On involutorial automata and involutorial events

By M. Ito and J. DUSKE

1. Basic notions and facts

By an automaton we mean a triple &/ =(4, X, ), where 4 and X are finite
nonempty sets, the set of states and the set of inputs of o/, and 6: AXX—~A isa
function, the transition function of .

Let X* be the free monoid generated by X with identity element e. Then & is
assumed to be extended to 4 X X * in the usual way. A finite nonempty set is called an
alphabet. Each subset ES X* is called an event or a language over the alphabet X.
Let _us now define the notxon of an involutorial automaton. ~

1.1. Deﬁmtlon An automaton . of =(4, X, 8) is called involutorial ift 5(a xx)—
=a holds for all a€A4, x€X.
The following lemma is a trivial but useful one.

1.2. Lemma. Let o/ =(4, X, §) be cyclic and involutorial. Then & is strong]y
connected.
(For the automata-theoretic notions not defined in this paper see [6] and {3].)
Let o/=(4, X,5) be an arbitrary automaton and define the congruence ¢
on X* by: '
Ywp, we€ X *: (W, w)€o iff d(a, w) = d(a, wy) for all acA.

The quotient S(&#)=X*/g is called the characteristic semigroup of /. Let us use
the notation [w], for the set {w’|(w’, w)€ ¢}. Concerning characteristic semigroups of
involutorial automata, we can state:

1.3. Theorem. Let o/ =(4, X, 6) be an involutorial automaton. Then S(&)
is an involutorial generated group.
Proof. Let x€X. Then (xx,e)€g, therefore [x]e[x]e—[e]‘,, hence [x], is an
involutorial element of S(&). Now let [w],€S(2) w1th w=x,...x,. Denote x,...
..x; by wR. Then [w]o[wR]‘,—[wR]a[w]o [e],.
With the aid of the following well known lemma, automata, which are involu-
torial and commutative, can be characterized.

1.4. Lemma. A group, in which each element is involutorial, is an abelian group.
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1.5. Theorem. An automaton & =(4, X, 4) is involutorial and commutative iff
é(a, ww)=a holds for all ac4 and weXx*

1.6. Example. An important example of an involutorial automaton is the T-
Flip-Flop (trigger) I =({0, 1}, {0, 1},0) with 6(z,0)=z and 6(z,1)=2 for all
z€{0,1}. Here 0=1 and 1=0. J is involutorial and commutative.

If we generalize the notion of a trigger, we arrive at the following: Let X be an
alphabet and let yeX. Set 7X=({0,1}, X, 6)) with

0¥(z,x) ==z for all z€{0,1} and x€X with x3 y and
0¥(z,y) =2z for all z€{0,1}.

We will call these automata generalized triggers.

If we now specialize the proof of Theorem 1 in [5] to the involutorial and com-
mutative case, we obtain:

1.7. Theorem [Gécseg]. Every commutative involutorial automaton is the
homomorphic image of a subdirect product of finitely many generalized triggers.

We can characterize commutative involutorial automata from another point of
view. It is easy to see that every commutative involutorial automaton is a finite direct
sum of cyclic commutative involutorial automata. From the basis theorem for abelian
groups (see e.g. [12], p. 121) and Fleck’s result ([4], Theorem 6), we obtain the follow-
ing results, which were suggested by B. Imreh.

1.8. Theorem. Every cyclic commutative ivolutorial automaton is a one-state
automaton or a direct product of finitely many two-state cyclic involutorial automata.

1.9. Corollary. Every cychc commutative involutorial automaton has 2" states,
where n is a nonnegative integer.

2. The minimal involutorial congruence on X *

Let X be an alphabet. A finite subset T of X*X X* is called a Thue-system over
X*. T defines a relation ¢;S X*XX* in the following way:

Yo, weX*: (v, w)€or iff v=wv0,05, wW=uv,wvys and (v,, w)€T
or (wy, vy)€T.

The congruence generated by the Thue-system T is the reflexive and transitive
closure of gr. _
Let us now consider the Thue-system T= {(aa, e)lac X} over X*. The relation
or will be denoted by <2~ and the congruence generated by T will be denoted by -
and called minimal involutorial congruence on X*. Obviously, X*/«%~ is an involu-
torial generated group. In order to investigate the congruence <, we will first esta-
blish some properties of the context-free language L(G;) generated by the context-free
grammar  G;=({S}, X, P, §) with the set of productions P={S—~e, S~SS}U
U(S-»aSa|aEX}

5.
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(For the notions of formal language theory not defined in this paper see [1],
[7], and [8].)

2.1. Lemma. Let G; be given as above. Then we have for all wy, w,, w, u;, u,€ X*:
(D) If w,,wo,€L(G;), then wyw,€L(G),

(2) If weL(G), then awa€L(G,) for all acX,

(3.a) If weL(G;), ws*e, then w=aw,aw, with w,, w,€L(G,) and acJX,
(3.b) If weL(G;), w=e, then w=w,aw,a with wy, wo,€L(G)) and- acX,
@ If wyaau,€ L(G;) with a€X, then w,u,€L(G;) (involutorial cancellation),
(5) If w,u,€L(G;) then wu,aau,€ L(G;) for all acX (involutorial extension).

Proof. (1) and (2) are trivial. To prove (3.a), consider a leftmost derivation
S5 Sk = aSaSk1% . =>aw1aw2=w of w, and to prove (3.b), consider a right-
most derivation S S*= S*-1aSa% ... L w,aw,a=w of w. Now let us consider
(4. Let S=v,=v,>...=v,=u aau, be a derivation of u,aau,. We will prove the
assertion by induction on n. The assertion holds for n=1. Let S=v,=v,= ...
...=V,41=u;aau, be a derivation of u,aau, of length n+1. We have to consider the
following cases:

(@) Let S=v,=SS. Then there exist derivations S=r, and Sr, of
length », and n, with n,, n,=n and r,r,=w,aau,. If aa occurs in r, or r,, then the
assertion follows from the induction hypothesis. It remains to consider the case
ri=u;a and ry=au,. Here the application of (3.a), (3.b) and (1), (2) yields the asser-
tion.

(b) Let S=>v,=bSb with b€X. Then there exists a.derivation SHw of
- length ny=n and ulaaug—bwb holds. The case w=e is trivial, therefore let us
assume wse. If aa occurs in w, then the assertion follows from the induction hypo-
thesis and (2). If aa are the first two letters of u,aau, (a=b, u,=e), then a is the left-
most letter of w. According to (3.a) we have w=aw,aw, with w;, w,¢ L(G}), and
therefore wu,u,=w,aw,a€ L(G;). The case that ga are the last two letters of u;aau,
(a=b, u,=e) Iis proved similarly.

Now let us prove (5) by induction on the length of u,u,. The case |u,us|=0 is
trivial, therefore let us assume |u;us|=>0.

According to (3.a) we have w u,=bw,;bw, with b€X and wl, wo,€ L(G). If
|u| = bw, b|, then u;=>bw,br and w,=ru,. From the induction hypothesis we con-
clude raau,€ L(G;), and therefore u,aau,=bw,braau,¢ L(G;) for all acX.

If |uy]<|bw;b|, then bw,b=u,r,b. The case |u,[|=0 is trivial. Therefore assume
u;=br,. Then w,=r,r,, and with the aid of the induction hypothesis we conclude
riaars€ L(G), and hence we have w,aau,=br,aar,bw,€ L(G;) for all acX. This
completes the proof of the lemma.

Now we can prove the following theorem.

2.2. Theorem. Let G; be the context-free grammar given above and let w=
=x1X..%E6X* with x;€X for j€[l: k], x;_#x; for j€[2: k], and k=0. If

(D) w=wy~Low, <L, <D L.y —w holds, where n=0, then we ‘have
W =0l X 0y Xp Ly . . ak lxkozk with aEL(G,) for i€[0: k). ’ :

Proof. The assertion holds for n=0 and n=1. Now let j€[0: n] be maﬁmal
with the following property: :
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(I1) There are words af, af, ..., af€L(G;) such that
w; = ofx e xpof ... of _yx,af holds.

We will show j=n. Assume j<n. Let us consider the following two cases:

(1) w;4, can be derived from w; by insertion of aa, a€X (involutorial exten-
sion). Then, according to (5) of 2.1. Lemma, (I1) holds for j+1.

2 Wj41 can be derived from w; by deletion of aa, a€X (involutorial cancella-
tion). If this aa can be chosen in an a I€[0: k], then, accordmg to (4) of 2.1. Lem-
ma, (I1) holds for j+1. It remains to conSJder aa=x,x;, l€[1: k], and

af_yxof = af_yx;x;0f or @.1)

of_yxi00 = of_yx, %08, 2.2
and w;; can be derived from w; by cancellation of the occurrences of x,x; in the
right sides of (2.1) or (2.2).

(2.1) According to (3.b) of 2.1. Lemma, divide of_; in of_;=w;x;w,x; with
wy, we€L(G)). Then we have al_af =w;x,wyaf, and therefore (II) holds for j+1.
(2.2) According to (3. a) of 2.1. Lemma, divide & in af =xw;x;w, With wy, w,€
€L(G). Then we have of_ ‘al of_,wix;w,, and therefore (II) holds for j+1.
We must have j=#, which proves the theorem.

2.3. Corollary. Under the assumptions of 2.2. Theorem either |w’|>|w| or
w=w" holds.
2.4, Corollary. The context-free language L(G;) is the congruence class of ¢

i

Wt .
Now let us consider the local regular language X"\ X*VX* with V= {xx|x€X}.
We have:

2.5. Corollary.
~ (1) If wis a word of minimal length in a congruence class of L., then we X\
SX*VX*

Q) If weX*\X*VX*, then wis a word of minimal length in a congruence
class of <.
" (3) Two different words of X*\X*VX* are in different congruence classes
of- .

.2.6. Corollary. Each congruence class of «— contains exactly one word of mi-
nimal length.

2.7. Corollary. If X= {x} is a one element alphabet, then <= contains exactly
two classes, namely {e, x2, x% ...} and {x, x% x% ...}. If |X|=2, then the index of
<+ isinfinite. .

We w111 denote the’ unique word of minimal length in the congruence class of w
w.rt. ~— by Wimin- If KEX*, then we denote the set {w,.,[w€K} by L, (K).

The function ¢: X*—X* with go(w)=w, ., for wcX* is a Dyck-simplifica-
tion in the-sense of {10], which implies the following theorem.

2.8. Theorem. (Sakarovitch [10]). If RS X* is regular, then L,;,(R) is regular.

~
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3. Involutorial events and involutorial closure

In this section we will introduce and investigate involutorial events and involu-
torial closure. Let us first define these notions.

3.1. Definition. Let X be an alphabet and let ES X* be an event (subset of X*).
The set Ef={u'|w'€ X*, 3u€E with u«~—u'} is called the involutorial closure of E.
Anevent EC X* is called involutorial if E=E'. Eis called i-regular iff E is involu-
torial and regular .

Obviously, for ESX* we ‘have E'= L...(E), and for E,KSX* we have
El K iff me(E) mm(K)
" Let"of=(4, X, 8, a,, F) be a recognizer. Here (4, X, ) is an automaton,
a,€ A istheinitial stateand FS A is the set of final states of o. T()={w[d(a,, W)€
€ F} is the event recognized by . o is called involutorial iff (A, X, ) is an involu-
torial automaton.

Now let ES X* be an arbitrary event, and let = be the Nerode right congruence
associated with E, i.e. right congruence defined by:

Yo, weX™: v=w iff VueX*: (vu€E iff wu€E).

E is regular iff = is of finite index (see e.g. [9])
We can now prove the following theorem.

3.2. Theorem. Let X be an alphabet and EC X* be an event. Then E is i-regu-
lar iff E is recogmzed by an involutorial recognlzer .

" Proof. If E=T(«) for an involutorial recognizer &7, then obviously E is invo-
lutorial. Conversely, let E be i-regular. Since E is regular, the Nerode right congruence
= of E is of finite index. Construct the recognizer & =(4, X, 8, a,, F) with A=
= {IWl_IweX*), 8(wl-,x)=[wxl., ap=lelo, and F={wl.lw€E). We have
E=T (d) Since E is involutorial, the congruence -— is contained in =. Since
wxx+—w for all wéX* and x€X, we have d([wl-, xx)=[wxx]_=[w]-, i.e., .szl is
involutorial.

The recognizer constructed in this proof is the complete minimal (accessible and
reduced) recognizer (see [3]) which accepts the i-regular set E. Therefore we can state:

3.3. Corollary. If E is an i-regular set, then the complete minimal recognizer for
E is involutorial. .

3.4. Example. Let o/ =(4, {x}, 6, a,, {a;}) be a recognizer with
A = {ay, a,, dy}, 6(ay, x) =a,, 6(as, x) =ay, and. §(a,, x) = a,.

Then T(&)={x,x% ..., x**1, ...} is involutorial, but & is not involutorial. The
complete minimal recognizer for T(sf) is :

A, = ({ag, a1}, {x}, 6., ao, {a,}) with 6,(a0,x)-=v>a1 ahd d,(ay, x) = ay.

which is obviously involutorial. '
The following two theorems state some closure and nonclosure properties of
i-regular sets.
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3.5. Theorem. Let X be an alphabet.

(1) The family of i-regular sets of X* is a Boolean algebra of sets,

(2) If E is an i-regular set, then the transpose ER of E is also an i-regular set.
(Recall that the transpose of a word w=a,a,...a, is the word

wR=a,..a,a;,, and ER = {wR|w€E})

Proof. (1): Let E, E,, and E, be i-regular sets.

Then (E,UE)'=EiUEi,=FE,UE,. Let &/=(4, X, J, ay, F) be an involutorial
recognizer with E=T(s). Then E= T(.:J) where .sz(—(A X, 6, ay, A\F) is an
involutorial recognizer. The proof of (2) is trivial.

3.6. Theorem. The product of two /-regular sets and the iteration (star opera-
tion) of an i-regular set are not necessarily i-regular.

Proof. Consider X={x} and E={x,x3 ..., x*"*!, ...}. Then E is i-regular.
But E2={x% x*% ..., x*, ...} is not /i-regular, since (E%'={e, x2, x% ..., x*", ...}.
This shows nonclosure under product. Now let &/ =(4, X, 4, a,, F) be the recognizer
given by .

A = {aOs ali az}s X = {x: y}; F= {az}’ and (5(00, J’) = 5(&1, X) = a0>
d(ag, x) =d(as; y) = a, and 6(ay, y) = d(as, x) = a,.

&/ is an involutorial recognizer, therefore T(&) is an i-regular set. If we T(s/),
then [w|>2 and x%¢T(&). This 1mplles x2¢ T(2)*. But e€T(&)* implies
x2€ (T(#)*), therefore T(sf)*#(T()*).

We will now consider the formation of the involutorial closure E’ of an event E.
Let us first investigate those events E for which E* is regular.

Remember that in contrast to the above mentioned (complete deterministic)
recognizer, the transition function 6 of an incomplete (deterministic) recognizer sf =
=(4, X, 68, ay, F) is a partial function from 4 X X to 4. We assume that ¢ is extended
to AXX* in the usual manner. We will call an incomplete (deterministic) recognizer
of a trim 1ecognizer, if each state of & is accessible and coaccessible [3]. If Ex0
is regular, then there is a trim recognizer &/ with E=T(&). Now we can prove:

3.7. Theorem. For each alphabet X there is a nonregular event EC X* such
that E' is regular.

Proof. Let X={x} be a one-element alphabet. Then E={x*[n=1} is not
regular, but E'={x*"|n=0} is regular. Now consider the case |X|=2. L_, (X%
is regular. Let &/ =(4, X, 0, a5, F) be a trim recognizer such that T(«)=L_. (X*).
According to the structure of the words of L,;,(X™*) and the fact that & is trim, o' =
=6(a, x) for a,a’€A, xcX, implies 6(a’, x)=9. In particular we have a=é(a, x)
for all ac A, x€X. Now choose x, y€X with x=y. Since x€L_,;,(X*), there is a
final state a’=4d(ay, x).

Define an incomplete recognizer #=(B, X, B, a,, F), whose state set is infinite,
in the following way: Set B=AU {q;|i=1}U {b;li=1} (disjoint union) and

" B(a,z) =6(a,z) for all a€A, a#a’, zEX,
B(a’,2)=6(a’,z) for all z€X, z#x, and
ﬂ(a’a x) = a, ﬁ(ali X) = a"
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Furthermore set
B(a;, y) = b;, B(b;,x)=a;;,, and
B(bi, y)=a;, B(a;11,x)=0>b; forall i=1.

Then it is easy to see that L.;,(X*)=T(L)ST(B). Set E=T(A), then E'=
=X*, i.e., E'is regular. We will now show that E is not regular. Assume the contrary.
Then there exists a recognizer € such that E=T(%). Let n be the number of states of
4. If vwe€T(%), v, weX*, then there exists some 6€X*, |0|=n, such that vf¢
eT(¥)=E.

Consider a word x(xy)? with p>n. Then B(dy, x(xy)?(yx)?)=a’€ F, hence
x(xy)?(px)P€E. But obviously, for all {€X* with |{|=n we have x(xy)*¢4 T(#8)=E,
which yields a contradiction. Hence E is not regular.

Events E#0 over an alphabet X with |X|=2, for which E’ is regular, possess

an interesting property w.r.t. Ly, (X™).

Let us first give the following definition.

3.8. Definition. Let E, FC X* be events with EC F. E is said to be dense in F
iff there exists a nonnegative integer k such that the following holds:

vo€ FaweX™* with |w|=k such that vweE. (Note that k=0 implies E=F.)

Now we can prove:

3.9. Theorem. Let X be an alphabet with |X|=2 and let ECX* with E#0
such that E is regular. Then L_;,(E) 1s dense in L, (X™).

_Proof. Let o/=(4, X, é,.a,, F) with |A|=n be an involutorial recognizer such
that T(/)=E'. Since E'#0 we have F##, and furthermore, according to 1.2.
Lemma, we can assume that (4, X, 6) is strongly connected. We have to show that
there exists a nonnegative integer k such that, for all v€L;,(X™*) there exists we€ X¥,
lw|=k, with vw€Lpy,(E). First assume v=0v"x€Ly,(X*), where x€X. Choose
y€X with x=y and set u=(yx)". Since [A|=n, F=0, and (4, X, 8) is strongly
connected, there exists w’ € X* with |’ |<n such that é(a,, vuu’)= 6(a0, Vx(yx)’)e
€F. Set a=v x(yx)" , then o ;,,=v"xw with |w|=3n=k. Since & is an involu-
torial recognizer, we have &(a,, vw)=905(a,, vuw’)EF, i.e. vw€E'. Furthermore
wE€ENL, (X*)=L,;,,(E). The case v=e is trivial.

3.10. Corollary. Let X be an alphabet with |X|=2 and let ESX* be a non-
empty event. If L_;.(E) is finite, then E' is not regular. In parthular if E is finite,
E' is not regular.

The converse of 3.9. Theorem does not hold. Namely, we have:

3.11. Theorem. The involutorial closure E' of an event E such that L (E)
is dense in L_; (X*) need not be regular.

Proof. Let X be an alphabet with |X |=2. Set E=L..(X*)\{x}, where
x€X. Obviously, L.;,(E)isdensein L,;,(X*)and {x}'=X*\E' Assume that the
theorem does not hold. Then, E’ becomes regular. Since X* and E' are regular, so is
{x}'. This contradicts 3.10. Corol]ary. Hence, the theorem has to hold.

3.10. Corollary shows the existence of involutorial events, which are not regular.
This situation is impossible for events which are involutorial and commutative.
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Anevent EC X* is called commutative, if E is a union of congruence classes of
a congruence x, which is defined by:

Yo, weX*: (n,w)ex iff v=y,...9,, w=y, ... ¥,

where iy, ..., ¢, is a permutation of 1, ...,m and y,€X for i€[l: m] with m=0.
It can easily be shown that the congruence x+ «—» (the sum of the congruences
» and <—) is of finite index. Therefore we have:

3.12. Theorem. If ES X* is involutorial and commutative, then E is regular.

Let us now consider those events E for which E' is context-free. We will prove a
theorem characterizing these events, part of which can be viewed as a special case of
a theorem due to Sakarovitch [11].

3.13. Theorem. Let ESX* be an event. Then E' is context-free iff L ;,(F)
is context-free.

Proof. Let L_;.(E) be a context-free language and G=(V, X, S, P) be a con-
text-free grammar in Greibach normal form with L(G)=L,;,(E). Each production
of G is of the form A—ax with acX, acV*. If e€L;,(E), then there is a produc-
tion S—e, and S does not occur on the right-hand side of any production.

Construct a context-free grammar G,=(Vy, X, S, P,) with V,=VU{S,|a€
€X}U{S;} (disjoint union) and furthermore (1) if e¢ L(G) then

P, = {4 —~ S,a|d - aa€ PYU{S, - S;aS;lac X}UP with -
P={S, ~e S —S88}U{S —~aSalacx)},

(2) if e€L(G) then extend P, of (1) with the production S—S,.

Since Lo (E)S Loyin(X*), L(G))=Li.(E)=E' can easily be shown with the
aid of 2.2. Theorem. Hence E' is a context-free language.

Conversely, let E' be a context-free language. Since the intersection of a context-
free language with a regular set is context-free, L..(E)=E'NL,.(X*) is context-
free.

In analogy to regular involutorial closures, we can state:

3.14. Theorem. For each alphabet X there is a non context-free event ES X™
such that E' is context-free.

Proof. Let x€X. Itis easy to see that E={x"'|n=1} is not context-free. Since

L..(E)={e, x} is regular, E' is context-free.
On the other hand, we have:

3.15. Theorem. The involutorial closure of a context-free event need not be
context-free.

Proof. We have to show the existence of a context-free event £ such that L., (E)
is not context-free. Consider the context-free event E;={(ca)"cb(ac)*"|n=1} ‘over
the alphabet X={a, b, ¢}, and set E=EFE}.

Then E is context-free and each word wéE is of the form

w = (ca)rchb(ac)® (ca)ch(ac)®: ... (ca)xcb(ac)®

with ;=1 for j€[l: k] -and k=1.
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Assume that L, (E) is context-free. Then E,=L_; (E)N(ca)(ch)*(ac)* hasto
be context-free. Each word v€E, is of the form v=(ca)(ch)*(ac)®* with k=1. Con-
sider the homomorphism h: X*—~a* given by -h(a)=a and h(b)=h(c)=e.

Then h(E,)={a®+'|k=1} has to be a context-free language, which is a contra-
diction. Therefore, L,;,(E) is not context-free.

4. The structure of some special recognizers’

We will start this section with the investigation of the structure of any trim recog-
nizer accepting L,;,(E), where EC X™* (|X|=2) is a nonempty involutorial regular
event.

Let us first introduce the following notation. If o/ =(4, X, 4, a,, F) is a recog-
nizer and a€A4, then we set

I, ={x|x€¢X and é(a’,x)=a for an a’€¢A} and
= {xlx€eX with 6(a, x) = 0}.
Now we can state:

4.1. Theorem. Let X={x,,...,x,} be an alphabet with n=2, let ECX*
be a nonempty involutorial regular set, and let &/ =(4, X, 6, a,, F) beatrlm recog-
nizer with T(&)=L,;,,(E). Then we have

(1) 8(ay, x)#0 for all x€X. Furthermore, if x,y€X with xsy, then
d(ay, x)#0(a,, y) holds,. o

(2) The set /,, is empty. In particular 5(a0, x)5a, holds for all x€X.

(3) Let ac4 “with asay,. Then [[|=1, i.e. a can be reached by exactly one
x€X, and 1,MN0,=9, I,U0,=X, ie. a can be leaved by exactly those y€X .with
y#x. Furthermore we have 6(a, x)#d(a, y) for all x, y€0, with x=y.

Proof. (1) Each letter x is an element of L,,;,(X™*), therefore, according to 3.9.
Theorem, there exists we€X™* such that xwe¢L_;,(E), which implies J(a,, x)#0.
Now let x, y€ X with x>y, and assume &(ay, x)=6(qa,, y). Since xy€L_..(X™),
then, with the same argument, there exists a word weX™* such that XYWE Linin (E),
le. 5(a0, xyw)EF. Since 0d(ay, xy)=4(a,, yy), we conclude 6(a0,yyw)€F ie.
yyw€ L ;. (E), which is a contradiction. (2) Assume that there exist x€X, a€A
such that é(a, x)=a, holds. Since a is accessible, there exists u€ X* with (a,, u) a.
Hence d(ay, ux)=a,. . With the aid of. (1) we conclude &(a,, uxx)= 5(a0,x)¢0
Since &(ay, X) is coaccessible, there exists v€X* such that 8(8(ay, x), v)EF ie.
&(ay, uxxv)€ F. This means that uxqume(E) which yields a contradiction.
(3) Assume that there exist x, y€I, with x#y. Then there are a’,a’¢A with
é(a’, x)=5(a”, y)———a. Since «f is trim, there are v, v”€X* with &(ay, v)=a .
and 6(ay, v”)=a", which implies (a,, v'x)=08(a,, v"y)=a. Since v"y€ L,,;,(X*) and
x#y, we have v'xy€L .. (X*). There exists wcX* with v ywame(E), ie.
S(ay, v"yxw)=4(ay, v x\w)EF Therefore v wiELm,,,(E) which is a contradiction.
Notice that, since & is trim, there exist x€X, a’€ 4 with 8(a’, x)=a. This, together
with the foregoing, shows |/,[=1. (

1,M0,=9 follows from the fact that o is trim and T(&/)= me(E) Now let
I,= {x} and d0(a’, x)=a. - There exists v€X* with &(q,, v)=a’, and we have
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vx€L,,,(X*). Let yeX with x#y. Then vxy€L,;,(X*) holds, too. There exists
weX* such that ovxyw€L_,.(E), ie. d(a,, vxyw)€F, and therefore we have
d(a, y)=9. The rest of the assertion can be proved in a way similar to the correspond-
ing part of (1). .

4.2. Example. For each alphabet X we will introduce an automaton, named %,
which accepts exactly L_;.(X*). To this end, set

%y = (Lx, X, Ax, lo, Ly) with Ly = {l}U {/,|xe X},
Ix(g,)=1, for all x€X, and Zx(l,,y)=1  for all x,ycX
with x = y.

It is easy to see that %y is trim and T(%y)=L,;,(X*) holds.

Recall that an incomplete recognizer is called minimal, if it is trim and reduced
(see [3]). In the following we will construct for a given nonempty involutorial regular
event EC X* (jX|=2) a minimal recognizer which accepts L;,{E). To this end, we
first need two lemmas.

4.3. Lemma. Let o/ =(A4, X, d, a5, F) with |X|=2 and F#0 be a cyclic
involutorial recognizer. Then for all x, y€X with xy and all a€A4 there exist
u, v€X* such that uxyv€L,.,(T(#)) and 6(a,, ux)=a holds.

- Proof. Since & is cyclicand involutorial, & is strongly connected (see 1.2. Lem-
ma). Let a€A, choose m=>|A| and set ¢=6(a, (xy)"). Since & is involutorial, we
have a=é(c, (yx)™). Since & is strongly connected, there exists '€ X* with |u’|=m
and &(ay, u’)=c. Therefore we have &(a,, u’'( yx)"')=a. Set u=u'(yx)". Then,
from |u’|=m, weconclude #,;,=ux. Since « isinvolutorial, we have &(q,, ux)=a.
In a similar way we can show that there exists & with #,;,=yv and &(a, yv)€F.
Then &(ay, uxyv)€ F, and since x3y, we have uxyv€L (T()).

The following lemma states a property of accessibility and coaccessibility in
oA X Py, where &/ is a complete minimal involutorial recognizer which satisfies the
conditions of the foregoing lemma, and %y is the trim recognizer of 4.2. Example.

44. Lemma, Let &#=(4, X, d,a,, F) be a complete minimal involutorial
recognizer with |X|=2 and F0. Then, in the product automaton <X %, the
following holds:

(1) (a, l,) is not accessible for all a€A4 with a#a,,

(2) All the other states of of X %y are accessible a?d coaccessible.

Proof. (1) is trivial according to the fact that %y is a trim recognizer accepting
L ..(X*) and (2) of 4.1. Theorem. To prove (2), we have to consider the set of states
{(ao, I}U {(a, I)lac 4, x€ X}. It is easy to see that (ay, /y) is accessible and coacces-
sible. Consider a state (g, I,), ac 4, x€X. By the foregoing lemma, for all ycX
with x3y there exist u, v€X* with uxyve€ L., (T(#)) and &(a,, ux)=a. This
implies (6 X Ax)((ay, bp), ux)=(6(ay, ux), Ax(ly, ux))=(a, 1), ie. (a,1,) is accessible,
and (X2x)((a, 1), yv)€ FXLy, ie. (a,l,) is coaccessible.

4.5. Theorem. Let EC X™*, |X|=2, be a nonempty involutorial regular event
and &/=(4, X, d, a,, F) be a complete minimal recognizer with T(s&#)=E. Then
(& X )t is a minimal recognizer with T((&f X %x)")=L.(E). (Here (of X %)
denotes the trim recognizer associated with & X %y (see [3]).)
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Proof. According to 3.3. Corollary, & is an involutorial recognizer, and since
E=0, we have F#§. Furthermore, T((&/ X %) )=T (A X L)=T(L)NT(ZLy)=
=ENL,;(n(X*=L,;,(E). From the foregoing lemma we know that {(a,, /p)}U
U{(a, IDlac 4, x€ X} is the set of states of (o X %)". If we show that (& X Fy) is
reduced, then the theorem is proved.

Let us show that (ay, /y) is not equivalent to any state (a, /), a€4, a#a,, and
y€X. With the aid of 4.3. Lemma, we can find v€X™* such that (a,, vy)€ F and
Y€ Lo (X*). Therefore (6XAx)((do, o), yv)E FX Ly, but (5XAx)((a, 1), yv) is
not defined. Now choose x, y€X with xsy and consider two states (g, /,) and
(@', 1) with a,a’€A. Again, with the aid of 4.3. Lemma, we can find a word v€X™
with 8(a, yv)€ F and yv€L;,(X*): Therefore, (6XAx)((a, 1), yv)€ FXLy, but
(6X ) ((@, 1), yv) is not defined. It remains to show that (g, /,) and (d’, ) are not
equivalent for all x€X and a,a’¢A with a#a’. To this end choose y€X with
y#x and m=|4|%. Set b=6(a, (yx)") and b’'=6(a’, (yx)™). Since an involutorial
recognizer is obviously a permutation recognizer, we have b=b". Since & is reduced,
there exists u€X* such that 6(b, u)¢ F and 6(b’, u)¢ F (or vice versa). Here we can
assume that |u|=|A4[?> holds. Hence we have &(a, (yx)"u)€F and &(da’, (yx)"u)¢ F
(or vice versa). Set w=(yx)™u. Since |u|<m, we have w;,,=yv for a suitable
v€ X*. Consequently, we have d(a, yv)€F and 6(a’, yv)¢ F (or vice versa). Since
y#x, we have (6XAx)((a, 1), yv)€ FXLy and (6XAx)((a, 1), y)§ FXLy (or
vice versa). This ends the proof of the theorem.

The proof of the following corollary now is trivial.

4.6. Corollary. Let o/ =(4, X, J, a,, F) be a complete minimal involutorial
. recognizer with- |[X|=2 and F=0. Let of'=(4', X, &, a;, F’) be a minimal recog-
nizer such that 7T(&’)=L,;,(T(«)) holds. Then we have |4’|=|4||X|+]1.

5. Decidability results

In this section we will first investigate the decidability of the question “T(sf) =
=T(#)”, where & and & are two given recognizers.

To treat this problem we first need, for a given alphabet X and a language
LCE X*, the operator A, mapping subsets of X* to subsets of X™* (see e.g. [1]). 4,
is defined as follows: Let w, w'¢X* Then w'€i (w) iff w=wyx,w;x,...w,_1 X, W,
with w;€L for i€[0:r], x;€X for j€[l:r], r=0, and w=x;x5...X,.

It is known that, if RS X* is a regular event, then A.(R) is regular for arbitrary
languages LE X*. Taking into consideration of this fact given in [1), p. 60, it can
be seen that, if L is a given context-free language and R is a given regular language,
one can effectively construct a recognizer accepting A,(R). If we choose L= {e},
then,*according to 2.2. Theorem and 2.5. Corollary, we have w;n;,€4.(w) for all
weX™,

Now we can prove:

5.1. Theorem. Let two recognizers &/ and & be given. Then T(«)'=T(A)
is decidable. : :

Proof. T()=T(#)' is equivalent to L, (T (.d))=Lmi,,(T(!}3)). From
Loio(T( @)=L (T(A))NLyin(X*) with L={e} and similarly L, (T(®))=



78 M. Ito and J. Duske

=2(T(#B))N Ly, (X*) and the fact that we can construct recognizers for 1, (T(s)),
2.(T(®8)), and L,;,,(X*) the theorem follows.

We already mentioned that the involutorial closure of a regular set is a determi-
nistic context-free language. If we specialize the proof of Theorem 3.3 in [2], then we
can construct for a given regular set E, a deterministic pushdown acceptor for E'.
Since it is decidable whether the language accepted by a deterministic pushdown
automaton is regular (see e.g. [8], p. 246), we conclude:

5.2. Theorem [Book]. Let a recognizer &/ =(4, X, 6, ao, F) be given. Then it is
decidable whether T(&/)! is regular or not.

Using our structure results in section 4, we are able to give an algorithm for this
problem, which does not use deterministic pushdown automata, but finite automata
only.

" 5.3. Algorithm.
Input: A recognizer /= (A X, 6, ay, F).
Output: “YES”, if T(&) is regular, “NO” otherwise.
Method:

O If T(A)=P or |[X|=1, go to (5)

(2) Now we have |X|=2 and F #0. _

- Construct a minimal recognizer & =(A’,X,d,a;, F) with T(&)=
= Loio(T(a0)) =1 (T(#)) Ly (X*), where L={e}.

(3) Construct the set €= {‘6]% is a complete minimal involutorial recognizer
with |A| i,‘_l states}.

(4) For all ¥¢C decide whether T(#)'=T(%)' holds. If this is the case for a
%€, go to (5), otherwise go to (6). ,

(5) Output “YES”.

(6) Output “NO”. )

5.4. Theorem. The output of 5.3. Algorithm is “YES” iff T (o£)! is regular.

Proof. The case T(£)=9 or |X|=1 are trivial. Therefore we can assume that
T(&/)#9, which implies F#0, and |X{=2 holds. If the output is “YES” then

there exists a 4¥€C with T (#)=T (%)‘ T(%), ie. T(H) is regular.
- Conversely, assume that T(s)' is regular. Consider the complete minimal invo-

lutorial recognizer f=(4, X, 8,d,, F) with T()=T(~). According to 4.6.

IA| IIYT"’ ie. €€, and therefore the output is “YES”..

Corollary we have |4|=

Abstract

In this paper we will study a special class of automata and events or languages, called involu-
torial. An automaton with input alphabet X is involutorial iff the double input of one input sign
x € X induces the identity mapping of the state set, an event over an alphabet X is involutorial iff
it is saturated w.r.t. to a special (the minimal) involutorial congruence on X*. This congruence is
investigated in section 2. In section 3 we will treat involutorial events and the involutorial closure of .
arbitrary events. In particular we will study those events, whose involutorial closure is regular or
context-free. In section 4 the structure of some special recognizers is determined, and in section 5
we shall give with the aid of these results an algorithm based on finite automata, to decide for a
given regular event, whether the involutorial closure is regular or not.
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