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The early bird problem has been defined in [1] and has been solved in [1], [2], [3], 
[5]. In this paper the problem is generalized for the «-dimensional cellular space, 
and a real time solution is given using 0(mri) steps in an «-dimensional cellular field 
of edge length m. The solution will be shown in detail in the two-dimensional case. 
The basic idea of the solution is to reduce the «-dimensional early bird problem to the 
(n — l)-dimensional one, using special signals and applying the one-dimensional early 
bird algorithm from [3]. 

1. Introduction 

Let us consider a cellular space in which any cell in quiescent state may be excit-
ed from the outside world. The excitations result in special "bird" states instead of 
the quiescent states. The task is to give a transition function ensuring after a certain 
time the first excitation(s) may be distinguished from the later ones. This is the early 
bird problem defined originally by Rosenstiehl et al. [1] for an elementary cyclic graph 
where to each of the m vertices an automaton (cell) is assigned. In [1] a 2m-step solu-
tion is given on condition that at each time-step maximum one excitation occurs. 

Vollmar [2] defined and solved the problem for a one-dimensional cellular space 
allowing more than one, excitation at each time-step. The solution is based on the 
"age of waves" concept and requires a high number of cell-states. 

In [3] a simplified solution has been given for the one-dimensional case using only 
5 cell-states. Kleine Biining [4] proved that the early bird problem is unsolvable with 
4 states in a one-dimensional cellular space, that is, the solution in [3] is optimal 
considering the number of states. 

In [5] the early bird problem is solved for a two-dimensional cellular space in 
nonlinear time (for an m-m space 0 (m 2 ) steps are needed. 
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2. Exact definition of the «-dimensional early bird problem 

Let (/", S, N , f ) be an «-dimensional cellular space, where 
1 is the set of integers and to each point of 1" a cell is assigned; 
S is the finite set of cell-states containing 3 special states, the passive state # , 

the quiescent state q and the "bird" state P; 
N is the neighbourhood index, in this paper the von Neumann neighbourhood 

index is assumed: N=((0, 0), (0, 1), (0, - 1 ) , (1, 0), ( - 1 , 0)); 
f : Ss — S is the local transition function satisfying f(q, ..., q) = q and 

/ ( # , a, b, c, d) = # for any a, b, c, d£ S. 
In the cellular space an «-dimensional cube K of edge length m is assigned: 

J5T={(/i, . . . , /J lOs/yS/H — 1, y = l , ...,«}. In the initial configuration the cells in K 
are in state q (active space), all other cells are in state # (passive space).* 

The cellular space works, as usual, in discrete time-steps / = 0 , 1,2, ... using the 
local transition funct ion/ , but between two steps (that is to say, at time ¿+1/2) 
any quiescent cell (in state q) may change spontaneously into the bird state P (exci-
tation). The problem is to define a transition function / ensuring that after a certain 
time the bird(s) arisen at first is (are) in a distinguished state, and all other cells in 
other states. 

To simplify the solution, the excitation of the border cells (which have a neigh-
bour in state # ) will be prohibited. 

For an easier explanation, first the solution will be presented in the two-dimen-
sional case (point 3, 4). The generalization for «-dimensions will be discussed in 
point 5. 

3. The sketch of the solution in the two-dimensional case 

The basic idea of the algorithm is that any bird sends out a special signal in hori-
zontal direction, which arrives at the leftmost column z steps after its origin where z 
is independent of the place of the bird (Fig. 1). That is, any excitation in the two-
dimensional field at time t, may generate a "secondary excitation" in the leftmost 
column at time t + z. In this way the two-dimensional early bird problem can be 
"projected" into a one-dimensional one. 

A bird will be called a local early bird if there is no earlier bird in its row, and it 
will be called a global early bird if there is no earlier bird in the cellular space. Using 

a one-dimensional early bird algorithm in each row, the local 
early birds can be marked. Using a one-dimensional early 
bird algorithm in the leftmost column, we can decide 
that which rows contain the global early birds. It is clear 
that the vertical and the horizontal early bird algorithms 
together may select the global early birds. 

The main problem in the above solution is to ensure 
a constant z delay for any signal sent by a bird. The solu-
tion of this problem is explained in a time-space diagram 
(Fig. 2). Fig. 1 

* This partition of the cellular space corresponds to the "retina" conception of [7]. 
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cell-row 

The time-space diagram of a row of the cellular space 

Let us consider a bird arisen at time t in the /c-th cell of a cell-row. This bird 
sends a full-speed signal to the right (the signal steps right in each step) and in the /c-th 
cell there remains a special sign, a so-called "bird mark". The full-speed signal is 
reflected at the rightmost cell at time t+(m—k) and moves left until it reaches the 
bird mark (at time t+2(m—k)). Here it cancels the bird mark (the bird itself survi-
ves), and the full-speed signal alters into a half-speed signal moving to the left. This 
signal reaches the leftmost cell at time t+2(m—k)+2k=t+2m, thus the constant 
delay of the signal is ensured. 

Considering more than one bird, there arises the question whether each full-
speed signal will cancel its own bird mark. This question can be answered with "yes" 
because the following property holds. 

Proposition. Let b1 and b2 two bird marks in the /q-th and k2-th cells of the cell-
row, respectively. If k±<k2 then the full-speed signal s2 (of b2) goes before the full-
speed signal s1 (of fcj). 

Proof. The definition of the early bird problem contains the restriction that only 
quiescent cells may alter into the bird state. Considering the 5-state early bird algo-
rithm of [3] it is clear that the cells between the bird mark bx and its signal sx cannot be 
in quiescent state, therefore the excitation in this range is prohibited. This fact implies 
the above proposition. • 

6* 
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It results from the proposition that the first reflected signal has been sent by the 
rightmost bird, the second reflected signal by the next rightmost bird, etc., thus the 
cancellation of the bird marks always will be correct. 

Summarizing, the sketch of the two-dimensional algorithm is as follows: 
(i) Any new bird in the active cellular field sends out a signal which arrives at 

the leftmost column with a constant delay. At the same time, a one-dimensional early 
bird algorithm is executed in each row which cancels all "local late birds". 

(ii) The signals arriving at the leftmost column appear as "secondary birds" 
and a vertical one-dimensional early bird algorithm is applied among them. If a se-
condary bird proved to be later then it is killed and a "cancel" signal starts moving 
to the right in that row which kills all the birds there. 

After 6m steps (see the time estimation in point 5) only the global early birds 
exist in the cellular space. 

4. Detailed description of the solution in the two-dimensional case 

The state set S' = S— { # } is composed of two components: S' — S1XS2. 
Component Sx serves for the 5-state early bird algorithm of [3], that is, iSi = 
= {Q, B, R, L, N} where the states are named "quiescent", "bird", "right wave", 
"left wave", "neutral", respectively. 

The component S2 ensures the movement of signals according to Fig. 2. It con-
sists of 5-bit words: 5 ' 2={(j 1 , ..., j ^ l ^ e {0, 1}, / = 1 , . . . , 5}, where 

i ! = l means "bird mark", 
j 2 = l means "full-speed signal moving to the right", 
i 3 = l means "full-speed signal moving to the left", 
s4 = l means "half-speed signal in phase 1", 
i 5 = l means "half-speed signal in phase 2". 

The quiescent state q and the bird state /? (see point 2) are defined as 
<7 = (<2,00000), £ = (5,11000). 

The active cellular space is divided into three areas (Fig. 3). The leftmost column 
is called as area A1} the inner cells as area A2 and the rightmost column as area A3. 

The transition function /involves three subfunctions f , f 2 , f3 
according to AX,A2,A3. (The cells in different areas may 
be distinguished by their left and right neighbours.) In the 
sequel the areas Ax, A2, A3 will be discussed separately. 

Area A2 (inner cells). 

The transition function f2 is composed of two functi- ' 
ons. For the component S\ the 5-state early bird function 
of [3] is used defined below without any explanation. (The 
terms have "left-own-right—new state" structure. An ex-
pression (B, R) means "state B or state R", points mean Fig. 3 
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arbitrary states. In the undefined cases the new state must be equal to the old 
own state.) 

(B,R) Q (Q, N) .-*• R 

(Q,N) Q (B, L)-L 

(B,R) Q (B, L)-N 

R L — iV • 

R L . — N 

R (B, N) (not L) - R 

R (B, N)-N 
(not R) (B, N) L L 

(B,N)L — N 

R (B,N) L -*N 

For the component iS2 the transition function can be defined by two terms (an 
expression in parentheses is a 5-bit word, the points mean arbitrary bits): 

Term 1. Shift of signals (a- supposed): 
{.b...){a..e.){..c.d)-{abcde). 

Term 2. Cancellation of the bird mark: 
( . 6 . . . ) 0 • •« . ) ( . . l . -MQMHe) . 

Area A3 (rightmost column) 

This area serves for reflecting the full-speed signals. The state of the component 
is constantly N in each cell (according to [3]), and the transition of the component 

S2 is defined by 

Term 3: (.b.. . )(00.00)(#)-(00M)0). 

Area A1 (leftmost column) 
This area requires only 5 states according to the vertical one-dimensional early 

bird algorithm. These 5 states are chosen from the state-set S' = SiXS2 as follows: 

"quiescent"=(N,00000), 
"bird" = (N, 10000), 
"right wave" = («,00000), 
"left wave" =(/?,10000), 
"neutral" = («,00100). 

This choice of states solves two problems: 
(i) If in the vertical early bird algorithm a cell is in state "right wave", "left 

wave" or "neutral", then in the row of this cell all the birds should be cancelled, 
because they cannot be early birds. Using the above choice of states, a cell in state 
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"right wave", "left wave" or "neutral" shows a state /?(€S'i) for the horizontal early 
bird algorithm. As a consequence, R states will be generated in the cell-row moving 
right and cancelling all the birds there. 

(ii) It is easy to see that in all cases except (i), a cell in Ax shows an indifferent 
state for its right neighbour, because the state Ni^Sx) ensures a correct horizontal 
early bird algorithm, and the states 10000, 00100 (€52) do not disturb the movement 
of signals in the cell-row. 

Using the above choice of states, the cells in Ax work with a vertical one-dimen-
sional early bird function, but instead of the spontaneous excitation a "secondary 
bird generation term" is introduced: 

Term 4: (N,00000) 
#(iV,00000)(., • • • • I)—(N,10000). 

(N,00000) 

The solution described above requires ||S'|| = 5 - 3 2 = 1 6 0 states. Note that the 
state-set can be reduced to 5 - 1 4 = 7 0 states, but this reduction results in a more 
complicated transition function therefore its discussion is omitted. 

5. The n-dimensional case 

Let us consider the «-dimensional cube K defined in point 2. The inner cells of 
K form an «-dimensional cube K„ of edge length m—2:Kn= {(/j, ..., /„)|1 S/j-^ «2 —2, 
/ = 1 , ..., «}. Using the signals of figure 2, any excitation in Kn can be projected into 
an (« — l)-dimensional cube ^T„_i= {(/j, ..., /„_i, 0)|1 ̂ . i ^ m —2, . /=1, ..., « — 1}, 
in Kn_1 secondary excitations are induced. At the same time, in each cell-row of K„ 
a one-dimensional early bird algorithm is executed to select the local early birds. 

For the secondary excitations in K n_ l a similar process is used reducing the task 
to an (« — 2)-dimensional cube K„_2 — {(/l5 ..., /„_2, 0, 0)|1 ^ij^m — 2, j= 1, ..., 
...,n — 2}; similar reduction can be made for K„-3, etc. In Kt— {(/*!, 0, ..., 0)|1 S 

—2} only a one-dimensional early bird algorithm is needed. 
For any / = ] , . . . , « — 1, if a bird in Kt is cancelled then all birds in the corres-

ponding row of K l + 1 will be cancelled, similarly to the two-dimensional solution. It 
is not difficult to prove that after a certain time only the global early birds exist in Kn. 

Time estimation: Let t be the time-point when the global early birds arise. (Be-
fore t the cellular space is in quiescent state.) At time t+2m the signals of the early 
birds arrive at at time t+4m the signals of the secondary birds arrive at K„-2, 
etc. Thus the earliest excitations appear in Kx at time / + ( « — 1)2«?. The one-dimen-
sional early bird algorithm of [3] requires 3m steps, therefore at time /+ (« — 1) 2m + 3m 
all one-dimensional early bird algorithms in Kx, ...,K„ are terminated. The cancella-
tion process from to K„ needs maximum (n—1) m steps, thus at time t+(« — 1 )2m + 
+3m+(n — \)m = t+3mn all late birds are cancelled in K„. That is, the n-dimensional 
early bird algorithm requires 3mn steps. 

Remark: For the cube K a transition function / is used which is composed of 
different subfunctions. The subfunctions of the cubes K2, ...,Kn are similar to the 
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function / 3 in point 4, but at the boundary of K{ and A ^ j a coding problem arises 
(see the choosing problem of states in the area AL). This problem can be solved by 
increasing the number of states. As a consequence, the state-set S may grow if the 
dimension degree n is increased. 
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