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Atomic characterizations of uniform multi-pass 
attribute grammars 

B y E . GOMBAS a n d M . BARTHA 

1. Introduction 

Several reasonable classes of attribute grammars can be defined based on the 
concept of computation sequence [1]. A computation sequence for a derivation 
tree is intended to describe a systematic evaluation of all the attributes of the tree 
without violating their dependencies. The attributes are evaluated during a walk 
through the tree. This walk starts at the root, and once it arrives at (enters) a node, 
it must return to that node later for exiting it. Between any successive entering and 
exiting a node — this period is called a visit to the node — the walk can make sev-
eral visits to the sons of the node. If in any derivation tree, the number of visits to 
a node required to evaluate all the attributes of it, and the set of attributes of the 
node evaluated in each of these visits can both be determined in a top-down manner, 
i.e. independently of the subtree below that node, then the grammar is called uni-
form [5]. It was proved in [5] that an attribute grammar (AG) is uniform iff it is 
absolutely noncircular (anc). The latter property is investigated e.g. in [3], where 
an efficient evaluator is given for these grammars. As the anc property can be decided 
in polynomial time, the class of uniform AG'is practically more interesting than 
the class of simple multi-visit AG introduced in [1]. (Recall f rom [1] that the prob-
lem deciding whether an AG is simple multi-visit is ./VP-complete.) However, if we 
ask whether an AG is uniform m-visit for a fixed w g N , then the answer cannot 
be given in polynomial time, generally. Thus, to answer this question in polynomial 
time we have to restrict ourselves to a smaller class of AG. In this paper we inves-
tigate the class of uniform multi-pass AG. A pass to a node is a visit such that during 
it each son of the node is visited exactly once in a left-to-right order. We present 
a natural characterization of this class and give an algorithm that provides the 
minimal number m for which an AG is uniform m-pass in polynomial time. 
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2. Definitions and basic concepts 

An attribute grammar [4] <§ consists of the following objects. 
(i) A reduced context-free grammar G=(T, N, P, Z). 

(ii) A finite nonempty set A such that A=ASUA,- and Asr\A~0. The ele-
ments of As and A-, are called synthesized (5-) and inherited (/"-) attributes, respec-
tively. 

(iii) A function v which assigns each nonterminal F ^ N a nonvoid subset 
of A. We assume that the start symbol Z has only j-attributes and it does not occur 
on the right-hand side of any production. S ( F ) and 1(F) will denote v i F J f l / ^ 
and v ( F ) n ^ ( , respectively, and an occurrence of an attribute a £ v ( F ) will often 
be referenced as a(F). 

(iv) A set V(a) of possible values for each attribute a. 
(v) A set rp of semantic rules associated with each production pdP. If 

p: F0 —ii'0F, ... Fkwk (F^N, wfcT*), then a rule of rp is a formal equat ion: 

a0(Fio) =/(adFnl am(Fim% 

where O ^ i j ^ k ( O ^ j ^ m ) , cij£v(F;) and / : K( f l l )X. . . X K ( a J - V(a0) is a (com-
putable) function. This equation is interpreted by saying that a0(F i o) depends on 
^ ( F . J , ...,am(Fim) in p by / . We assume that ^ is in Bochmann normal form, 
i.e. rp defines all and only the occurrences of attributes S(F0)U(U(/(F,-) | . /€[/r])) 
using as arguments only of the occurrences of /(F0)U(U(S ,(F J-) | ./£[£])). ([£] denotes 
the set {1, 2, ..., k}.) 

Df will denote the set of derivation trees with root labelled by F. Trees of 
* 

Dz are called complete derivation trees. If / is a tree representing a derivation F=> a, 
G 

where a is not necessarily a terminal string, then t is called a cut; in notation, tZ CF. 
Clearly we have DFQCF for all F£N. By a node of t we always mean a non-
terminal node, and if there is no danger of confusion, we identify the node with 
its label. U,, U,(F) and rt(t) will denote the set of all nodes of t, the set of 
all /"-labelled nodes of t and the root of t, respectively. 

The semantic rules are used to assign meanings to derivation trees of G in 
the following way. Let t be a complete derivation tree, u£U,, and assume that 
p: F0—u'0 F j . . . Fkwk is the production applied at u. For each a0£ S(Fn). the func-
t i o n / o c c u r r i n g in the rule a0(F0)=f(a^(Fh), ...,am(Fim)) can be used to deter-
mine the value of a0 at 11 when the values of all the neighbouring attributes 

•>flm(^im) have been determined. Similarly, the rule with left-hand side 
b(Fj) (j£[k], b(H(Fj)) can be used to determine the value of attribute b at the 
j'-th son of u. If it is possible to determine the values of all the attributes at any 
node of t in the above way, then the meaning o it is the set {(«, {va(u)\a£v(i/)})\u£ U, 
and va(u) is the value of attribute a at «}. 

If all the complete derivation trees have a meaning, then H is called well-defined 
or noncircular. 

The dependency graph for the production p\ F0-*w0F1... Fkwk (denoted by 
dp(p)) has as nodes the disjoint union of v(F ;) O ^ / S / : , and there is an arc f rom 
aj(Fh) to a^Fj,) iff a^F^ depends on al(Fh) in p. A graph with nodes v (F) 
(F6/V) and some arcs is called a dependency graph (¿-graph) fo r F. Fo r 
p: F0-'WI)F1... Fkwk and ¿/-graphs y%, ...,yk for F 1 ; ..., Fk define the substitu-
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tion dp(p)(yx, ..., yk) of yx,...,yk into dp(p) by adding all the arcs of yt z'6[A:] 
to dp(p), i.e. fitting on dp(p)\v(Fi). This substitution induces a ¿/-graph for F0 
by restricting the transitive closure of dp(p)(yl5 ..., yk) to v(F0). Now, the induced 
dependency graph for symbol F£N (ids(F)) is defined as the least rf-graph for F 
such that for any production p: F0-~wf)F1... Fkwk, the ¿-graph for F0 induced by 
the substitution dp(p)(ids(F1), ..., ids(Fk)) is a subgraph of ids(F0). The induced 
dependency graph for production p is idp(p)—dp(p)(ids(Fx),...,ids(Fk)). We 
write a, (Fh)~=:pa2(F;2) if there is a nonempty path in idp(p) f rom a2(Fh) to ax(Fh). 
Similarly, a-<Fb denotes that there is an arc in ids(F) f rom b to a. 

The induced dependency graph for a cut t (idt{t)) is obtained by pasting together 
the idp's of all the productions t consists of. Let ux and w2 be two nodes of t, ax£v(ux), 
a2£v(u2). As above, ax(ux)<,a2(u2) denotes that there is a path in idt(t) f rom 
a2(«2) to ax (»]). We write ax («1) if this path contains an R-arc. Recall 
f rom [2] that an R-arc leads to an /-attribute of a node from an ¿-attribute of itself, 
or one of its right neighbours. G is called absolutely noncircular (anc) if is a 
strict partial order for every cut /. 

The following AG will be used as an example throughout the paper. G has 
five nonterminals with attributes: 

v(Z) = {a0}, v(A) = {«„, ax, a2, bx, 6,} 

v(B) = \au a,, by, b2}, v(C) = {ax, bx), v(D) = {ax, a2, bx, b2}. 
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a2}, At= {bi, b2). The productions with the corresponding ф - g r a p h s 
are listed in Fig. 1. Dotted lines denote idp-arcs, 0 and 1 are terminal symbols. 

A partial computation sequence for a derivation tree t£D F is a sequence h 
of so called basic actions ([1]), where each basic action is either the evaluation of 
some /-attributes of a node, called entering the node, or the evaluation of some 
¿-attributes of a node, called exiting the node. Thus, a basic action can be repre-
sented by a basic action symbol (ba-symbol) i(u, B) or s(u, A), where U,, А Я S(u) 
and BQI(u). The order of evaluation is systematic and it cannot violate the depend-
encies of the attributes. By this we mean that h must obey the following restrictions. 

1. The first and the last ba-symbol of /; is i(rt(t), B) and s(rt(t), A), respec-
tively, where and В Q 1(F). 

2. For any two contiguous ba-symbols . . . . ^ ( w А х ) х 2 ( и 2 , A2)... in A, one of 
the following conditions holds. 

(i) u2 is a son of иг and x1 = x2 = i, 
(ii) u2 is the father of щ and x j = x 2 = j , 
(iii) u2 is a brother of щ and ^ = 5 , x2 = /, 
( i v ) И2 — H] a n d X1T£X2. 

3. For every U,, if 

i(u, Bj)s(u, Aj)...i(u, Bm)s(u, Am) 

is the sequence of all the ba-symbols for и occurring in h (from left to right), then 
(В^Аг, ...,BmUAm) is an ordered subpartition of v(u). This subpartition will be 
denoted by Eh(u) = (El(u), ...,Em(u))h or E(u) if h is understood. By an ordered 
subpartition of a set С we mean a sequence of sets (C 1 ; ..., Cm) such that 

m 
и Q g c and С ; П С , = 0 if 1 . ^ i ^ j s m . 
i= 1 

4. For any production p, consider an arbitrary occurrence of p in /, and let 
m15 м2 and ал, аг such nodes and attributes of this occurrence that a2(w2) depends 
on аг(щ) in p. If a2(u2) occurs in h (i.e. there exists a ba-symbol x(u2, A) in h with 
a2€A), then so does fli(Mj), and the occurrence of a ^ u , ) precedes that of а2(м2). 

If Eh(u) is a complete partition (i.e. U£'A(M) = V(M)) for all u£Ut, then h is 
a (total) computation sequence. If h satisfies 1, 2 and 3 only, then it is called a walk. 
A walk It is a pass if: 

— each node is entered and exited (i.e. visited) exactly once; 
— during the visit to a node, all its sons are visited in a left to right order. 
h is an w-pass walk (m£N) if h=hl...hm and Af is a pass for all /€[w]. 
A ba-symbol x(u, A) is empty if A=0. A pass is called empty if all the ba-

symbols occurring in it are empty. 

Example 2.1. Let t be the complete derivation tree of our example AG illus-
trated on the left-hand side of Fig. 2. The graph on the right-hand side indicates 
the dependencies between the attributes of t. A 4-pass computation sequence for t 
is the following. 
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Z w0 

A 

B u2 

C m3 D w5 

0 D w4 1 

Fig. 2. 
h=h1h2h3hi, where 

K - i(«o. 0)K«i> {bi))i(u2, {b2])i(u3, 0) i" (w4, 0)s(w4, 0)s(«3 , 0) 

h2 = i(u0, 0)i'(w1, 0)i'(«2> 0) i («. . 0)'(«4. 0)s(«4> 0)s(«3> 0) 

»(«6» {M) s ( M s , W M ^ a , W M w i , 0)s(«o, 0), 

h3 = i(u0, 0)i(uu 0)i(u2, {bi})i(«3. {M) ' ( "4 . ( M M « « , {«2» 

s(«3 , 0)i(K6, 0)S(M5, 0)S(M2, 0)S(M15 0)S(Wo, 0), 

= i(w0, 0)i(ux, {b 2} ) i (u 2 , 0 ) i ( «„ 0)i(w4, (M)s(«4> W ) 

s("3> {«l})»'(«5> 0)s(«5> 0)s(«2, {fll})s(«l, {«1, <J2}M"o> W ) - ' 
Let p: F0 —WQ/^... Fkwk£P and tj£DFj for each 76[A:]. Let 

Tt=(A1\JB1,...,Am\JBm) 

be an ordered subpartition of v(F0) with AiQS(F0), Bt^I(F0) (/<E[w]), and let 
hj = h[J)...hjj] be an nij-pass walk ( m ^ m ) for each tj. no(h1, ..., /;,.) will denote 
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the 771-pass walk i(u0, B1)h[1\../1^s(u0, ;*,).../(«„, Bm)h™ ...h™ sfa, AJ for 
F o ( » o h - t k W k ) £ D F o , where u0 is the root and h j j ) is empty if i>rr i j . 

The proof of the following two easy lemmas are left to the reader. 

Lemma 2.1. Let f be a complete derivation tree and u£U,(F). Denote t'£DP 
the subtree of t below w, and let h=hx...hm and l'=l'x...l'm be m-pass computa-
tion sequences for t and t', respectively. Each /i( (/£[m]) can be written in the form 
h^ot j l iP i , where / = / ] . . . / m is an m-pass computation sequence for / ' . If Eh(u) = 
= Er(rt(t')), then h' = h'x...h'm —' where / / •=a i / i^ i — is also an m-pass computa-
tion sequence for t. 

Let 7z1 = (A1, ..., A„) and n2—(Bl,...,Bm) be two ordered subpartitions of a 
set D. Construct the ordered subpartition 

merge fa, 7z2)=(Ct, ..., Cmax(n ,m)) 
as fo l l ows : 

(i) C ^ A ^ B , , 
i 

(ii) C i + ] = y l i + 1 U J B i + 1 \ U Cj for each 1 ^ / < max (n, m). 
J=1 

Lemma 2.2. Let ht ( / = 1 , 2 , ) be m ;-pass partial computation sequences for 
t(LDF, m = max (m,, m^. Construct an m-pass walk merge (/?j, A2) as follows. 
For each w£ U, let 

Emerge (/.„/,,)(") = merge ( £ , , » , Eh2(u)). 

Then merge fa, h2) is a partial computation sequence. 
Note that an m-pass walk for t is completely determined by the set {£(w)|i/£ U,}. 

The operation merge can be extended to any number of walks by: 

merge fa,..., /(„+,) = merge (merge fa, ..., //„), hn+1). 

3. The atomic characterization and decidability results 

An atomic pass-description for H is a five-tuple 3l—{si, p, g, 7i0), where 
(i) si is a finite nonempty set, called the set of atoms. 

(ii) p: N-~P(si) assigns'each nonterminal a subset of si. 
(iii) x={xF\F^N}, where XF- is a function such that 

U XF(c) = v ( F ) a n d / F ( c i ) n z f ( c 2 ) = 0 if cx ^ c 2 . 
ctKF) 

(iv) g — {gp\p^P} is a family of mappings such that if p: F0-~w0F,... Fkwk, then 

j=i 

As in the case of attributes, c (F ) indicates an occurrence of an atom c£p(F), and 
we prefer the notation c(Fj)£Qp(c0) to ( j , c ) £ g p ( c 0 ) if no confusion arises. 

(v) 7r0 is an ordered partition of p(Z). 
Let n be an ordered subpartition of p(F). We say that an m-pass partial com-

putation sequence h for 7£Z)f respects ®/tt if it satisfies the following conditions. 
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1. F o r every node u£U,(Y) (Y£N) there exists an ordered subpartition nh{u) — 
= Cs/i, of n(Y) such tha t 

( £ , (« ) ) „= U O ^ I c i O for all ie[m}. 

2. Fo r any production p: F0 —u' 0F, . . . Fkwk consider an arbitrary occurrence 
Of D in t. Let h0, ..., uk be the corresponding nodes of t, respectively. If 
nh(U l) = ( < \ ( O S / S i ) , then 

a) for every i£[m] and j£[k] 

{c(Fj)\ce^} Q eP(^i0))nii(Fj); 

b) if c(Fj)£i)p(t'i)HQp(C2) fo r some c, ^c2 such that and qd.s / i 0 ' 
( / = 1, 2), then / s min ( / , , i2). 

3. nh(rt(t)) = n. 

Definition 3.1. ^ is a tomic m-pass with respect to OH if every complete deriva-
tion tree has an w-pass computa t ion sequence respecting & is atomic multi-
pass (amp) if there exist m and S> such that ^ is a tomic m-pass with respect to 

Example 3.1. In our example AG let ju, q, 7ToX where 

si = {d„ d2}U{(C1S 0 | i€[3]}U{(c2 , 0 | /6[2]}U 

U{(c 0 , i ) , (c, 0|i€[4]}; 

H(Z) = {(c0, ;)[/€[4]}, n{A) = {(c0 ,1), ¿ / J U ^ c , /)|/£[4]}, 

_ H{B) = {(Cl, 0I '€[3]}U{(c2 , 0 | /€[2]}U K , < / 2 } , 

H{C) = {(Cl , i ) | / 6 [ 2 ] } U K } , MD) = {(Cl, 1), (c2, 1)}; 

, / 0 if / S 3 / 0 if / s 
I {a0} if i = 4 I {fll5 a 2 , b2} if i = 

1) = W /.AUh) = = {bi} y.B{d-2) = {b2} 

S 3 
4 

. . . . f 0 if / S 2 , ., f 0 if / = 1 
* B ( C l ' , ) = i { f l l } if / = 3 * B ( C 2 ' 1 H { « 2 } if ¿ = 2 

Z c ( C l ' 0 = { { f l i > if I - 2 = { M . 

1) = K , M Xd(c2, 1) = {«2, b2}; 

6i(c0, 1) = {(c0, 1)04), dx(A), (c, 1) (/<)}, Si(c0 , 2) = {(c, 2)(/t)}, 

(c0, 3) = {(c, 3 ) { A ) } , i?i(c0> 4) = {(c, 4)(y4)}, 

¡?2(c0 ,1) = 62(di) = 0, e , (c , 1) = {¿ , (5) , (c2, 1)(Z?)}, 

e , ( c , 2 ) = { ( c 2 , 2 ) ( 5 ) , ( c l 5 l ) ( B ) } , 

Q2(C, 3) = {(c1; 2)(5) , d^B)}, e2(c, 4) - {(Cl, 3)(2?)}, 
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03(Ci, 1) = 0s(ci, 2) = 63(Ci, 3) = 0, 

Ca(c., 1) = {(ci, 1)(C)}, Qa(c„ 2) = {(Cl, 2)(C)}, 

= £>4 (¿2) = 0, ftfo, 1) = {(clf 1 )(£>)}, 

e 4 ( C l , 2) = K ( C ) , ( C l , 1)(C)}, e 4 ( C l , 3) = {(Cl, 2)(C)}, 

Qifa,1) = {(ci, l)(/>)}, 04(c2, 2) - {(c2, 1) (£>)}, 

= 0 . es(ci, 1) = {(C„ 1)(Z>)}, 0 5 ( C l , 2 ) = {(cL, 1)(/))}, 

es(ci. I) = Qefa, 1) = 0; 

«0 = ({(c0, 1)}, i(c0, 2)}, {(Co, 3)}, {(c0, 4)}). 

It is not difficult to check that the example AG is atomic 4-pass with respect to 3>. 
For example, the computation sequence h of Example 2.1 respects 3>ln0. 

Readers who are less familiar with attribute evaluation procedures are advised 
to read section 4 before going further. 

Lemma 3.1. Let /z; ( / = 1 , 2 , . . . , « ) be w,-pass partial computation sequences 
for t £ D F respecting ^/ t i ; . Then merge (A,|/€[«]) respects ^ /merge (7r,|/€[«]). 

Proof. Obvious. 

Definition 3.2. 'S is absolutely non-i?-recursive (anr) if it is anc and there is 
no cut t for which the following holds. There is a leaf «6 U, having the same label 
F a s u0 — rt(t) and an attribute a£v(F) such that : a (« 0 )<f a(11) or a(«)<,"a(u 0 ) . 

Let IS be anr. We shall prove that it is amp, too, moreover, we give an algorithm 
that provides the minimal number m for which 'S is atomic w-pass. In the first step 
the algorithm computes a relative difference r(F, a, b) for each triple F£N, a<Fb. 
{r(F, a, b)\F£N, a<Fb} is the system of minimal numbers such that for any p: F 0 — 
— w0 F , . . . Fk wk and idp (/>)-path 

a0(F0) <pa1(Fii) b^FJ < p . . . < p a„(F in) bn(Fin) <p b0(F0) 
containing I R-arcs, 

n 
r(F0, a0,b0)^l+ 2 r(Fij, « j , bj). 

j=1 
r(F, a, b) expresses that, during an amp evaluation of derivation tree, at any F-
labelled node, if b(F) can be evaluated in the /-th pass, then a(F) cannot be evaluated 
sooner than in the i + r(F, a, £>)-th pass. This statement will be proved in Lemma 3.6. 
In the second step a pass-number q(F,a) is computed for each F£N, 5 ( F ) 
such that if t£DF is an arbitrary derivation tree, and the values of all the /-attributes 
at the root are available, then — supposing an amp evaluation — a(rt(tj) can be 
evaluated in the q(F, a)-th pass, but no t sooner in general. If all these numbers are 
finite, then the required atomic description can be constructed easily. 

Algorithm 3.1. Input: An anr AG 2?. 
Output: pass-numbers q(F,a) for each F£N, ad S(F)\ 

inherited pass-numbers qp(Fj,a,a0) for each 
p: F0 - w0F1...Fkwk, jt[k], a£v(Fj), a0£S(F0) such that a0(F0)^pa(Fj). 
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(1) Compute for each F£N, a<Fb the number r(F, a, b) as follows. 
(a) Let r0(F,a,b)=0 and set i=0. 
(b) For each p: F0-<-w0F1... Fkwk£P 

begin for each b0£I(F0) 
begin let H0={b0(F0)}, x(b0(F0)) = 0 and set « = 0 . 

(i) Let 
Hn+1 = Hm\J{a(Fj)\aZS(Fj), j€[k], a(Fj)^pb0(F0) and for any a ' (F m K U 

\J(S(Fd\lZ[k])\JH0, a(F^pa\Fm)^pb0(F0) implies that a\Fm)£H„}. 
If Hn+1=H„, then goto step (ii), else for each a(Fj)£Hn+1\Hn let 

x(a(Fj)) = max (max (rt ( F , a, b)+x(a'(FJ)\a(Fj) b(Fj) <pa'(Fm)eH„)), 

ma x(r,(Fj, a, b)+x(a'(F,„)) + l\a(Fj) <F, 6 (*",-) a'(Fm)£H„)) 

(note that max (0)=O by definition); 
set « = « + 1 and repeat step (i). 

(ii) For each a 0 < F o b 0 let 

r f iU^o , «o, K) = m a x ( x ( a ( F j ) ) \ a ( F j ) e H B , a0(F0) < p a(F , . ) ) ; 

end 
enrf; 

For each F£N, a<Fb let 

ri+1(F, a, b) = max ( r i? \ (F , a, b)\p£P). 

. I f - r i + 1 ( F , a, b)=r-,(F,a,b) for all F£N, a^Fb, then let r(F, a, b) = r{(F, a, b), 
else set / = / + 1 and repeat step lb). 

(2) Compute for each F£N, ad S(F) the number q(F, a) as follows. 
(c) Let q0(F,a) = 1 and set i=0. 
(d) For each p: F0-w0Fx... Fkwk 

begin let Mo = 0 and set n=0. 

(iii) Let 

Mn+1 = M„U{a(Fj)\Mk], aeS(Fj) and for any a'(Fm) (m£[k], a'iS(FJ), 

a(Fj)^pa'(Fm) implies that a'(Fm)£Mn). 

If Mn+1 = M„, then goto step (iv), else for each a(Fj)£Mn+1\M„ let 

y(a(FJ)) = max(qi(Fj, a), max(max(r(Fj,a,b)+y(a'(Fm))\ 
a ( F j ) ^Fib(F;)^pa'{Fm)dMn), 

m a x ( r ( F j , a, b) + y(a'(Fm)) + i\a(Fj) b(Fj) a '(Fm)€M„))); 
set n=n+l and repeat step (iii). 

(iv) For each a0=S(F0) let 

q}&(F0, a0) = max (y(a (F , )) |a(F¡)(LMn , a0(F0) < p a ( F , ) ) 

end; . 

2 Acta Cybernetica 
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For each F£N, aeS(F) let 
qi+1(F, a) = m a x ( g f f i ( F , d)\p£P). 

If qi+1(F,a)=qi(F, a) for all F£N, a£S(F), then let q(F, a)=qi(F, a), else set 
i=i+1 and repeat step (d). 

(3) Compute for each p: F0— h>0 F t . . . F k w k , ./€[&], a£v(Fj), a0£S(F0) such 
that aa(F0)<pa(Fj) the number qp(Fj,a,a0) as follows. 

Let N0={a0(F0)}, qp(F0, a0, a0)=q(F0, a0) and set n=0. 
(v) Let 

AWi=^nU{a(F,.)|y<E[*], a i v ( F j ) , a 0 (F 0 )< p a(F, . ) and for any a'(Fm) 

(0 ^ m ^ k, a ' € v ( F J ) , a(F0) ^pa'(Fm) < p a ( F / j implies that a'(FJeNn}. 

If Nn+1=Nn then halt, else for each a(Fj)£Nn+1\Nn; 

if a£I(Fj), then let 

qp(Fj, a, a0) = min (qp(Fj, a', a0)-r(Fj, a', a)\a'eS(Fj), a'(Fj)iNn)-, 

else (i.e. if a£ S(Fj j ) let 

qp(Fj, a, a0) = min(min (qp{Fm, a', a0)\a'(Fm)£Nn, a'(Fm,) < p a ( F / » , 

min {qp(Fm, a', a0)-\\a'(Fm)£Nn, a'(FJ a(F,.))); 

set / i = n + l and repeat step (v). 

Example 3.2. Executing the algorithm on our example AG we get tha t : 

r(D, b,) = r(D, a2, b2) = 0, r (C, ^ , bj = 1, 
r(B, bt) = r(B, a2, b2) = 1, r(A, a2, b2) = 0, 
r(A,a2, bj) = 1, r(A,a1,b,) = 3; 
q(D, a,) = q(D, a2) = 1, q(C, a,) = q(B, a2) = 2, 
q(B, Qj) = 3, q(A, a2) = 2(but q,(A, a2, a0) = 4), 
q(A, O]) = 4, q(A, a0) = 1, q(Z, a0) = 4. 

Lemma 3.2. For every i s 1, F£N and a<Fb, if ri(F,a,b)>0, then there 
exists t£DF such that a(rt(t))<?b(rt(tj). 

Proof. Trivial, by construction. 

Lemma 3.3. If ^ is anr, then the numbers r(F,a,b) and q{F, a) computed 
in steps (1), and (2) are all finite. 

Proof, (a): r(F,a,b) is finite. 
Let i0=\\{(F,a,b)\F£N, a < f 6 } | | + l ( | |5 | | denotes the cardinality of set B), 

and suppose that r i o + 1 (F 0 , a0, b0)>rio(F0, a0, b0)~r0 for some a0<Fob0. Then 
there exists p: F 0 —w 0 F 1 . . . Fkwk^P such that r/0

p]i(F0, a 0 , 6 0 ) > r 0 , i.e. fo r some 
a (F j )ZH n we have 

ao(Fo) ^a(Fj) ^pa'(Fm) < f m Z / ( F m ) < „ ^ 0 ) , 

where x(a(Fj))>-r0, and consequently r,0(Fm , a', br)>rio_l(Fm, a, b') for some 
jtj6[A:], a'-=.Fmb'. (Note that i 0 S 2 , else we have nothing to prove.) Let a 0 = 
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= ( F 0 , a 0 , 60) = (F<°>, „«•>, &«»), a i = ( F m , a ' , b') = (FW, ¿>(1)), and construct a 2 = 
= (F{2\ aS'\ Z>(2)), . . . , a i ( |_j in the same way. I t follows tha t for any 0 s z ' < y s z ' 0 — 1 
there exists a cut / £ C f M and a leaf u of t labelled by F(i) for which we have: 

a < o ( r / ( 0 ) a ( J>(w) <fO> b{i\u) < , b ( i , ( r i (0) - (1) 

Moreover , by Lemma 3.2, if all the cuts t with proper ty (1) are such that neither 

a<°(rt(0) au)(")nor 6<°(rf(0), (2) 
then r i 0 _ i + i ( a 1 ) = r l 0 _ J + i ( a J ) . By the choice of /'„, a — a ; for some O s i < / s / 0 —1. 
In this case, however, rio_i+1(ai) = rla_J+1(aJ) is impossible, thus (2) contradicts 
the anr proper ty . We conclude that rio+1(F, a, b)=rio(F, a, b) fo r all F£N, a*=Fb, 
which was to be proved, 

(b): q(F,a) is finite. 
Let n o n i u s a)|F€JV, a € S ( J 0 } l l + l . and suppose that g„t+1(F0, a 0 ) > 

>q„o(F0, a0) = q0 fo r some a0£S(F0). Then there exists p: Fn-~w0Ft ...Fkwk£P 
such tha t qil\->{F0, a0)>q0, i.e. f o r some a(Fj)£Mn we have a0(F0)^pa(Fj) and 
y(a(Fj))>q0. Choose this a(Fj) so tha t 

(i) y{a(Fjj)=qno(Fj,ay, 
(ii) if a0{F0)^pa\Fm)^pa{Fj), then y(a'(Fn))>qjFm, a'). 

Clearly, 9 n o ( F ; . , a ) > ? n o _ 1 ( F , . , a ) . Let p0 = (F0, a0) = (F^, a<°>), /J1 = (F , . ,a ) = 
== (F(1>, a (1 )), and construct j? 2 =(F ( 2 ) , a (2 )), ...,/?„„_! in the same way. It follows 
that for any O g i : < m S n 0 - l there exists a cut ?€CFtk) and a leaf u of t labelled 
by f(»0 f o r which: 

(i) a ^ ( r t ( t ) ) ^ m \ u ) ; 
(ii) if a W ( r t ( t ) ) ^ « a W ( u ) , then qna-k+1(Pk)=q„0-m+1(PJ-

By the choise of w0, Pk = Pm fo r some 1. As in the par t (a) of the 
proof, qno-k.i.i(Pk)=cln0-m+i(fim) is again impossible, thus (3) contradicts the anr 
property. Consequently, q„0+1(F, a)=q„0(F, a) for all F£N, a£S(F). 

N o w we construct si, n, X, Q and 7t0 such tha t 'S is a m p with respect to 
B=(st, p, x, 6, Let 

s i = y4 ;U{(a, i)\a£As, 1 si / =s max (q(F, d)\F£N such tha t a € 5 ( F ) ) } . 
Define the mappings a : si-*A and /?: si->-N by 

( \ = i b i f c = b^Ai' flMzri1 i f c € A " 
a ( C ) l a if c = (a,i),a£As

 P{ J I z if c = (a, i), a£As. 

To simplify the formalism let q(F,b)=\ fo r each b£I(F). For F£N let 

f i ( F ) = {c | a ( c )€v (F ) and P(c) ^ q(F, a(cj)}, 

and if c£n(F), then 

y ^ = /{«(c)} if P(.c) = q(F,x(c)), 
X f ( } 10 otherwise. 

For p: F0-*w0F1...Fkwk and a0dS(F0) consider the inherited pass-numbers 
qp(Fj, a, a0) computed in step (3) of Algori thm 3.1. Extend qp to triples (Fj, c, a0) 
c £ n ( F j ) by 

qp(Fj, c, a0) = qp(Fj, < x ( c ) , a 0 ) a ( c ) ) - 0 ( c ) ) . 

2* 
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For each c0£p(F0), if c 0€a - 1(y4 s) , then let 

QP (c0) = {c (Fj) | a (c0) (F0) < p a (c) (Fj) and 

P(c0) = qp{Fj, c, a(c0))}, 

else let gp(co) = 0. Finally, let 7t0 = (si1, ..., sfm), where 7« = max (q, (Z, a)\a£ v ( Z ) ) 
and for every /£[«?] si— {c£p(Z)\fi(c) = i}. 

The reader is advised to construct the atomic pass description of the example 
AG. Since this is similar to that of Example 3.1, we do no t detail it here. 

Lemma 3.4. Let F£N, a^S(Fr) and t£DP be arbitrary, n = (s/1, . . . , an 
ordered subpartition of p(F) such that 

(i) U s / j = { c t n ( F ) \ a = * M c ) } , 
j=I 

(ii) (a, q(F,a)-i)£sin_i for every 0 ^ i ^ q ( F , a), 
(iii) if a<Fb and bdsttj, then j^n-r(F, a, b). 

There exists an «-pass part ial computat ion sequence fo r t respecting ^/n. 

Proof. Induction on the depth of t. For t = F(w) (F-*-w£P fo r some w£T*) 
the statement is obvious. Let t = F0(w0t1...tkwsuch tha t the t op product ion of 
t is p: .F0—Wo-Fi...Fkwk, and let a0(LS(F0). It is enough to prove the s ta tement 
for the subpartition 7 i 0 = ( ^ 0 ) , ...,si^) of p(F0) which satisfies (i)—(iii), moreover , 
n0 = q(F0,a0) and b0^^Lr(Fo,aotbo) if a0<Fob0. F o r j£[k] and a£S(Fj) such 
that a0(F0)<pa(Fj) let 7ij(a)=(s/(J\ ..., s/<f), where nj = qp(Fj, a, a0) and 

si^ = {c(Fj)\a^F.a(c) and qp(Fj, c, a) = i}. 

As r>F. and 7ij (a) satisfy the requirements of the lemma, by the induction hypoth-
esis there exist «j-pass partial computation sequences hj(a) for tj respecting 
2>lTij(a). Let 

hj = merge (hj(a)\a£S(Fj), a0(F0) < p a (F , . ) ) . 

By Lemma 3.1, hj respect B/iij, where nj=(01
j), . . . , is an appropr ia te ordered 

subparti t ion of p(F'j). Observe that nj^n0, and by the construction of q we have 
a i J ) = e P ( f lo , i ) r \n (F j ) - This implies that (z f o (^ i ( 0 ) ) , X F o ( ^ ) ) o ( l h , . . . , hk) is 
an «O-pass partial computat ion sequence for t respecting ^/TT0, which was to be 
proved. 

Proposition 3.1. If $ is anr, then it is amp. 

Proof. First suppose tha t ^ is connected, i.e.: 

a) none of the /-attributes of any F d N is isolated in i d s ( F ) ; 
b) for every p: F0—w0F1... Fkwk and a£S(Fj) (j£[k]) there exists o0€ S(F0) 

such that a 0 ( F 0 ) < p a ( F J ) . 
By Lemmas 3.1 and 3.4 every t£Dz has a (total) computa t ion sequence respecting 
SI/TIQ, thus H is a tomic w-pass with respect to 3). To treat the general case extend 
^ as follows. For each F£N let v ( F ) = v ( F ) U {a}, where a is a new ¿-attribute. 
Correspondingly, for each p: F0—w0F1...Fkwk add the rule a(F0)=f(b1(F0), ... 
••••> bi(F0), a^Fjj, ...,a„(Fjn), « ( F J , ..., a(Fk)) to rp, where b1, ...,bi are all 
the isolated /-attributes of ids (F0), (F^) , ... , a„(Fjr) are all those ¿-attributes 
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that cannot be connected with any a0£S(F0) in idp (p) and / is a hypothetical 
function. Let ^ d e n o t e this extended grammar. As is connected, we can construct 

P-Xi 6 a r , d 7t0 as above. Returning to the original grammar , let 
n(F)=fi(F) for each F£N, 

„ if « ( c ) ^ a , 
Z f ( C ) " l 0 if <x(c) = a, 

6 = 6 a n d 7r0 = 7r0. It is clear that ^ is amp with respect to 3l=(s#, fi, g, 7t0) 
defined in this way. 

A top-down assignment of partitions for H is a quadruple ^={3., x, <p, q0), 
where 

(i) & is a finite nonempty set, the set of states; 
(ii) x = {tF\F(iN} such that xF is a mapping of 2L into the set IJF of all ordered . 

partitions of v(F); 
(iii) <p = {<pp\p£P} such that if p: F0-+w0F1... Fkwk, then cpp is a partial 

mapping of 2, into £tk. 
(iv) q 0 d £ is the initial state. 

Concerning states, ST is considered as an ordinary deterministic top-down tree 
automaton working on the derivation trees of G. sql(u) will denote the state in which 

passes through a node u of a derivation tree t, starting f rom state q at the root. 
q will be omitted if t£Dz and q=q<,-

Let ( b e a derivation tree and q££l. An m-pass computation sequence h for t 
is said to respect STjq if Eh(u) = xF(sqt(u)) for all nodes u(£Ut(F)). 

Definition 3.3. ^ is generalized uniform m-pass with respect to ST if every 
complete derivation tree has an w-pass computation sequence respecting 
<§ is generalized uniform multi-pass (gump) if there exist N and 3~ such that 
0 is generalized uniform w-pass with respect to 9~. • <$ is uniform multi-pass (ump) 
.f Fcan be chosen so that SL= U(nF\F£N), xF(n) = n for all F£N, n£nF, and q> 
.s a top-down assignment of partitions in the sense of [5]. 

Lemma 3.5. If ^ is gump, then it is ump, too. 

Proof. Let be gump with respect to ST. For each F£N let 

StF = {s,(u)\teDz, «€ U,(F)} 

beJthe set of possible states at an F-Iabelled node. Consider an arbitrary t£ Dy 
and a node u£ U,(F). Intervene in the work of ^"on t at node u as.follows. 

(i) Force 5"to change the state st(u) to any other state q£2.F for which xF(q) = 
= xF(st(u)). 

(ii) Let it continue working as if q were the state in which it had reached u. 
Let s'(v) denote the new state assigned to any vd U, in the above way. By 

Lemma 2.1 there exists a computation sequence h' for t such that Eh,(v) = xr{s'(v)) 
for all nodes v£Ut(Y). By successive interventions ST can be forced to perform a 
uniform top-down assignment on t, thus can be made uniform. Moreover, the 
pass-number m also remains the same. 

Proposition 3.2. If ^ is amp, then it is ump. 
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Proof. Let 'S be atomic m-pass with respect to p, y_, g, n0). Define 
$~=(£l,T,<p,q0) as follows. 3.= U({F}X-/7 ( l ( F ) | / r£A'), where / 7 ^ , denotes the set 
of all ordered w-partitions of p(F); q0 = (Z, jr0). For each F£N let 

RF{F, ..., s / J ) = OFC^X), ..., X F W ) -

If p: F0-w0F1...Fkwk£P, then 

<pp(F0, rt(0)) = ( (F l 5 ttU)), (Fk, *<*>)), 

where i6n)=(st[n), O^n^k, and for any j£[k] and c£p(Fj), c € ^ 0 ) iff 
i is the minimal number such that c(Fj)Zgp(s/<

i
0)). Let h be an w-pass computa -

tion sequence for t£DF and An easy induction on the depth of t shows 
that h respects Si/n iff it respects ^/(F, n). Thus , <§ is gump with respect to ST, 
and by Lemma 3.5 it is ump , too . 

Proposition 3.3. If is u m p , then it is anr. 

Proof. Let t£Dz, u£U,(F) and a<Fb be arbitrary. I t was proved in [5] 
(Lei ima 4) that if h is a un i form computat ion sequence for t, then b(u) must be 
evaluated sooner than a(u) in h. Suppose <8 were no t anr. I t is clearly anc, so there 
must be a cut t£ CF, a leaf u£ U,(F) and an at t r ibute a£v(F) such tha t 
a(rt(t))<?a(u), or vice versa. Let tk denote the cut which can be obtained by /c-fold 
composition of t at node u. Since ^ is reduced, there exists a complete derivation 
tree t0 that contains tk. But in idt (i0) there is a pa th containing at least k R-arcs, 
thus <$ cannot be uni form w-pass for any m^k. This is a contradiction, since k 
is arbitrary. 

By Propositions 3.1, 3.2 and 3.3 we have proved 

Theorem 3.1. ^ is anr iff it is amp iff it is ump. 
m 

Let H be uniform 7M-pass with respect to r. If n=(A1, ..., Am)d3. and a£ 1J A;, 
¡=i i 

then let in(a) denote the n u m b e r / ' f o r which a£Ai. 

Lemma 3.6. (a) F o r every F£N, a<Fb and n££lF: 

i«(a)-in(b)^r(F,a,b). 

(b) For every F£N, a^S(F) and in(a)s=q(F, a). 
Proof, (a) Let r(F, a, 6) = min (iK(a)-in(b)\n££lF). We have to prove tha t 

r(F,a,b)^r(F,a,b). Fix F0£N, a0<Fob0 and p: F0 —w0F1...Fkwk arbitrari ly, 
and let n0£MFo. If gp(n0)=(n1, ..., nk), then there exists a complete derivation 
tree t and nodes w„, wl5 ..., uk of t (un labelled by F„) representing an occurrence 
of p such that st(u„) = nn for every O^n^k. Let 

a0(F0) < p a 1 ( F i l ) ^ ¿>i№,) <„...<„ a„(Fin) ^ b„(Fin) <p b0(F0) 

be any path in idp (p) containing / i?-edges. Since there exists an w-pass computa -
tion sequence for t respecting T /q 0 , 

¡ M - i M - /+ 1(«„ K-)-',,• (bj)) S / + 2 m r aj, bj). 
j=1 ' J j=l 
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n 
Thus, r (F 0 , a0, ¿ 0 ) S / + 2 f(Ftj, aj> bj). However, by construction r(F0, a0, b0) is 

the minimal number satisfying this property, i.e. r ( F 0 , a0, b0)^r(F0, a0, b0) for all 
F0£N, a0<Fob0. Statement (b) can be proved similarly. 

Theorem 3.2. If ^ i s anr, then m0 = max {q(Z, a)\a£v(Z)) is the minimal num-
ber m for which 'S is atomic wz-pass. 

Proof. Suppose (S were atomic wi-pass for some w < m 0 . Then, by Proposi-
tion 3.2 is uniform w-pass, too, which contradicts (b) of Lemma 3.6. . 

Now' we give an algorithm that decides the anr property. It is assumed t ha t 
the well-known test for the anc property has been executed before. In the first s tep 
we construct the set 

R={(F,a,b)\F£N, there exists t£DF such that a(rt(t))<?b{rt{t))}. 
Step (2) constructs for each F£N and a£S(F) the set 

i ? (a ( iO)={a ' ( iO |a '€S ' (y ) and there is a cut t£CF and a leaf u£Ut(Y) such 
that a(rt{t))*=*a\u)}, 

while step (3) constructs for each F£N and b£l(F) the set 
R(blF))={b\Y)\b'£I(Y) and there is a cut t£Cr and a leaf u£U,(F) such 
that b(u)^b'(rt(t))}. 

Algorithm 3.2. Input: An anc AG . 
Output: "yes" if ^ is anr, " n o " otherwise. 
(1) Construct the set R Q N x A s X A t as follows. 

(a) Let RQ ~ 0 and set / = 0 . 
(b) For each p: F0 —WoFj...Fkwk£P let 

= {(^o, «o, b0)\aa(F0) fc0(F0) or a„(F0) a (Fj) <Fjb(Fj) b0(F0) 

for some (Fj , a, b)£Ri}. 

Let If Ri+1=Ri, then let R=Rt, else set / = / + 1 
and repeat step (b). 

(2) Construct for each Ff_N, a£S(F) the set R(a(F}) as follows. 
(c) Let L0(a(F))={a(F)}, R0(a(F)) = @ and set / = 0 . 
(d) For each p: F0-*w()F1... Fkwk£P and a0£S(F0) let 

L^\{a0(F0)) = U{Li(a(FJ))\jm, a0(F0)^pa(Fj)); 

m(ao(Fo)) = U (* , (« (F , ) ) | j £ [k ] , a0(F0) < p a(F,.))U 

U (LiiaiFjWm, a0(F0) a (Fy), or a 0(F 0) < p a'(FJ <Fm 

^Fmb'{Fm) ^ta{Fj) and (Fm,a\ b')ZR). 

Let L i + 1 ( a ( F ) ) = L I.(a(F))U(U(L1ii\X«(/ ; '))|/7€JP)); 

If both Li+1(a(F))=LAa(F)) and Ri+1(a(F)) = Ri(a(F)) for all F£N, a£S(F), 
then let R(a{F)) = Ri(a(F)), else set / = / + 1 and repeat step (d). 
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(3) Construct for each F£N, b£I(F) the set R(b(F)) as follows. 

(e) Let L0(b(F)) = {b(F)}, R0(b(F))=Q and set i = 0 . 

(f) For each p: F0-w0F1... Fkwk£P, F£N and be 1(F) let 

( 6 0 ( ^ ) 1 ^ = ^ for some j£[k] and b(FJ)^pb0(R0)) 

fifp
+\(b(F)) = U(Ri(b0(F0))\F = Fj and b(Fj) ^pb0(F0))U 

U (LMFoW = Fj and b(Fj) b0(F0))U 

U (Lf(bo(F0))|F = Fj and b(Fj) a'(FJ b'(Fm) fc0(F0) for 

some [fc], (Fm, a', b%R). 

Let 

*i+i{b{F)) = Ri(b(F))U (U {R}&ib{F))\pZP)). 
If both Li+1(b(F))=Li(b(F)) and Ri+1(b(F))=Ri(b(F)) for all F£N, b£l(F), 
then let R(b(F))=Ri(b(F)), else set i = i + l and repeat step (f). 

(4) Output " n o " if there exist F£N and a£v(F) such that a(F)£R(a(F)). 
Otherwise output "yes". Halt. 

Theorem 3.3. The atomic (uniform) w-pass property can t e decided in poly-
nomial time. 

Proof. By Theorem 3.2 it is enough to prove that Algorithms 3.1 and 3.2 are 
both polynomial. The size of ^ will be expressed in the parameters n = ||JV||,/> = | | / ' | | , 
a = M | | and which is the maximum number of nonterminal occurrences in a 
production. First consider Algorithm 3.2. One execution of step (b) requires 0(pxa2) 
time, and it must be executed at most times. Thus, the total amount 
of time required for step (1) is 0(pxnai). In step (2) consider the sum 

s, = |F€JV, aeS(F)) for each /. 

Since 2na is an upper bound for all the Sh step (d) must be executed at most 0(na) 
times. One execution of step (d) requires 0(pxa2) time, so step (2), as well as 
step (3), needs 0(pxna3) amount of time. Thus, the complexity of Algorithm 3.2 
is 0(pxnai). Now consider Algorithm 3.1. One execution of step (b) requires 
0(pxcP) time, and by Lemma 3.3 it must be executed at most ?'0<«o times. Sim-
ilarly, step (d) must be executed at most n 0 < n a times, and one execution needs 
0(pxa2) time. Step (3) is not relevant, thus the complexity of Algorithm 3.1 is 
0(pxna4), too. 

4. Implementation 

As it is usual, a node u of a derivation tree is considered an object consisting 
of the following data. 

— u.prod: number of production applied at u; 
— u. j : reference to the j-th son of w; 

. — u.a: attribute a at u for each a£v(u); 
— u.on_c and u.off_c: Boolean flags for each atom c£p(u). 
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The initial value of all the flags is false, u.on c can be set to true by procedure 
activate (u, c), while procedure release (u, c) sets u.on c= false and u.ojf_c = 
= true. Boolean functions active (u, c) and done (u, c) are used to test the value 
of on c and off_c at u, respectively. For each F£ N we have a procedure F pass (u), 
which makes one visit to an F-labelled node u as follows. 

Procedure F pass(u) node u 
begin 

for each c£/i(F) 
if active (w, c) then 
begin 

case u.prod of 

p: c o m m e n t p : F0 — w0F1 . . . Fkwk 
for / '= 1 to A: 
begin 

for each d£Qp(c)Clp(Fj) 
if not done (u.j, d) then 
begin 

activate (u.j, d); 
evaluate attributes yFj(d)C\I(Fj) at u.j 

end; 
Fj_pass(u.j) 

end; 

evaluate attributes z F o ( c )n S(F0) at m . . 

esac; 
release (u, c) 

end 
end 
Procedure evaluate (w) controls the evaluation of a complete derivation tree with 
root u. 
Procedure evaluate (u) node u 
comment 7t0 = ( j / J , . . . , s i n ) 
begin 

activate (c,u) for all 

Z pass (u); 
activate (c, u) for all c£$4m; 
Z_pass (u) 

end 5. Conclusion 

The main advantage of: the atomic characterization is that the evaluation pro-
cedure can be implemented in a simple and efficient way. It is not practial to base 
the evaluation procedure directly on a uniform top-down assignment of partitions, 
since the number of possible partitions is exponential. Using the atomic characteriza-
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tion, however, the size of implementation becomes polynomial, and the characteriza-
tion itself can be carried out in polynomial time. Unfortunately, the atomic char-
acterization of uniform multi-visit (i.e. anc) AG is not so useful (although it is possible 
to do it) because it can be proved that the decision problem of the uniform m-visit 
property is P-space complete. On the other hand, if we consider subclasses of anc AG 
in which the way of walking through the derivation trees is fixed independently of 
the grammar, then the atomic characterization is always useful. For example, it is 
worth doing the atomic characterization of /lS£"-like anc AG in which the attributes 
are evaluated in alternative left-to-right and right-to-left passes. 

A natural characterization of uniform multi-pass attribute grammars is intro-
duced. An CASY algorithm IS giver, to test the uniform multi-pass property, and it 
is proved that the uniform w-pass property for fixed N is decidable in poly-
nomial time. 
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