Atomic characterizations of uniform multi-pass
attribute grammars

By E. GomBAs and M. BARTHA

A

1. Introduction

Several reasonable classes of attribute grammars can be defined based on the
concept of computation sequence [I]. A computation sequence for a derivation
tree is intended to describe a systematic evaluation of all the attributes of the tree
without violating their dependencies. The attributes are evaluated during a walk
through the tree. This walk starts at the root, and once it arrives at (enters) a node,
it must return to that node later for exiting it. Between any successive entering and
exiting a node — this period is called a visit to the node — the walk can make sev-
eral visits to the sons of the node. If in any derivation tree, the number of visits to
a node required to evaluate all the attributes of it, and the set of attributes of the
node evaluated in each of these visits can both be determined in a top-down manner,
i.e. independently of the subtree below that node, then the grammar is called uni-
form [5]. It was proved in [5] that an attribute grammar (AG) is uniform iff it is
absolutely noncircular (anc). The latter property is investigated e.g. in [3], where
an efficient evaluator is given for these grammars. As the anc property can be decided
in polynomial time, the class of uniform AGis practically more interesting than
the class of simple multi-visit 4G introduced in [11. (Recall from [1] that the prob-
lem deciding whether an AG is simple multi-visit is NP-complete.) However, if we
ask whether an AG 1s uniform m-visit for a fixed m€N, then the answer cannot
be given in polynomial time, generally. Thus, to answer this question in polynomial
time we have to restrict ourselves to a smaller class of AG. In this paper we inves-
tigate the class of uniform multi-pass AG. A pass to a node is a visit such that during
it each son of the node is visited exactly once in a left-to-right order. We present
a natural characterization of this class and give an algorithm that provides the
minimal number m for which an 4G is uniform m-pass in polynomial time.

156 E. Gombas and M. Bartha

2. Definitions and basic concepts

An attribute grammar {4] ¢ consists of the following objects.

(i) A reduced context-free grammar G=(T, N, P, Z).

(i) A finite nonempty set A4 such that A=A4,UA4; and A;NA;=0. The ele-
ments of A, and A; are called synthesized (s-) and inherited (i-) attributes, respec-
tively.

(iii) A function v which assigns each nonterminal FEN a nonvoid subset
of A. We assume that the start symbol Z has only s-attributes and it does not occur
on the right-hand side of any production. S(F) and /(F) will denote v(F)NA,
and v(F)NA4;, respectively, and an occurrence of an attribute a€v(F) will often
be referenced as a(F). .

(iv) A set V(a) of possible values for each attribute a.

- (v) A set r, of semantic rules associated with each production p€P. If
p: Fo—~woFy ... F,w, (FEN, w€T¥), then a rule of r, is a formal equation:

-ao(Fyp) = f(au(Fy), -, an(F;)),

where 0=i;=k (0=j=m), a;€v(F;) and f: V(a)X...XV(a,)~V(ay) is a (com-
putable) function. This equation is interpreted by saying that a,(F;) depends on
a,(F), ..., a,(F,) in p by f. We assume that ¢ is in Bochmann normal form,
i.e. r, defines all and only the occurrences of attributes S(Fp) U(UI(F)| j€lkD))
using as arguments only of the occurrences of I(Fo) U(U(S(F))|j€[k]). ([k]denotes
the set {1,2,...,k}.)

D, will denote the set of derivation trees with root labelled by F. Trees of

— . . o *
D, are called complete dcrivation trees. If #1s a tree representing a derivation F? o,

where « is not necessarily a terminal string, then ¢ is called a cut; in notation, t€Cy.
Clearly we have D S C, for all FEN. By a node of f we always mean a non-
terminal node, and if there is no danger of confusion, wé identify the node with
its label. U,, U,(F) and rt(+) will denote the set of all nodes of ¢, the set of

all F-labelled nodes of ¢ and the root of ¢, respectively. -

The semantic rules are used to assign meanings to derivation trees of G in
the following way. Let 7 be a complete derivation tree, u€U,, and assume that
p: Fy—~woFy... F,w, is the production applied at u. For each a,€ S(£;), the func-
tion f occurring in the rule a,(Fo)=f(a,(Fy), ..., a,,,(F,-m)) can be used to deter-

“mine the value of a, at u when the values of all the neighbouring attributes
a,(F;), ..., a,(F;) have been determined. Similarly, the rule with left-hand side
b(F;) (Jj€lk], b€I(F;)) can be used to determine the value of attribute b at the
j-th son of u. If it is possible to determine the values of all the attributes at any
node of 1 in the above way, thien the meaning of 7 is the set {(u, {v,(w)|a€v(W})|u€ U,
and v,(u) is the value of attribute a at u}.

If all the complete derivation trees have a meaning, then ¥ is called well-defined
or noncircular.

The dependency graph for the production p: Fo—wyF;... F,w, (denoted by
dp(p)) has as nodes the disjoint union of v(F) 0=i=k, and there is an arc from
a,(F;) to ay(F,) iff a,(F;,)) depends on a,(F;)) in p. A graph with nodes v(F)
(FEN) and some arcs is called a dependency graph (d-graph) for F. For
p: Fo—woF,... Fowy and d-graphs y,,...,y, for F,, ..., F, define the substitu-

ey

Atomic characterizations of uniform multi-pass attribute grammars 157

tion dp(p)(y1, ...,y of 71, ...,7. into dp(p) by adding all the arcs of 1y, i€[k]
to dp(p), i.e. fitting y; on dp(p)|v(F;). This substitution induces a d-graph for F
by restricting the transitive closure of dp(p)(yy, ...,) 1o v(Fp). Now, the induced
dependency graph for symbol FEN (ids(F)) is defined as the least d-graph for F
such that for any production p: Fy—wyF;... F,w,, the d-graph for F, induced by
the substitution dp(p)(ids(F,), . zds(Fk)) is a subgraph of ids(F;). The induced
dependency graph for productlon p s idp(p)=dp(p)(ids(F,), ..., ids(F,)). We
write a,(F,)<,a,(F,) if there is a nonempty path in idp(p) from az() to a;(Fp).
Similarly, a<Fb denotes that-there is an arc in zds(F) from b to a.

The induced dependency graph for a cut 7 (idt(r)) is obtained by pasting together
the idp’s of all the productions ¢ consists of. Let #, and u, be two nodes of ¢, a;€v(uy),
@€v(uy). As above, a,(u))<,a,(u;) denotes that there is a path in zdt(t) from
ay(uy) to a;(uy). We write a,(u,) <Ra,(u,) if this path contains an R-arc. Recall
from {2] that an R-arc leads to an i-attribute of a node from an s-attribute of itself .
or one of its right neighbours. G is called absolutely noncircular (anc) if <, is a
strict partial order for every cut 1.

The following AG will be used as an example throughout the paper. G has
five nonterminals with attributes:

v(Z) = {ao} V(A) = {ay, a,, Gz, by, by}
V(B) - {als as, b15 b2}3 V(C) {al’ 1} V(D) = {als as, b17 b?.}
‘ b,
1

ay a @& a, by by a,

?"~ ° \I%?I‘

i

-..__:___. B - _d__0 [
| R | | |
ay a; ds bl b2 a; Qs bl b2 a bl
1:Z—~4 2:4A-B 3:B-C
a; by b b,
l '
! 1 |
—_——— 1 —-f——J
| . | l———_.-—l
a b a a, b, by, a a, b b,
4:B~CD 5:C-~0D 6:D—1

Fig. 1.

158 E. Gombas and M. Bartha

‘A;={ay, ay, ay}, A;=1{b,, b;}. -The productions with the corresponding dp-graphs
are listed in Fig. 1. Dotted lines denote idp-arcs, 0 and 1 are terminal symbols.

A partial computation sequence for a derivation tree €Dy is a sequence A
of so called basic actions ([1]), where each basic action is either the evaluation of
some i-attributes of a node, called entering the node, or the evaluation of some
s-attributes of a node, called exiting the node. Thus, a basic action can be repre-
sented by a basic action symbol (ba-symbol) i(u, B) or s(u, A), where ucU,, AS S(u)
and BZSI(u). The order of evaluation is systematic and it cannot violate the depend-
encies of the attributes. By this we mean that 4 must obey the following restrictions.

1. The first and the last ba-symbol of & is i(rt(t), B) and s(re(), A), respec-
tively, where A S(F) and BSI(F).

2. For any two contiguous ba-symbols ...x,(u;, A)xs(ts, As)... in h, one of
the following conditions holds.

(i) wisasonofu and x,=x,=1i,

(ii) s is the father of u, and x,=x,=s,

(iii) u, is a brother of u; and x,=s, x,=1i,

(v) w,=u, and x,#x,.

3. For every ucU,, if

i(u, B))s(u, Ay)...i(u, B,)s(u, A,,)

is the sequence of all the ba-symbols for ¥ occurring in 4 (from left to right), then
(B,UA,, ..., B,UA,) is an ordered subpartition of v(u). This subpartition will be
denoted by E,(w)=(E,(w), ..., E,()), or E(u) if h is understood. By an ordered
subpartition of a set C we mean a sequence of sets (C,, ..., C,) such that

JCSC and GNC;=9 if 1=ixj=m

i=1

4. For any production p, consider an arbitrary occurrence of p in ¢, and let
u;, Uy and a;, a, such nodes and attributes of this occurrence that a,(u,) depends
on a; (1) in p. If a,(u;) occurs in / (i.e. there exists a ba-symbol x(u,, A) in h with
a,€ A), then so does a,(u,), and the occurrence of a,(u,) precedes that of a,(uy).

If E,(u) is a complete partition (ie. UE,(u)=v(u)) for all ucU,, then h is
a (total) computation sequence. If / satisfies 1, 2 and 3 only, then it is called a walk.
A walk /7 is a pass if:

— each node is entered and exited (i.e. visited) exactly once;

— during the visit to a node, all its sons are visited in a left to right order.

h is an m-pass walk (meN) if h=h,...h, and h; is a pass for all i€[m].

A ba-symbol x(u, A) is empty if A=0. A pass is called empty if all the ba-
symbols occurring in it are empty.

Example 2.1. Let ¢ be the complete derivation tree of our example AG illus-
trated on the left-hand side of Fig. 2. The graph on the right-hand side indicates
the dependencies between the attributes of 1. A 4-pass computation sequence for ¢
is the following.

Atomic characterizations of uniform multi-pass attribute grammars 159

B Uz as bl bo
C‘ Us D s a, 14, b1 b,
/ \ {
O D u4 1 b2
1

Fig. 2.
h=h, hyhyh,, Where

by = i(uy, 0)i(uy, {b1))i(ua, (b)) i(us, 0)i(us, 0)s(ug, 0)s (i3, 0)
i(us, {b1})s (us, {a1}) s(ua, B)s(uy, {ao})s(uy, 0),
hy = i(uy, 0)i(uy, 0)i(uy, 0)i(ug, 0)i(uy, Ms(uy, B)s(u;, 0)
i(us, {ba})s(us, {az})s(uz, {az})s(ur; Ds(u, 9),
hy = i(ug, 9)i(uy, 9)i(us, {b1})i(us, {b1})i(us, {b2))s (s, {az))
s(tg, 0)i(uz, 8)s(uy, Ds(uy, 9)s(uy, 0)s(uy, 9),
hy = i(ug, 0)i(uy, {b2})i(ua, B)i(us, B)i(uy, {b:})s(uy, {a;})
s(us, {ar})ius, 9)s(us, 0)s (us, {a:})s(u, {a1, a2})s(uo, {ao}).
Let p: Fo-woFy... Fw&P and t;€Dy, for each je[k]. Let
' n = (4,UB,y, ..., 4,UB,)

be an ordered subpartition of v(F,) with A4,S S(F), B,SI(Fy) (i€[m]), and let
h;=h{...h) be an m;-pass walk (m;=m) for each t;. no(hy, ...,) will denote .

160 E. Gombas and M. Bartha

the m-pass walk i(uy, B)h® . hPs(uy, Ay)...i(uy, B)hD.. . hW s(uy, A,) for
Fo(wety ...ty w)EDg,, Where u, is the root and h{? is empty if i>m;.
The proof of the following two easy lemmas are left to the reader.

Lemma 2.1. Let ¢ be a complete derivation tree and 1€ U,(F). Denote t'€ Dg
the subtree of r below u, and let h=h,...h,, and !’=/{...Il;,, be m-pass computa-
tion sequences for ¢ and ¢’, respectively. Each /; (i€[m]) can be written in the form
h;=a;l;B;, where [=I;...l, is an m-pass computation sequence for ¢t". If E,(u)=
=E,(rt(1"), then I =hj...h}, — where hj=o,l;f; — is also an m-pass computa-
tion sequence for 1.

Let m,=(4,, ..., A;) and n,=(B,, ..., B,) be two ordered subpartitions of a
set D. Construct the ordered subpartition

merge (”l ’ 7[2) :(Cl LEEREEY Cmnx (n, m))
as follows:

(1) G = 4,UB,, . :
(i) Ciyy = A4, UB N\ U C; for each 1 =i < max (n, m).
. j=1

Lemma 2.2. Let #; (i=1,2,) be m;-pass partial computation sequences for
t€ D, m=max (m,, my). Construct an m-pass walk merge (4, h;) as follows.
For each u€U, let

Emerge (hy, ha) (ll) =merge (Ehl(u)9 Ehz(u))'

Then merge (/1,, h,) is a partial computation sequence.
Note that an m-pass walk for ¢ is completely determined by the set {E(w){u€ U,}.
The operation merge can be extended to any number of walks by:

merge (hy, ..., b)) = merge (merge (hy, ..., h,), hy1y).

3. The atomic characterization and decidability results

An atomic pass-description for ¢ is a five-tuple 2=(«, yu, ¥, 0, 7,), where
(i) & is a finite nonempty set, called the set of atoms.

(ii) u: N—P(sf) assigns each nonterminal a subset of 7.

(iii) x={xrslFEN}, where yp: p(F)~2(v(F)) is a function such that

U 2@ =v(F) and xe(c)Nyplc) =0 if ¢ #c,.

c€u(F)

(iv) e={e,lp€P} is a family of mappings such that if p: Fo—w, F; ... F w,, then

o0 n(F) ~ 2 (U)X ().

As in the case of attributes, ¢(F) indicates an occurrence of an atom c€u(F), and
we prefer the notation c(F;)€¢,(co) to (J, ¢)€e,(cy) if no confusion arises.
(v} m, is an ordered partition of u(Z).
Let © be an ordered subpartition of u(F). We say that an m-pass partial com-
putation sequence h for 1€ Dy tespects 9D/n if it satisfies the following conditions.

Atomic characterizations of uniform multi-pass attribute grammars 161

1. Forevery node u€ U,(Y)(Y€N) there exists an ordered subpartition n,(u)=
=(,, ..., Z,) of u(Y) such that

(E)y = U(xy(o)|cesty) for all i€[m].

2. For any production p: Fy—wyF,... F,w, consider an arbitrary occurrence
of pin ¢ Let wu,,u,,...,u, be the corresponding nodes of ¢, respectively. If
() =(AL, ..., AP) (0=/=k), then

a) for every i€|m] and j€[k]

(c(Fleet P} S 0, (/™) Nuu(E);

b) if c(F)€o,(c)Ne,(c;) for some ¢;7c, such that c€s/Y) and c €L
(I=1,2), then i=min (i, iy).
3. my(re()=n.

Definition 3.1. ¢ is atomic m-pass with respect to 2 if every complete deriva-
tion tree has an m-pass computation sequence respecting 9/n,. % is atomic multi-
pass (amp) if there exist m and 2 such that ¢ is atomic m-pass with respect to 2.

- Example 3.1. In our example AG let 9=(«, u, ¥, 0, 7,), Where
o = {dy, d}U{(cr, D€V {(ca. D€}V
U{(co, 1), (e, D]i€f4]};
H(Z) = {(co, D[]}, u(d) = {(co, 1), di}U{(c, D]icl4]},
 u(B) = {(e, DIEBYU (e, DU {dy,),
#(C) = {(cr, DIic2YULdy}, u(D) = {(e1, 1), (e, DY;
72(Co, 1) = {?ao} :g : fi rale,) = {Q{)al, as, by} ig : ii
Xa(co» 1) = {ao} xa(dy) = xp(dy) = {bs} x5(ds) = {bs}
tm(ers)= {?al} s e :{'?ag} A
D=1y i 1oy K@=}
xoler, 1) = {a1, b} xplee, 1) = {as, by};
1(¢o, 1) = {(co, D(A), di(A), (c, D(A)}, e1(co, 2) = {(c, (A},
01(c0,3) = {(&. (D} ex(co,) = {(e, (A},
02(co, 1) = 02(d) =0, g5(c, 1) = {dx(B), (ce, D(B)},
0:(c,2) = {(c2, D(B), (c1, VH(B)},
(¢, 3) = {(c1, (B), di(B)}, 05(c, 4) = {(cx, 3)(B)},

162 E. Gombas and M. Bartha

es(c1, 1) = 03(c1,2) = 05(c1, 3) =9, -
s(ce, 1) = {(cr, (C)}, eslez, 2) = {(cr, D(O)},
0a(d)) = ea(d2) =0, 04(cs, 1) = {(c1, D(D)},
04(c1,2) = {d1(C), (c1, D(O)}, 0ale1, 3) = {(e1, (O},
0s(cz, 1) = {(c1, VD)), alcz, D) = {(c2, (D)}
os(d) =0, o5(ci, 1) = {(c2, DD}, e5(cy, 2) = {(er, DD},
0s(c1, 1) = ge(c2, 1) = 0;
o = ({(co, D}, {(co, D} {(co, 3}, {(co> 9})-

It is not difficult to check that the example AG is atomic 4-pass with respect to 2.
For example, the computation sequence # of Example 2.1 respects 2/n,.

Readers who are less familiar with attribute evaluation procedures are advised
to read section 4 before going further.

Lemma 3.1. Let #; (i=1,2,...,n) be m;-pass partial computation sequences
for €Dy respecting P/n;. Then merge (4,}ic[n]) respects D/merge (n;|i€[n]).

Proof. Obvious.

Definitior 3.2. ¢ is absolutely non-R-recursive (anr) if it is anc and there is
no cut ¢ for which the following holds. There is a leaf u€ U, having the same label
Fas u,=rt(t) and an attribute a€v(F) such that: a(uy)<Ra(u) or a(u)<Ra(uy).

Let 4 be anr. We shall prove that it is amp, too, moreover, we give an algorithm
that provides the minimal number m for which ¢ is atomic m-pass. In the first step
the algorithm computes a relative difference r(F, a, b) for each triple FEN, a<gb.
{r(F, a, b)|FEN, a<gb} is the system of minimal numbers such that for any p: Fo—
—woF,... F,w, and idp (p)-path

ay(Fo) <pa1(Fi1) =F;, bl(Fi,) <p--<p an(Fi,,) <F;_ bn(F}") <p bo(Fy)
containing / R-arcs,

r(Fy, ay, by) = 1+ Z’r(Fij’ aj, bj)'
=1

r(F, a, b) expresses that, during an amp evaluation of derivation tree, at any F-
labelled node, if b(F) can be evaluated in the i-th pass, then a(F) cannot be evaluated
sooner than in the i+r(F, a, b)-th pass. This statement will be proved in Lemma 3.6.
In the second step a pass-number ¢(F,q) is computed for each FEN, a€S(F)
such that if ¢€ Dy is an arbitrary derivation tree, and the values of all the i-attributes
at the root are available, then — supposing an amp evaluation — a(r#(t)) can be
evaluated in the g(F, a)-th pass, but not sooner in general. If all these numbers are
finite, then the required atomic description can be constructed easily.

Algorithm 3.1. Input: An anr AG %.
Output: pass-numbers q(F, a) for each FEN, a€ S(F);
inherited pass-numbers g,(F;, a, a,) for each
p: Fy~ woF,...Fow,, j€[k], a€v(F)), a,£S(Fy) such that a,(Fp)<,a(F)-

Atomic characterizations of uniform multi-pass attribute grammars 163

(1) Compute for each F¢N, a<pb the number r(F, a, b) as follows.
. (a) Let ry(F, a,b)=0 and set i=0.
(b) For each p: Fy—~wF,... F,wEP
begin for each bycI(Fy)
begin let Hy={by(Fp)}, x(bo(Fp))=0 and set n=0.

(i) Let '
=H, U{a(F)|aES(F) J€lk], a(F)<,by(F) and for any a(€U
U(S(F,)|l€[k])UHo, a(F)<,a' (F,)<,b,(Fy) lmphes that a'(F,)EH}

H, ,=H,, then goto step (i), else for each a(F;)€H,.,\H, let
x(a(F})) =max (max (r;(F;, a, b)+x(a’(F,)|a(F)) <r, b(F) <,a’ (F)EH,)),
max (r;(F;, a, b)+x(a’ (F,))+1{a(F)) <z, b(F) <} o’ (F,)€ H,))

(note that max (#)=0 by definition);
set n=n+1 and repeat step (i).
(ii) For each ay<p, b, let

r8y(Fo, o, by) = max (x(a(F))|a(F)e H,, ay(Fy) <, a(F));

end
end;

For each FEN, a<pb let .
7‘,-+1(F, a, b) max (rl('ll,‘)l(F’ a, b)lPEP)
If _rio(F, a,b)=ri(F, 6, b) for all FEN, a<pb, then let r(F, a, b)=r(F,a,b),
else set i=i+1 and repeat step ib).
(2) Compute for each FEN, a€ S(F) the number g(F, a) as follows.
(¢) Let g,(F,a)=1 and set i=0. ,
(d) Foreach p: Fy—+woFy... Fow,
begin let My=0 and set n=0.
(i) Let \ .
=M, U{a(F))| jC[K], a¢ S(F;) and for any a'(F,) (mc[k], a’< S(F,)),
a(F))<,d'(F,) implies that a'(F,)cM,}.
If M,,,=M,, then goto step (iv), else for each a(F)EM, ,\M, let
y(a(F,))=max (g;(F;, a), max (max (r(F;, a, b)+y(a'(F,)|
a(Fy) <, b(F) <, @' (F)EM,),
max (r(F;, a, b)+y(a’ (Fp)+ 1 a(F) <p, b(F) <5 a’(Fm)EM,.)))

set n=n+1 and repeat step (iii).
(iv) For each q,=S(F) let

g, (Fy, ap) = max (y(a (F;))la(F)EM,,, ao(Fo) < a(F))

end;

M

n

2 Acta Cybernetica

164 , E. Gombas and M. Bartha

For each FEN, a€ S(F) let
gi+1(F, a) = max (g{ (F, a)| p¢ P).
If g;;(F, a)=¢q,(F,a) for all FEN, ac S(F), then let q(F, a)=q;(F, a), else set
i=i+1 and repeat step (d).
(3) Compute for each p: Fo—wy Fy... Fw,, je[k];, acv(F)), a,€ S(Fy) such
that a,(Fy)<,a(F;) the number q,(F;, a, ay) as follows.
Let(\{;/o—{ao(Fo)} q,(Fy, ay, ag)= q(Fo,ao) and set n=0.
N,y =N, U{a<Fj)lj€[k]a acv(F)), ay(Fo)<,a(F;) and for any d'(F,)
(0 = m =k, a’¢v(F,), a(Fy) =,d'(F,) <,a(F;) implies that a'(F,)EN,}.
If N,;;=N, then halt, else for each a(F)EN,,\N,;
if acI(F}), then let
g,(F;, a, ag) = min (q,(F;, ', ag)—r(F}, a’, a)|a’€ S(F}), @’ (F)€ N,);
else (i.e. if a€S(F)) let ' '
4,(F;, a, ag) = min (min (q,(F,, a’, ap)la’ (F)EN,, a’(F,) <, a(F,
min (g,(F,, @', ag)—1|a’(F,)EN,, a’(F,) <X a(D)
set n=n+1 and repeat step (v).
Example 3.2. Executing the algérithm on our example AG we get that:

”I'(D, alyb.‘) = r(D’aZsb2) = 0: r(C9 alsbl) = la
r(B, ay, b)) = r(B,a;, b)) =1, r(d,aq, b)) =0,
r(A’a2s bl) = 13 r(A, ab b‘) = 39
qg(D,a)) = q(D,a5) =1, ¢(C, a5 =4q(B,a) =2,

q(B,a;) = 3,9(4, a,) = 2(but 9:.(4, a, ap) = 4)
Q(A a) —4 qg(d,a) =1, q(Z,ap) = 4.

Lemma 3.2. For every i=1, FEN and a<gb, if r,(F, a, b)=0, then there
exists 7€ Dy such that a(re(r))<Rb(re(1)).
Proof. Trivial, by construction.

Lemma 3.3, If 4 is anr, then the numters r(F, a,b) and ¢(F, a) computed
in steps (1).and (2) are all finite.

Proof. (a): r(F, a, b) is finite.

Let iy=[{(F, a, b)|FEN, a<gb}+1 (|B] denotes the cardinality of set B),
and suppose that r; .,(Fy, ao, bo)>r;, (F,, ay, by)=r, for some ay<p,bo- Then
there exists p: Fy—»wo F;... F,w,€P such that ri®),(Fy, ay, bo)=r,, i.e. for some
a(F)cH, we have

ao(Fo)< a(F) pa (F)<F b’(Fm)* by (Fp),

where x(a(F))>r0, and consequently r; (F,,a’,b)>r, _,(F,,a’,b’) for some
me[k), a’<g b’. (Note that i,=2, else we have nothing to prove) Let op=

Atomic characterizations of uniform multi-pass attribute grammars 165

=(Fy, ay, b)=(F@, a9, b9}, o, =(F,,, a’, b')=(FD, aV, bV), and construct a,=
=(F®, a®,b®), ..., o, _, in the same way. It follows that for any 0=i<j=i,~1
there exists a cut 1€ Cr» and a leaf u of ¢ labelled by F\) for which we have:

a®(rt(0) <, aP (1) <pw» b (u) <, b (r1(1)). €))
Moreover, by Lemma 3.2, if all the cuts ¢ with property (1) are such that neither
a?(rt(1)) <R a (u) nor b (u) <R bO(r1(r)),)

then r,_;,1(0)=r;—j4+:1 (). By the choice of iy, o;=a; for some 0=i<j=i,—1.
In this case, however, r;_; . (2)=r;_;+1(a;) is impossible, thus (2) contradicts
the anr property. We conclude that r, ,,(F, a, b)=r; (F, a, b) for all FEN, a<gb,
which was to be proved.

(b): q(F, a) is finite.

Let ny,=||{(F, @)|FEN, ac S(F)}|l+1, and suppose that g, ,,(Fp, ap)>
>q,,(Fo, ap)=¢, for some a,€ S(F;). Then there exists p: Fo—woF,... Fw,EP
such that g (Fy, ap)=>qo, i.c. for some a(F;)€M, we have ao(Fy)<,a(F;) and
y(a(F}))>q,. Choose this a(F)) so that

(]) y(a(Fj)):qno(Fjs a);

(i) i ag(Fo)<, @ (Fo)=,a(Fy), then y(a'(Fp)= 4y (Fn,).

Clearly, qno(Fj, a)>qn0—l(Fja a)‘ Let ﬂO:(F03 aO)E(F(O)a a(O)), ﬂ1=(Fj’ a)E
=(F®, a®), and construct f,=(F®, a®), ..., B,,_; in the same way. It follows
that for any 0=k<m=n,—1 there exists a cut 1€ Creo and a leaf u of ¢ labelled
by F™ for which:

@ a®(re(r))<,a"™(u); , .

(ll) lf a(k)(rt(t))éfa(m)(u)’ then qno—k+1(ﬂk)=qn0—m+1(ﬂm)'

By the choise of 1y, B=p, for some O0=k<m=ny—1. As in the part (a) of the
proof, guy—i+1(BK) =dn,—m+1(Bx) is again impossible, thus (3) contradicts the anr
property. Consequently, g, .,(F, a)=q,,(F, a) for all FEN, ac S(F).

Now we construct &7, u, ¥, ¢ and m, such that ¢ is amp with respect to

9=('ﬂ’ Hs X5 05 TCO)' Let
o = 4;,U{(a, D)|a€ A, 1 =i = max (¢(F, @)l FEN such that a€ S(F))}.
Define the mappings a: &/ —~A4 and f: &/ —N by

()_{b if cC = bEAi, ﬂ(c) . {1]f CEA,-,
M7 a if c=(a,i), ac4, Ui if c=(a i), ac4,.

To simplify the formalism let ¢q(F, b)=1 for each b€I(F). For FEN let
w(F) = {ele(@€v(F) and B() = g(F,«(@)},

and if c€u(F), then ;

XF(C)={

For p: Fo»wyF,... F,w, and a,€S(F,) consider the inherited pass-numbers
q,(F;, a, ay) computed in step (3) of Algorithm 3.1. Extend g, to triples (Fj, c, ap)
cen(Fy) by . , 3 | |

qp(FjrC’ ao) = qp(Fj, (X(C), ao)—(q(Fj, (X(C))—B(C))

{a(@} if B() = q(F, a(o),

0 otherwise.

2+

166 E. Gombas and M. Bartha

For each co€u(Fy), if co€a™(A4,), then let
Qp(co) = {C(Fj)la(co)(Fo) <pa(c)(Fj) and
Blcy) = qp(i»Cs a(Co))}

else let g,(c))=9. Finally, let n,=(,, ..., &,), where m=max (g, (Z, a)lacv(Z))
and for every i€[m] o= {ch(Z)lﬂ(c)—z}

The reader is adv1sed to construct the atomic pass description of the example
AG. Since this is similar to that of Example 3.1, we do not detail it here.

Lemma 3.4. Let FEN, a€ S(F) and t€Dy be arbitrary, n=(&, ..., &,) an
ordered subpartition of p(F) such that

® Ud {ceu(F)la=ra(c)},

(ii) (a, q(F a)—t)Ed,, —; for every 0=i<gq(F,a),
(iii) if a<pb and b€s;, then j=rn—r{F, a,b).
There exists an n-pass partial computatlon sequence for ¢ respecting 2/x.

Proof. Induction on the depth of t. For t=F(w) (F-~w€P for some weT*)
the statement is obvious. Let ¢=Fy(w,t;...t, w,) such that the top production of
tis p: Fy—wyF,... F,w,, and let @€ S(Fp). It is enough to prove the statement
for the subpartition no—(.d(‘” . &) of u(F,) which satisfies (i)—(iii), moreover,
no=q(F,, a;) and bOE,ei,,o_,(Fo dorbo) if ay<r,by. For jE[k] and a€S(F;) such
that ay(Fp)<,a(F;) let n;(a)= (D, . ., D), where n;=q,(F;, a, ag) and

AP = {c(F)la =f,a(c) and q,(F},c, a)=i}.

As t;¢D; and ;(a) satisfy the requirements of the lemma, by the induction hypoth-
esis there exist n;-pass partial computation sequences h;(a) for t; respecting
D|n;(a). Let

h; = merge (h;(@)|a€ S(F}), ao(Fy) <,a(F;)).

By Lemma 3.1, h; respect 9/n;, where n;=(8{", ..., B) is an appropriate ordered
subpartition of u(). Observe that #n; no, and by the construction of 0 we have
B =0 ,(a,, t)ﬂu(F) This implies that (Xro (A1), ooy Ar (AN, -y) s
an ny-pass partial computation sequence for ¢ respectmg 9/m,, which was to be
proved.

Proposition 3.1. If ¢ is anr, then it is amp.
Proof. First suppose that ¢ is connected, i.e.:

a) none of the i-attributes of any FEN is isolated in ids (F);

b) for every p: Fo—~woFy...F,w, and a€ S(F;) (jE[k]) there exists a,€S(Fy)
such that ay(Fp)<,a(F)).
By Lemmas 3.1 and 3. 4 every t€ D, has a (total) computation sequence respecting
9/n,, thus % is atomic m-pass with respect to 2. To treat the general case extend
% as follows. For each FeN let #(F)=v(F)U{a}, where a is a new s-attribute.
Correspondingly, for each p: Fo—wyF,... F,w, add the rule a(Fo)=f(b,(F), .

s bi(Fy), a(F;), ..., a,(F;), a(Fy), .. a(Fk)) to r,, where b,...,b; are all
the isolated i-attributes of ids (Fo)s al(a,(F;) are all those s-attributes

Atomic characterizations of uniform multi-pass attribute grammars 167

that cannot be connected with any a,€S(F,) in 1dp (p) and f is a hypothetical
function. Let & denote this extended grammar. As ¥ is connected, we can construct

d, iy, 0 and T, as above. Returning to the original grammar ¥, let d——d,
w(F)=p(F) for each FEN, '

_ [z if a(c)=a,
"F(C)‘{ﬂ it a(c) =a,

0=0 and my=7,. It is clear that ¢ is amp with respect to D=(, u, ¥, 0, 7y
defined in this way. :

A top-down assignment of partitions for ¢ is a quadruple I=(4, 1, ¢, q,),
where

(i) 2 is a finite nonempty set, the set of states;

(i) 7= {rp|FEN} such that 1, is a mapping of 2 into the set IT; of all ordered .
partitions of v(F);

(i) ¢ = {q)p]pEP} such that if p: Fy—>wyF,... F,w,, then ¢, is a partial
mapping of 2 into 2%,

(iv) go€2 is the initial state.
Concerning states, Z is considered as an ordinary deterministic top-down tree
automaton working on the derivation trees of G. s, () will denote the state in which
J passes through a node u of a derivation tree ¢, starting from state ¢ at the root.
g will be omitted if 7€ D, and g=gq,.

Let ¢ be a derivation tree and g€2. An m-pass computation sequence / for ¢
is said to respect J/q if E,(u)=tp(s, (1)) for all nodes u(€U,(F)).

Definition 3.3. ¢ is generalized uniform m-pass with respect to Z if every
complete derivation tree has an m-pass computation sequence respecting T/q,-
4 is generalized uniform multi-pass (gump) if there exist mEN and Z such that
4 is generalized uniform m-pass with respect to . ‘¢ is uniform multi-pass (ump)
lfJ can be chosen so that 2= U(IIg|FEN), tp(n)=n for all FEN, nEHF, and ¢
s a top-down assignment of partitions in the sense of [5].

Lemma 3.5. If ¢ is gump, then it is ump, too.
Proof. Let % be gump with respect to . For each FEN let

9 = {s,(u)|tEDZ, ue Ut(F)}

beathe set of possible states at an F-labelled node. Consider an arbitrary ¢€D,-
and a node u€ U,(F). Intervene in the work of 7 on 7 at node u as.follows.

(i) Force Jto change the state s,(u) to any other state g€ 2, for which t:(g)=
=15(s,()).

§ii) tht it continue working as if g were the state in which it had reached u.

Let s'(v) denote the new state assigned to any v€U, in the above way. By
Lemma 2.1 there exists a computation sequence k' for 7 such that E,.(v)=1y(s'(v))
for all nodes ve U,(Y). By successive interventions . can be forced to perform a
uniform top-down assignment on ¢, thus ¢ can be made uniform. Moreover, the
pass-number m also remains the same.

Proposition 3.2. If ¢ is amp, then it is ump.

168 E. Gombas and M. Bartha

Proof. Let ¢ be atomic m-pass with respect to D=(, u, ¥, 0, Tp). Define
T=(2,1, 9,9y as follows. 2=U({F}xIl,p|FEN), where Il denotes the set
of all ordered m-partitions of u(F); g,=(Z, n,). For each FEN let

TF(F’ ("Q{l’ et dm)) = (7F(d1)’ veey ZF('dm))
If p: Fo—wyF,... F,w,€P, then

Pp (Fo’ H(O)) = ((Fl’ 7[(1))’ [ERH) (Fk’ n(k)))’

where ™ =(", ..., ™) 0=n=k, and for any j€[k] and c€u(F;), c€H iff
i is the minimal number such that c(F;)€g, (). Let h be an m-pass computa-
tion sequence for t€ Dy and 7m€Il, . An easy induction on the depth of ¢ shows
that % respects @/n iff it respects JJ(F, n). Thus, ¢ is gump with respect to J,
and by Lemma 3.5 it is ump, too.

Proposition 3.3. If ¢ is ump, then it is anr.

Proof. Let t€Dz, ucU(F) and a<gb be arbitrary. It was proved in [5]
(Lerima 4) that if & is a uniform computation sequence for ¢, then b(x) must be
evaluated sooner than a(u) in . Suppose ¢ were not anr. It is cleatly anc, so there
must be a cut t€Cp, a leaf ucU,(F) and an attribute a€v(F) such that
a(rt(t))<Ra(u), or vice versa. Let ¢* denote the cut which can be obtained by k-fold
composition of 7 at node u. Since ¥ is reduced, there exists a complete derivation
tree t, that contains *. But in idt (#,) there is a path containing at least k R-arcs,
thus ¢ cannot be uniform m-pass for any m=k. This is a contradiction, since k
is arbitrary.

By Propositions 3.1, 3.2 and 3.3 we have proved

Theorem 3.1. % is anr iff it is amp iff it is ump. .
Let 4 be uniform m-pass with respect to 7. If n=(4,, ..., 4,)€2 and aE.CJ A,-,?
then let i.(a) denote the number i for which a€A4,;. S
Lemma 3.6. (a) For every FEN, a<gb and n€2g:
i(a)—i.(b) =r(F, a,b).
(b) For every FEN, ac S(F) and n€Zg, i (a)=q(F, a).

Proof. (a) Let F(F,a, b)=min (i.(a)—i.(b)|n€2;). We have to prove that
F(F,a,by=r(F,a,b). Fix Fy €N, ay<gpby, and p: Fy—=w,F,... Fw, arbitrafily,
and let m,€2¢,. If ¢,(n))=(m, ..., m), then there exists a complete derivation
tree t and nodes ug, uy, ..., u, of t (u, labelled by F,) representing an occurrence
of p such that s,(u,)=n, for every 0=n=k. Let

ay(Fo) <p al(Fil) <Fi bl(Fil) <p-+=<p an(Fi,,) =F;, bn(Fi,.) <p bo(Fy)

be any path in idp (p) containing / R-edges. Since there exists an m-pass computa-
tion sequence for t respecting 1/q,,

I, (@0) =i (bo) = I+ 21’ (in,-,(aj)"in,-,(bj)) =+ Z;F(Fij’ a;, b).
Jj= J J Jj= . ’

Atomic characterizations of uniform multi-pass attribute grammars 169

Thus, F(Fy, a, b0)>l + Z’r(a;, b;). However, by construction r(F, ay, bo) is

the minimal number satlsfymg this property, i.e. r(F,, dy, bl)=7(Fy, a,, by) for all
Fo€ N, ay<p,by. Statement (b) can be proved similarly.

Theorem 3.2. If @ is anr, then m,=max (¢(Z, a)|ac v(Z)) is the mlmmal num-
ber m for which ¢ is atomic m-pass.

Proof. Suppose ¥ were atomic m-pass for some m-<m,. Then, by Proposi-
tion 3.2 ¢ is uniform m-pass, too, which contradicts (b) of Lemma 3.6.
Now' we give an algorithm that decides the anr property. It is assumed that

the well-known test for the anc property has been executed before. In the first step
we construct the set

R ={(F, a,b)|FEN, there exists €Dy such that a(rt(t))<Rb(rt(1)}-

Step (2) constructs for each FEN and ac S(F) the set
R(a(F) {a (Y))a’€¢ S(Y) and there is a cut t€Cr and a leaf uEU(Y) such
that a(re(s))<Ra'(w)}, ,

while step (3) constructs for each FEN and b€I(F) the set
R(B(F)={b'(MIp’€I(Y) and there is a cut 1€Cy and a leaf u€U,(F) such
that b(u)<Rd’ (rt(t))}

Algorithm 3.2. Input: An anc AG 9.

Output: ‘“yes” if ¢ is anr, “no” otherwise.

(1) Construct the set RENXA;X A, as follows.
(a) Let Ry=0 and set i=0.
(b) For each p: F,—~woF,... F,w P let

R(®, = {(Fy, ag, bo)|as(Fy) <3 bo(Fo) or ay(Fo) <,a(Fy) <, b(F) < bo(Fo)
for some (F;, a, b)ER;}.

Let R ,=RU(U(R®|peP)). If R;,,=R;, then let R=R;, else set l—l+1
and repeat step (b).

(2) Construct for each FEN, a€ S(F) the set R(a(F)) as follows.
(©) Let Ly(a(F))={a(F)}, Ro(a(F))=0 and set i=0.
(d) For each p: Fy—wyF,... Fw,€P and a,€S(F,) let

Lug-{)l(ao(Fo)) =U (Li (a (Fj))|j€[k], ao(Fy) <pd (F_,))a
Ri(f-)l (ao(Fo)) =U (Ri(a (Fj))ljé[k]a‘ ao(Fy) <p a(Fj)) U
U (Li(a(Fj))le[k]’ ay(Fp) <§ a(Fj): or ay(Fp) <p a’(F,) S
<p, b'(F,) <,a(F;) and (F,,a’, b)ER).
Let L,~+1(a(F))=L,-(a(F))U(U(L,-‘i)l’(a(F))lpEP));
Ria(a(F) = Ri(a(F))U(U (R, (a(F)IpEP)).

If both L,,,(a(F))=L;(a(F)) and R;.,(a(F))=R/(a(F)) for all FEN, aES(F)
then let R(a(F))=R; (a§F)) else set i=i+1 and repeat step (d).

I

e s R S

170. E. Gombas and M. Bartha

(3) Construct for each FEN, beI(F) the set R(b(F)) as follows.
- (e) Let Lo(b(F))={b(F)}, Ro(b(F))=9 and set i=0.

(f) For each p: Fy—~wyF,... F,w,€P, FEN and bCI(F) let
LE\(b(F))=U(L,(by(F))|F=F; for some j€[k] and b(F;)<,by(R,))
R, (B(F)) = U(Ri(bo(F)IF = F; and b(F)) <, by(F))U
U (Li(bo(Fo))lF = F; and b(F)) <} bo(Fo))U
U (Li(bo(F)IF = F; and b(F)) <, a’(E,) <p,, b'(Fy) <, bo(Fy) for
. some me[k], (Fn,a’, b)ER).
Let Ly, (b(F))=L(b(F))U(ULELB(F)pEP));
R 1 (b(F)) = R(b(F)U(UREL(b(F))|pEP)).

If both Ly, (b(F))=L,(b(F)) and Ri,,(b(F))=R,(b(F)) for all FEN, beI(F),
then let R(b(F))=R,(b(F)), else set i=i+1 and repeat step (f).

(4) Output “no” if there exist FEN and a€v(F) such that a(F)€R(a(F)).
Otherwise output “yes”. Halt. ’

Theorem 3.3. The atomic (uniform) m-pass property can te decided in poly-
nomial time.

Proof. By Theorem 3.2 it is enough to prove that Algorithms 3.1 and 3.2 are
both polynomial. The size of ¢ will be expressed in the parameters n=|N|, p=|P|,
a=|A| and x, which is the maximum numter of nonterminal occurrences in a
production. First consider Algorithm 3.2. One execution of step (b) requires O(pxa?)
time,-and it must be executed at most [|R|<na® times. Thus, the total amount
of time required for step (1) is O(pxna®). In step (2) consider the sum

S; = Z (IL{a(P)| +IR(a(F))| |FEN, a€ S(F)) for each i.

Since 2na is an upper bound for all the S;, step (d) must be executed at most O (na)
times. One execution of step (d) requires O(pxa® time, so step (2), as-well as
step (3), needs O(pxna®) amount of time. Thus, the complexity of Algorithm 3.2
is O(pxna®). Now consider Algorithm 3.1. One execution of step (b) requires
O(pxa®) time, and by Lemma 3.3 it must te executed at most iy,<nra times. Sim-
ilarly, step (d) must be executed at most n,<wna times, and one execution needs
O(pxa®) time. Step (3) is not relevant, thus the complexity of Algorithm 3.1 is
O(pxna*), too.

4. Implementation

As it is usual, a node u of a derivation tree is considered an object consisting
of the following data.
— wu.prod: number of production applied at u;
— u.j: reference to the j-th son of u;
. — wu.a: attribute a at u for each a€v(u);
— u.on_c and u.gff _c: Boolean flags for each atom c€u(u).

Atomic characterizations of uniform multi-pass attribute grammars 171 .

The initial value of all the flags is false. w.on_ ¢ can be set to true by procedure
activate (u,c), while procedure release (u,c) sets u.on_c=false and w.off c=
=true. Boolean functions active (u,c) and done (u,c) are used to test the value
of on__cand off _cat u, respectively. Foreach FEN we have a procedure F__pass (u),
which makes one visit to an F-labelled node u as follows.

Procedure F__pass(u) node u
begin)
for each ceu(F)
if active (u, c) then
begin)
case u.prod of

p: comment p: Fy—-wy F,... F,w,
for j=1 to k :
begin

for each dco,(c)N\u(F))
if not done (u.j, d) then
begin
activate (u.j, d);
evaluate attributes y, (d)NI(F)) atu.j
end; , :
F;__pass(u.j)
end;
evaluate attributes yp (c)NS(Fy) at u

esac;
release (u, ¢)
end
end
Procedure evaluate (u) controls the evaluation of a complete derivation tree with
root u. -

Procedure evaluate (u) node u
comment wo=(s, ..., L)
begin .
activate (c, u) for all cé€sf;

_ Z_pass (u);

" activate (¢, u) for all ces,,; .
Z__pass(u)
end
5. Conclusion

The main advantage of the atomic characterization is that the evaluation pro-
cedure can be implemented in a simple and efficient way. It is not practial to base
the evaluation procedure directly on a uniform top-down assignment of partitions,
since the number of possible partitions is exponential. Using the atomic characteriza-

172 E. Gombas and M. Bartha: Atomic characterizations of uniform multi-pass attribute grammars

tion, however, the size of implementation becomes polynomial, and the characteriza-
tion itself can be carried out in polynomial time. Unfortunately, the atomic char-
acterization of uniform multi-visit (i.e. anc) AG is not so useful (although it is possible
to do it) because it can be proved that the decision problem of the uniform m-visit
property is P-space complete. On the other hand, if we consider subclasses of anc AG
in which the way of walking through the derivation trees is fixed independently of
the grammar, then the atomic characterization is always useful. For example, it is
worth doing the atomic characterization of 4SE-like anc AG in which the attributes
are evaluated in alternative left-to-right and right-to-left passes.

Abstract

A natural characterization of uniform multi-pass attribute grammars is intro-
duced. An easy algorithim is given to test the uniform multi-pass property, and it
is proved that the uniform m-pass property for fixed meN is decidable in poiy-
nomial time.

RESEARCH GROUP ON THEORY OF AUTOMATA DEPT. OF COMPUTER SCIENCE
HUNGARIAN ACADEMY OF SCIENCES A. JOZSEF UNIVERSITY
SOMOGYI U. 7. ARADI V. TERE i.
SZEGED, HUNGARY . SZEGED, HUNGARY
H—6720 . H—6720

References

[1] ENGELFRIET, J. and G. Fiug, Simple multi-visit attribute grammars, Journal of Computer and
System Sciences, v. 24, 1982. pp. 283—314.

{2] EnGELFRIET, J. and G. FILE, Passes and paths of attribute grammars, Information and Control,
v. 49, 1981, pp. 125—169.

[3] Kennepy, K. and S. K. WARREN, Automatic generation of efficient evaluators for attribute
grammars, Conf. Record of the Third ACM Symp. on Principles of Programming Languages,
1976, pp. 32—49.

[4] KnutH, D. E., Semantics of context free languages, Math. Systems Theory, v. 2, 1968, pp.
127—145.

[5] NieLson, H. R., Computation sequences: a way to characterize classes of attribute grammars,
Acta Informatica, v. 19, 1983, pp. 255—268.

Received July 14, 1984

