_{i}-power of \mathbf{B}. Moreover, in φ_{t} we shall indicate only those variables, on which it may depend. Finally, for the v_{i}-product \mathbf{A} we shall use the notation

$$
\mathbf{A}=\prod_{t=1}^{k} \mathbf{A}_{t}[X, \varphi, \nu]
$$

Let \mathscr{K} be a class of automata. Then
$\mathbf{H}(\mathscr{K})$: homomorphic images of automata from \mathscr{K}.
$\mathbf{S}(\mathscr{K})$: subautomata of automata from \mathscr{K}.
$\mathbf{Q}(\mathscr{K})$: quasi-direct products of automata from \mathscr{K}.
$\mathbf{P}_{v_{t}}(\mathscr{K}): v_{i}$-products of automata from \mathscr{K}.
For every prime number p consider the automata $\mathbf{A}_{p}=\left(X_{p}, A_{p}, \delta_{p}\right)$, where $X_{p}=\left\{x_{0}, x_{1}, \ldots, x_{p-1}\right\}, A_{p}=\{0,1, \ldots, p-1\}$ and $\delta_{p}\left(i, x_{j}\right)=i \oplus_{p} j$, where $0 \leqq i, j<p$ and \oplus_{p} denotes the modulo p addition. Obviously, each A_{p} is a commutative automaton.

We are now ready to state and prove the following
Theorem. For an arbitrary commutative automaton \mathbf{A} and for every prime number p the inclusion $\mathbf{A} \in \mathbf{H S P}_{\mathbf{v}_{1}}\left(\left\{\mathbf{A}_{p}\right\}\right)$ holds.

Proof. For every prime number p and every positive integer n take the automaton $\quad \overline{\mathbf{B}}_{(p, n)}=\left(X, B_{(p, n)}, \delta_{(p, n)}\right) \quad$ with $\quad X=\{x, y\}, \quad B_{(p, n)}=\left\{0,1, \ldots, p^{n}-1\right\}$, $\delta_{(p, n)}(i, x)=i \bigoplus_{p^{n}} 1$ and $\delta_{(p, n)}(i, y)=i \quad\left(i=0,1, \ldots, p^{n}-1\right)$. Moreover, for every natural number n let $\mathbf{E}_{n}=\left(\{x, y\},\{0,1, \ldots, n\}, \delta_{n}\right)$ be the $n+1$ state elevator, that is the automaton with $\delta_{n}(i, y)=i(i=0, \ldots, n)$ and

$$
\delta_{n}(i, x)= \begin{cases}i+1 & \text { if } \quad 0 \leqq i<n \\ n & \text { if } \quad i=n\end{cases}
$$

Denote by \mathscr{K} the class of all $\mathbf{B}_{(p, n)}$ and \mathbf{E}_{n}. In [3] it is shown that $\operatorname{HSQ}(\mathscr{K})$ is the class of all commutative automata. Since every quasi-direct product of v_{i}-products of automata is isomorphic to a v_{i}-product of the same automata in order to prove our theorem it is enough to show that for arbitrary prime numbers p, q and positive integer n the inclusions $\mathbf{B}_{(q, n)} \in \mathbf{H S P}_{v_{1}}\left(\left\{\mathbf{A}_{p}\right\}\right)$ and $\mathbf{E}_{n} \in \mathbf{H S P}_{v_{1}}\left(\left\{\mathbf{A}_{p}\right\}\right)$ hold. We start with the proof of $\mathbf{B}_{(q, n)} \in \operatorname{HSP}_{v_{1}}\left(\left\{\mathbf{A}_{p}\right\}\right)$. Let us fix p, q and n. We distinguish the following two cases.

Case 1. $p \neq q$. Then q^{n} divides $p^{m}-1$ for some $m>0$. (We may also assume that $m>1$.) Therefore, it is sufficient to show the existence of a v_{1}-power $\mathbf{B}=$ $=(X, B, \delta)$ of \mathbf{A}_{p} such that \mathbf{B} contains a subautomaton which is a cycle of length $p^{m}-1$ under x, and y induces the identity mapping of this subautomaton.

Let $\mathbf{B}=(X, B, \delta)=(\underbrace{\mathbf{A}_{p} \times \ldots \times \mathbf{A}_{p}}_{p^{m}-1 \text { times }})[X, \varphi, v]$ be the v_{1}-product, where for every $i \in\left\{1, \ldots, p^{m}-1\right\}$

$$
v(i)= \begin{cases}i-1 & \text { if } \quad i>1 \\ p^{m}-1 & \text { if } \quad i=1\end{cases}
$$

and for arbitrary $i \in\left\{1, \ldots, p^{m}-1\right\}$ and $j \in\{0, \ldots, p-1\}$

$$
\varphi_{i}(j, z)= \begin{cases}x_{j} & \text { if } \quad z=x \\ x_{0} & \text { if } \quad z=y\end{cases}
$$

Take a $b=\left(b_{1}, b_{2}, \ldots, b_{p^{m}-1}^{-1}\right)$ from B. Then, by the definition of \mathbf{B}, we obviously have $\delta(b, x)=\left(b_{1} \oplus_{p} b_{p^{m}-1}, b_{2} \oplus_{p} b_{1}, \ldots, b_{p^{m}-1} \oplus_{p} b_{p^{m}-2}\right)$.

In the rest of the paper all multiplications of integers, and all the binomial coefficients $\binom{k}{l}\left(=\frac{k!}{l!(k-l)!}\right)$ are taken modulo p. Moreover, \oplus and Θ will stand for the modulo p addition and modulo p substraction, respectivelly. Finally, we denote $p^{m}-1$ by t.

One can easily show, by induction on k, that

$$
\begin{gathered}
\delta\left(b, x^{k}\right)=\left(\binom{k}{0} b_{1} \oplus\binom{k}{1} b_{t} \oplus\binom{k}{2} b_{t-1} \oplus \ldots \oplus\binom{k}{k} b_{t-k+1},\right. \\
\binom{k}{0} b_{2} \oplus\binom{k}{1} b_{1} \oplus\binom{k}{2} b_{t} \oplus\binom{k}{3} b_{t-1} \oplus \ldots \oplus\binom{k}{k} b_{t-k+2}, \ldots \\
\left.\ldots,\binom{k}{0} b_{t} \oplus\binom{k}{1} b_{t-1} \oplus \ldots \oplus\binom{k}{k} b_{t-k}\right)
\end{gathered}
$$

if $1 \leqq k<t$, and

$$
\begin{gathered}
\delta\left(b, x^{t}\right)=\left(\left(\binom{t}{0} \oplus\binom{t}{t}\right) b_{1} \oplus\binom{t}{1} b_{t} \oplus\binom{t}{2} b_{t-1} \oplus \ldots \oplus\binom{t}{t-1} b_{2}\right. \\
\left(\binom{t}{0} \oplus\binom{t}{t}\right) b_{2} \oplus\binom{t}{1} b_{1} \oplus\binom{t}{2} b_{t} \oplus\binom{t}{3} b_{t-1} \oplus \ldots \oplus\binom{t}{t-1} b_{3}, \ldots \\
\left.\ldots,\left(\binom{t}{0} \oplus\binom{t}{t}\right) b_{t} \oplus\binom{t}{1} b_{t-1} \oplus \ldots \oplus\binom{t}{t-1} b_{1}\right)
\end{gathered}
$$

We would like to find a b such that $\delta\left(b, x^{t}\right)=b$ holds, i.e.,

$$
\begin{aligned}
& \left(\binom{t}{0} \oplus\binom{t}{t}\right) b_{1} \oplus\binom{t}{1} b_{t} \oplus\binom{t}{2} b_{t-1} \oplus \ldots \oplus\binom{t}{t-1} b_{2}=b_{1}, \\
& \left(\binom{t}{0} \oplus\binom{t}{t}\right) b_{2} \oplus\binom{t}{1} b_{1} \oplus\binom{t}{2} b_{t} \oplus \ldots \oplus\binom{t}{t-1} b_{3}=b_{2}
\end{aligned}
$$

(*)

$$
\begin{aligned}
& \vdots \\
& \left(\binom{t}{0}+\binom{t}{t}\right) b_{t} \oplus\binom{t}{1} b_{t-1} \oplus\binom{t}{2} b_{t-2} \oplus \ldots \oplus\binom{t}{t-1} b_{1}=b_{t}
\end{aligned}
$$

holds. Let us consider (${ }^{*}$) a system of equations over the prime field $\{0,1, \ldots, p-1\}$ with modulo p addition and modulo p multiplication, where $b_{1}, b_{2}, \ldots, b_{t}$ are unknowns. Add (modulo p) $(p-1) b_{i}$ to both sides of the $i^{\text {th }}$ equation in (*) for every i $(=1, \ldots, t)$. Then we get the linear homogeneous system of equations

$$
\left({ }^{* *}\right) \quad \vdots
$$

$$
\begin{aligned}
& \binom{t}{0} b_{1} \oplus\binom{t}{1} b_{t} \oplus\binom{t}{2} b_{t-1} \oplus \ldots \oplus\binom{t}{t-1} b_{2}=0 \\
& \binom{t}{0} b_{2} \oplus\binom{t}{1} b_{1} \oplus\binom{t}{2} b_{t} \oplus \ldots \oplus\binom{t}{t-1} b_{3}=0 \\
& \vdots \\
& \binom{t}{0} b_{t} \oplus\binom{t}{1} b_{t-1} \oplus\binom{t}{2} b_{t-2} \oplus \ldots \oplus\binom{t}{t-1} b_{1}=0 .
\end{aligned}
$$

Using the congruence $\binom{t+1}{l} \equiv 0(\bmod p)(1 \leqq l \leqq t)$, one can easily show that for every $l(=0,1, \ldots, t-1),\binom{t}{l} \equiv 1(\bmod p)$ if l is even, and $\binom{t}{l} \equiv p-1(\bmod p)$ if l is odd. (Therefore, the determinant of $\left({ }^{* *}\right)$ is 0 , consequently $\left({ }^{* *}\right)$ has a nontrivial solution.) It can be seen immediately that $b_{1}=1, b_{2}=1, b_{3}=0, \ldots, b_{t}=0$ is a solution of ${ }^{* *}$). Moreover, by the construction of B, the states $b, \delta(b, x), \ldots, \delta\left(b, x^{t-1}\right)$ are pairwise distinct, that is they form a cycle of length $t\left(=p^{m}-1\right)$ under x.

Case 2. $p=q$. We now show the existence of a v_{1}-power $\mathbf{B}=(X, B, \delta)$ of \mathbf{A}_{p} such that \mathbf{B} contains a subautomaton which is a cycle of length p^{n} under x, and y induces the identity mapping on this subautomaton.

Let $\mathbf{B}=(X, B, \delta)=(\underbrace{\mathbf{A}_{p} \times \ldots \times \mathbf{A}_{p}}_{p^{n} \text { times }})[X, \varphi, \nu]$ be the v_{1}-product given in the following way. For every $i \in\left\{1, \ldots, p^{n}\right\}$

$$
v(i)= \begin{cases}i-1 & \text { if } \quad i>1 \\ 0 & \text { if } \quad i=1\end{cases}
$$

and for arbitrary $i \in\left\{2, \ldots, p^{n}\right\}$ and $j \in\{0, \ldots, p-1\}$

$$
\varphi_{i}(j, z)= \begin{cases}x_{j} & \text { if } \quad z=x \\ x_{0} & \text { if } \quad z=y\end{cases}
$$

moreover, $\varphi_{1}(x)=\varphi_{1}(y)=x_{0}$.
Take the state $b=(1,0, \ldots, 0)$ of \mathbf{B}. One can prove easily, by induction on k, that for every $k\left(=1, \ldots, p^{n}-1\right)$

$$
\delta\left(b, x^{k}\right)=\left(\binom{k}{0},\binom{k}{1}, \ldots,\binom{k}{k}, 0, \ldots, 0\right)
$$

Therefore

$$
\delta\left(b, x^{p n}\right)=\left(\binom{p^{n}}{0},\binom{p^{n}}{1}, \ldots,\binom{p^{n}}{p^{n}-1}\right)
$$

As it has been noted, for every $k\left(=1, \ldots, p^{n}-1\right),\binom{p^{n}}{k} \equiv 0(\bmod p)$. Thus $\delta\left(b, x^{p^{n}}\right)=b$ showing that the states $b, \delta(b, x), \ldots, \delta\left(b, x^{p^{n}-1}\right)$ form a desired cycle.

To prove that for arbitrary natural number n and prime number p the inclusion $\mathbf{E}_{n} \in \mathbf{H S P}_{\nu_{1}}\left(\left\{\mathbf{A}_{p}\right\}\right)$ holds take the automaton

$$
\mathbf{B}=(X, B, \delta)=(\underbrace{\mathbf{A}_{p} \times \ldots \times \mathbf{A}_{p}}_{p^{n} \text { times }})[X, \varphi, v]
$$

defined in the same way as in Case 2 with the following exceptions: $v(1)=p^{n}$ and $\varphi_{1}(j, x)=x_{p} \ominus_{j}(j=0, \ldots, p-1)$. Again take $b=(1,0, \ldots, 0)$. Then, like in Case 2, for every $k\left(=1, \ldots, p^{n}-1\right)$

$$
\delta\left(b, x^{k}\right)=\left(\binom{k}{0},\binom{k}{1}, \ldots,\binom{k}{k}, 0, \ldots, 0\right) .
$$

Therefore

$$
\delta\left(b, x^{p n}\right)=(0,0, \ldots, 0)
$$

showing that the states $b, \delta(b, x), \ldots, \delta\left(b, x^{p n}\right)$ form a $p^{n}+1$ state elevator. Since $p^{n}>n$ this ends the proof of the Theorem.

Remark. It follows from Theorem 3 in [4] that there exists no finite system of automata which is homomorphically complete with respect to the α_{1}-product in the class of all commutative automata. Thus, by the Theorem above, in this respect the v_{1}-product is more powerful than the α_{1}-product. (By the Theorem in [2], the v_{1} product is not stronger than any of the α_{i}-products if $i>1$.)

Acknowledgements

The author wants to thank Dr. B. Imreh for detecting a gap in the first version of the proof of the Theorem.

DEPT. OF COMPUTER SCIENCE
A. JÓZSEF UNIVERSITY

ARADİ VÉRTANÛK TERE 1.
SZEGED, HUNGARY
H-6720

References

[1] Dömösi, P., Imreh, B., On v_{i}-products of automata, Acta Cybernet., v. VI. 2, 1983, pp. 149-162.
[2] Ésik, Z., Horváth, Gy., The α_{2}-product is homomorphically general, Papers on Automata Theory, v. V. 1983, pp. 49-62.
[3] Gécseg, F., On subdirect representations of finite commutative unoids, Acta Sci. Math. (Szeged), v. 36,1974, pp. 33-38.
[4] Gécseg, F., On products of abstract automata, Acta Sci. Math. (Szeged), v. 38, 1976, pp. 21-43.
[5] Gécseg, F., Steinby, M., Tree automata, Akadémiai Kiadó, Budapest, 1984.

