On finite definite automata

By B. IMREH

In this paper we consider the isomorphic realizations of finite definite automata.
First we present a characterization of finite subdirectly irreducible definite automata.
Secondly we give necessary and sufficient conditions for a system of automata to be
isomorphically complete for the class of all finite definite automata with respect to
~ the a;-products. It will turn out that every finite definite automaton can be embedded
isomorphically into an «,-product of reset automata with two states. :

By automaton we always mean a finite automaton without output. Since an
automaton can be considered a unoid the notions such as subautomaton, isomor-
phism, embedding, homomorphism, congruence relation can be introduced in a na-
tural way. Further on we shall use the following notations: X* denotes the free mo-
noid generated by X, |p| denotes the length of the word p€ X*, if there is no danger of
confusion then we use the convenient notation ax and ap for é(a, x) and d(a, p)
respectively.

An automaton A=(X, A4, d) is called definite if there exists a natural number n
such that |p|=n implies |4p|=1 for any p€ X* where Ap={ap: acA}. Specially,
if n=1 then A is called a reset automaton, furthermore if there exists a state
@€ A such that |p|=n implies Ap={a,} for any p€X™ then A is nilpotent.

In the paper [3] we gave a characterization of finite subdirectly irreducible nil-
potent automata. Now we generalize this result for definite automata. Namely, it
holds the following

Theorem 1. A definite automaton A=(X, 4,d) (|4|=2) is subdirectly
irreducible if and only if A has two different states g, b, such that

(i) g@px=byx holds for any x€X,

(i) for any a,b€4 if ab and {a, b}< {a,, by} then there exists an input
sign x€X with ax#bx.

Proof. In order to prove the necessity assume that A is subdirectly irreducible.
Consider the set B of all subsets of 4 with two elements and define the relation = on B
in the following way: for any {a, b}, {c, d}¢B {a, b}={c,d} if and only if there
exists a word p€ X* suchthat {a, b}p=/{c, d}. Since A is definite the defined relation
is antisymmetric and thus, it is a partial ordering on B. Now we shall show that there
is a greatest element in B. Because of finiteness it is enough to show that there exists
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only one maximal element in B. Assume to the contrary that {a, b} and {c, d}
{a, b}# {c, d}, {a, b}, {c,d}€B are maximal in B. Then ax=bx and cx=dx hold
for any x€X. Consider the following relations on A: for any u, v€A

ugv if and only if {u,v}< {a, b} or u=v,
uov if and only if {u,v}S{c,d} or u=v.

It is obvious that ¢ and ¢ are nontrivial congruence relations of A and gNo=4,
where 4, denotes the equality relation on A. This yields that A is subdirectly redu-
cible which contradicts our assumption on A. Therefore, B has a greatest element.
Let {a,, by} denote this one. Then it is obvious that conditions (i) and (ii) are satisfied.

To prove the sufficiency assume that (i) and (ii) are satisfied by a definite automa-
ton A=(X, 4, ). Consider again the set B with its ordering defined above. From
conditions (i) and (ii) it follows that {aq, b,} is the greatest element of B. Take the
following relation on A: forany u, v€A

© uBv if and only if {u v}< {a,, by} or u=v.

By (i) we obtain that 0 is congruence relation. Next we shall show that @ is the smallest
nontrivial congruence of A. Indeed, let ¢ denote an arbitrary nontrivial congruence
relation of A. Then there exist- a, b€ 4 such that a#b and agb, furthermore, there-
is a word' peX™ such that {a, b}p=/{a,, by} since {a,, by} is the greatest element
in B. But then a, gb, also holds which implies #=g. On the other hand, it is known
that the existence of the smallest nontrivial congruence implies the subdirect irre-
duc1b1hty which completes the proof of Theorem 1.

Remark 1. Using Theorem 1 we obtain a simple algorithm to demde whether a
definite automaton is subdirectly irreducible. Namely, if the automaton is given by a
transition table of which rows correspond to each input sign and columns correspond
to each state then we have the following criterion.

A definite automaton is subdirectly irreducible i 'f and only lf'théré exist two equal
columns in its table and Ieavmg one of them, the columns of the remainéd table are
pairwise different.

Remark 2. In [5] M. Katsura introduced the following family of strongly con-
nected definite automata. Let X={x, y} ‘and denote by 1<p,<p,<... the sequence
of all prime numbers. Then any natural number n>1 can be written uniquely as
pst...pery per where e,_;=1 and e,=0. Let A,=(X, 4,,8,) where A,={a,}U
U{a 1=i=r; 0sj=¢} and : ‘
n(ay, %) = a, otherwise,

Gi410 If j=0 and 1=i=r-1,
Sn(ai;, ) =18, ~ if j=0: and i=r,
a;, otherwise, ’
. S (am X) = a,, 5 (am J’) = Gio-
From the definition of A, it follows that if n=p$*...pf» and e;=1, e;=1 hold for -
some l=/#j=r then {ao, i, Qje,}x=a, and {ao, 3 m}y a10 and thus,
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by Theorem 1, we obtain that A, is subdirectly reducible. On the other hand, if
n= Pl P; 1Pf p|+1(el>1) is a prlme power then {a07ate}x =ay, {aOs ale;}y 1o
and, by a simple computation, it can be seen that |{u, v}x|=2 or |{u, v}y|=2 holds
for any elements u,v€A such that usv and {u, v}&E {a,, a,,}. Therefore, by
Theorem 1, we get that A, is subdirectly irreducible. Summarizing, we have the follow-
ing statement.

For any natural number n>1 the automaton A, is subdirectly irreducible if and
only if n is prime-power. .

Remark 3. A well-known special type of definite automata is the shift register.
It was investigated in papers [4] and [6]. Now we consider the subdirect irreducibility
of these automata. For this reason let n=1 be an arbitrary natural number and X
a non-empty finite set with at least two elements. Then the automaton A(X, n)=
(X, X", 0,) is called a shift register where 06,(x;...x,, X)=X,...x,x for any x;...x,€
€X" and x€X. Observe that 6,(ux;...x,, x)=0,(vx,...x,, x) holds for any words
UXy...Xp, VXg...X,€ X" and x€X. From this it follows that conditions of Theorem 1
are not satisfied. Thus we have the following assertion.

Every shift register with at least three elements is subdirectly reducible.

Next we shall study the «;-products (see [1] or [2]) from the point of view of iso-
morphic completeness for the class of all definite automata. For this reason let / be
a nonnegative integer, furthermore, let ¥ be an arbitrary system of automata. X
is called Zsomorphically complete for the class of all definite automata with respect to

_the a;-product if any definite automaton can be embedded isomorphically into an
a;-product of automata from Z. We are going to use the following obvious statement.

Lemma. If an automaton A can be embedded isomorphically into an oq-
product of automata A, (t=1,...,k) and for some 1=j=k the automaton A;
can be embedded into an ay-product of automata B, (m=1,...,s) then the auto-
maton A can be embedded isomorphically into an o,-product of automata A, ...,

W Aj1 By, By, Ajyy, o A

Concerning the isomorphic realization of definite automata with respect to the

og-product we have the following result.

Theorem 2. A system X of automata is isomorphically complete for the class
of all definite automata with respect to the ao-product if and only if Z contains an
automaton which has two different states a, b and two input signs x, y such that
ax=bx=b and ay=by=a hold.

Proof. In order to prove the necessity take the definite automaton U=( {x, ¥}
{a, b}, 8) where d6(a, x)=06(b, x)=b and d(a, y)=6(b, y) a. Because of the iso-

morphic completeness of X there exists an o«,-product ]j A;(X, @) |of automata

from X such that U can be embedded isomorphicaily lnto thls product. Let (a, ...,

, @), (a;, ..., &) denote the images of the elements 4, b under a suitable isomor-
phism. Then among the sets {a,, a;} (t=1, ..., k) there should be at least one which
has more then one element. Let r be the least index for which a,7a4;. It is obvious
that the automaton A,€ZX satisfies the condition.
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To prove the sufficiency assume that the automaton B€Z has the suitable states
and input signs. To verify the completeness it is enough to show that any definite
automaton can be embedded isomorphically into an o,-product of reset automata
with two states since any reset automaton with two states can be embedded isomorphi-
cally into an ag-product of B with a single factor, and thus, by our Lemma, we ob-
tain the completeness of Z.

We prove by induction on the number of states of the automaton. In the case
n=2 our statement is trivial. Now let n>2 and suppose that the statement is valid
for any m<n. Let A=(X, 4, §,) be an arbitrary definite automaton with n states.
If A is subdirectly reducible then A can be embedded isomorphically into a direct
product of definite automata with fewer states than n. Therefore, by our induction
hypothesis and Lemma, the statement is valid. Now assume that A is subdirectly
irreducible. Let A={a,, ..., a,}. Then from Theorem 1 it follows that there exist
a;, a;€ A (i#j) suchthat g;x=a;x holds for any x¢ X. Without loss of generality we
may assume that i=n—1 and j=n. Define the relaiion ¢ on A as follows: for any

a,,afcA
a,0a, if and only if {g,, a}S {a,-1, a,} or a,=a,.
Obviously ¢ is a congruence relation of A. Then the quotient automaton A/g is defi- -

niteand 4/¢={{a,},..., {@,-2}, {@s_1, a,}}. Now let ¢ be an arbitrary symbol (c¢ 4)
and take the automaton C=(4/¢X X, {¢c, a,-1, a,}, §) where

5A (ai s x) if 5A(ai ’ X)E {an—l ’ a,,},
¢ otherwise,

6A (a)n x) if 6A (arn x)€ {an—la an},
¢ otherwise,

3w (fa ) ={

5(t, ({@n-1, an}, %) = {

fOl' any UE {C, ap;—h an}’ ({ai}, X)E {{al}’ seey {an—2}}XX$ ({an—l: an}, X)E {{an—l’ an}}
X X. Now consider the ay-product A/oXC(X, ¢) where ¢,(x)=x for any x€X
and (p2({ai}’ x):({ai}; X), (02({%—1, an}9 x)=({a,,_1, an}> x) fOI' any XEX and
1=i=n—2. Then it is not difficult to see that the correspondence

({ai}, ©) if 1=i=n-2,
V(@) = {({a,,_l, apa) if ie{n—1,n-2},

is an isomorphism of A into the a,-product Af/eXC(X, ¢). On the other hand,
observe that C is a reset automaton and it is a well-known fact that any reset automa-
ton can be embedded isomorphically into a direct product of reset automata with two
states. Therefore, by our induction hypothesis and Lemma, we have a required decom-
position of A. This completes the proof of Theorem 2.

Regarding o;-products with /=1 we have the following statement.

Theorem 3. A system X of automata is isomorphically complete for the class
of all definite automata with respect to the o;-product (i=1) if and only if X con-
tains an automaton which has two different states a, b and four input signs v, x, y, z
(need not be different) such that av=bx=>b and by=az=a hold.
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Proof. The necessity of the condition is obvious. To prove the sufficiency, by
Theorem 2, it is enough to show that an «y-product of «,-products with single factors
is an oy -product which follows from the definition of the o;-products.
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