On the equivalence of the frontier-to-root tree transducers I.

By Z. ZACHAR
J
It is known in finite automata theory that the equivalence problem can be
traced back to the isomorphism of automata. Then, in a natural way, one can raise
the question whether two frontier-to-root tree transducers (F-transducers) are iso-
morphic if they are equivalent.
In this paper we deal with this problem. We introduce the class of the con-
"nected F-transducers with adapted rules and that of the inferior F-transducers.
It will be shown that for each F-transducer there are equivalent F-transducers from
the above classes.
" Moreover, in the second part we define a subclass of the class of deterministic
" F-transducers, namely the class of normalized F-transducers. It will be proved that
two strongly normalized F-transducers are equivalent if and only if they are
isomorphic.
The terminology is used in the sense of [1]. The algebraic notations developed
by Gécseg and Steinby in [3, 4] will be used throughout this paper.

1. Notions and notations

By a ranked alphabet we mean a finite nonvoid union F=U(FJk=0,1, ..)
of pairwise disjoint sets F.

Take an arbitrary ranked alphabet F and a set R. Then the set of all F-trees
over R (or trees, for short) is the smallest set T¢(R) satisfying the following con-
ditions.

(i) [LbURESTE(R).

(i) If feF, (k=0) and p,, ..., p,€ Te(R) then f(p,, ..., p)ETe(R).

We can define the height (hS(p)) and frontier ( frS(p)) of a tree p(€Tr(R))
with respect to S(E R) in the following way:

(1) if peTp(R\S) then frS(p)=e¢, h5(p) is undefined,
(i) if p€S then fri(p)=p, #*(p)=0, and
(i) if p=f(p,, ..., PI(ETF(RNTE(R\S)) then fr(p)=fr(py)... fr(py) and
hS(p)=max (hS(p)li=1, ..., k)+1.
Here ¢ denotes the empty string. If S=R then the symbol S can be omitted.
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The set of subtrees (sub(p)) and the set of proper subtrees (sub(p)) of a
tree p are defined in the usual way.

In the rest of this paper the pairwise disjoint sets of variables X={x,, x,, ...},
Y={y1, ., ...} and Z={z,,z,,...} are kept fixed. The symbols z,, z,, ... are
used as auxiliary variables. For arbitrary integer n(z0), X,, Y, and Z, denote the
sets {xy, ..., Xu}, {¥1> .- ¥u} and {z,, .. ,z,,}, respectively.

If pe TF(X UZ) and frz(p) z; then for p we also use the notations
p(z, .20 and p(zy, ..., Z;). Substltutmg (€ Te(X,UZ)) (I1=i=k) for the
duxmary variable z; (1 <1<k) in a tree p we obtain another tree which is denoted
by p(fr, ..., 1)) Let p=q(z,, ..., z;) where g€Tp(X,UZ) and frz(q) 2y...2;.
Then p(t], ...y iy will stand for q(ty, ... 1) (L€Tp(X,U2Z), i=1,..,1), that is
the tree p(tl, ..., 1y is obtained by replacmg each variables of z", .-, z;, by the
tree 1,, ..., 1, one after another.

The auxiliary variable z, of Z; will also be denoted by 4.

'in the seque! we shall use the notations

X,) = {plp€Tr(X,UZ), fra(p) =) and

TF( = Tr(X,UZI\T:(X).

If pe TF(X) and peT(X,) then we denote the tree p(p) by p-p

Now we can define the set of the supertrees (sup (p)) for a tree p(€ Tr(X):
ge Tr(X,) is in sup (p) if there exists a g€ Tx(X,) such that p=g-g.

We now turn to the definition of a frontier-to-root tree transducer (F-trans-
ducer). An F-transducer is a system A=(Tp(X,), A, T¢(Y,), A’, £), where F and
G are ranked alphabets, A is a finite nonvoid set of states, A"S A is the set of final
srates, and X is a finite set of rewriting rules of the following two types:

(i) x—aq (x¢X,UF,, acA, q¢T(Y,)) and

(ll) f(al’ .. ak)—'aq(zly .. Zk) (fEFk: k>0 Ays -5 Qi aEA: qETG(YmUZk))
The transformatlon induced by A will be denoted by t,. Moreover, let dom 1,
and range 7, be, respectively, the domain and range of 7,. For an arbitrary tree p

we put 7,(p)={gl(p, 9)€a).
ForanFtransducer A=(T¢(X,), A, T(Y,), A, Z) and two sets A, A,(S A)

we denote by TA’AZ the transformation induced by
(TF(XnUZl): A: TG(YmUZI)5 Als ZU{# —a3 Ia€A2})
Moreover, let

domrA s —domrAA ﬂTF(X) and
range TA,AA {q|p€dom TA Ays 4 ETA A (P)}

If 4,=A4" and A,=0, then A4, and A, will generally be omitted in ‘cA 4,- Further-
more, if there is no danger of confusion then we write 7 instead of 7,. Let us note
that a singleton will also be denoted by its element.

Take an arbitrary F-transducer A=(Tp(X,), 4, T¢(Y,), A, 2). If 7, is a -
partial mapping then A is called functional. Moreover, A is deterministic, if all its
different rules have different left sides.

Let A=(Tx(X,), 4, T(Y,), A4, I,) and B=(Tp(X,), B, Ts(Y,), B, Zy) be
two F-transducers and take a bijective mapping u of 4 onto B. If the following
three conditions are satisfied then p is called an isomorphism.
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() x—aqeZ, (x¢X,UF,, acA) if and only if x—>pu(a)qge 2.
(i) f(ay, ..., ;) —~apq€ X, if and only if f(u(a,), ..., p(ay))—pu(a) g€ Zp, where
fE€F, (k=0) and q;c4 (i=0,1, ..., k).
(iii) pu(4)=8".
We can say that A and B are isomorphic.
Finally, two F-transducers are called equivalent if the transformations induced
by them coincide.

2. Inferior F-transducers

Let A=(Ts(X,), 4, T¢(Y,), A, £) be an arbitrary F-transducer. It is called
connected, if for each rule of the form x-aq (x€¢X,UF,) and f(a,, ..., a)—aq
(fe F,, k=0) in X, there are trees p,, ..., px, psuchthat p€dom t, and p,€dom 14
(i=1, ..., k), moreover, the set 4 of states coincides with {a|p—~ag€Z}.

One can easily show that for every A there is a connected F-transducer B with
TA=TB- .

 Definition 1. By a connected F-transducer with its adapted rules (AF-trans-
ducer), we mean a connected F-transducer A=(Ty(X,), 4, T(Y,,), A", X) such that
each state a(€A) satisfies the following conditions: ,
(i) if range ° is a singleton then for each tree p€dom v,\ {3}, the inclusion
Ta(p) g TG(Ym) hOldS,
(i) if range 7,& T¢(Y,) then range t*={y,}.
It is easy to prove that range,S T;(Y,) if and only if range 1, T4(Y,,).
Thus the condition (ii} of the above definition can be replaced by the following:
(i)’ if range t1,E T¢(Y,) then range "={y,}.

Lemma 2. For any connected F-transducer an equivalent 4F-transducer can
be constructed.

Proof. Let A=(Tx(X,), A, T¢(Y,), 4’, Z) be an arbitrary connected F-trans-
ducer. We shall construct the F-transducer A=(Ty(X,), 4, T¢(Y,), A, Z) by
rewriting the rules of Z.
~ Assume that range 74 is a singleton i.e., for each tree pcdom 1%, 14(p)=gq.
Then we replace every rule f(ay, ...,q)—~aer in X by the rule f(a,, ..., aq)—~
—agr(ty, ..., &), where t,=q if aq;=a and t;=z; otherwise (i=1, ..., k).

If range 7, ,= T(Y,) then a¢ A’, thus every rule of the form f(a,, ..., @) —ar
and x--ar may be replaced by the rule of the form f(a, ..., @)—ay, and
X—ay,, resp.

It is clear that the set ¥ of rules constructed in this way satisfies the conditions
of Lemma 2.

Lemma 3. If the AF-transducer A=(Tp(X,), 4, To(Y,), 4, %) is functional
then for each state a(€A4), t* and 1, are mappings.

Proof. Assume that t* (a€A4) is not a mapping. Then a¢ A’ and there are
trees p€édom t* and ¢, g.€1°(p) such that g,g¢,. Since range 7® is not a sin-
gleton, thus by condition (ii) of Definition 1 there exist trees p€dom t, and g€z, (p)
such that the tree g contains the symbol # in its frontier. Then p.pédomz, so
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q;-G¢t(p-p) ((=1,2). It means that g,-§=g,-g, therefore gq,=gq, Wh]Ch con-
tradicts our assumption.

Next let us consider the transformation 7,. We have that dom t,=dom tU
U{p|p€ Te(X,)Ndom 7,}. Since t is a mapping, it suffices to prove that if
pedom Ta\TF(Xn)\{#} and qla a2€‘ta(ﬁ) then (71=62'

If range 7° is a singleton then by condition (i) in the definition of an 4 F-trans-
ducer we know that g,, §,€Tg(Y,). It means that for an arbitrary tree pcdom 1°
the equalities t(p-p)=¢, and 7(p-p)=q, hold. Consequently g,=
’ If range t® is not a singleton then there are trees p,, p,€dom r" for which
(p) =q, %49, =1°(p,). We have that

PP =G =919
and

(P2 P) = 42-G1 = 92§,
which imply that g,=g,. This ends the proof of Lemma 3.

Definition 4. Let A=(T%(X,), 4, T¢(Y,), A, Z) be an AF-transducer. The
transformation induced by the state a(EA) can be cut by the tree g,€ To(Y, )\ {#},
if for all a€A’, pcdom 1% and qEr (p) there is a tree § such that g=4-¢q,. The
tree g, cuts the transformation 7% maximally, if 7¢ can not be cut by any tree §-gq,,
where g€ To(Y.)\{#}.

By the above definition the transformation 7° can be cut by the tree ¢, if and
only if g, is a supertree of each tree from the set {g|g€range 12, acA’}.

Theorem 5. There is an algorithm to decide for each AF-transducer
A=(Te(X,), A, Tc(Y,), A, Z) and arbitrary state a(€A4) whether the transforma-
tion 1% can be cut. Moreover, every tree g, cutting 1° can be given effectively.

Proof. Let K=max(glq€t3(p), p€dom 15, h(p)=|A|, acd4, acA’) and
L=(K+6)-|4]l. We denote by Q the set {plp€ Te(X,), h(p)=L). Let acA and
q.€ To(Y.)\{#%} be arbitrary. It is sufficient to show that the following statement
is valid :

if for all acA4’, pe¢dom ¢ ﬂQ and ge€ti(p) there exists a tree § such that
g={§-q,, then the transformatlon 1% can be cut by ¢, i.e., for all aEA , p€dom 1%
and g€t2(p) the tree g, is a supertree of g. Obviously, every such g, can be given
effectively.

The proof of this statement can be performed by induction. If A(p)=L then
by our assumption the tree g, is a supertree of each tree from the sets range 72
(acA’). Now let h(p)>L and assume that our statement holds for all trees which
have less number of occurrences of symbols from F than p has. Then there are
two sequences py, ..., Px+¢ and g, ..., gg+¢ Of trees and a state 3(€A4) such that
9o€72(pe),  q:€T4p)  (i=1,.., K+5), gk+6€75(Pk+e)s Po-----Px+e=p and
9o ---"9dx+6=4-

Now there are three cases.

Firstly, we assume that there is an index j (2=j=K+6) for which q;€ Ts(Y)-
Theng=q;- ... qxk+6=90"q;" --- -9k +6€7a(Po P - ... - Px +¢)- By theinduction hypoth-
esis concemmg the tree pq- p_, . " PR+g WE have that q. is a supertree of q.

Secondly, we suppose that there is an index j (2=j=K+5) for which g;=
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It means that g=qo- ... < g1 gj41" - qr+6€T5(Po: .- " Pj-1Pj41" --- - Px+e)- Again
by the induction hypothesw we get that there ex1sts a tree ¢ for Wthh q=4-4,.

Finally, we may assume that h*(g;)=0 (j=2, ..., K+5) and gx.e€ Te(Y,)-
Let §=¢s- ... qx+q- Furthermore, we have that r=q0-q1-q2¢qo-ql-q2-q3:s.
By the induction hypothesis there are trees 7 and § such that r-g=7.q, and s-§=
=§-q,. We know that h(g,)=K and h(g)=K. From this we obtain that the
tree g. can be given in the form 4. Ga> 1e. g, is a supertree of g. Since

4=doqy 92" qs*9a- =90 919293 9a-§-4a> thus there is a tree § for which
q=4q-q,. This ends the proof of our lemma.

Definition 6. An 4 F-transducer A= (TF( s A, To(Yp), A, 2) is called inferior
if none of the transformations induced by its states can be cut by any trees.

Take an AF-transducer A=(Tp(X,), 4, T¢c(Y,), A’, £). Assume that the trans-
formations induced by the states ay, ..., a, can be cut and the tree g, cuts T max-
imally (i=1,....,1). For a state a, if t* can not be cut (a¢ {a,, ..., a}) then let
q,= #. It means that for all ac€A, acA’, pcdom2 and qE‘c“(p) the equality
g=4-q, holds under a suitable 4.

The following lemma is valid under these notations.

Lemma 7. There is an inferior F-transducer A which is equivalent to A.
Proof. We shall show that one can construct an F-transducer
= (Tr(X,), 4, Te(Y,). A, %)
such that for all states a€ A and a€A’ the following conditions are satisfied.
(1) dom 4 = dom <% and dom 14, = dom 75 ,.
(2) dom1t, , =domzy,,.
(3) {(p, - 92g€15%,4(p), p€dom g ;} = 13 ;.
@ (P, 4o~ Dlg€a,o(p), pEdom 1y, 5} = 75,

From this Lemma 7 will follow. Indeed, from (3) we get that A is equivalent

to A. If range % is a singleton then range 74 is a singleton by (3), too. Using
condition (i) of Definition 1 we have that for each pedom ty N{#}, 74,.(P)E
€ T¢(Y,,). Therefore, by (4), 13, ,(P)ET(Y,). It means that (i) of Definition 1
holds for A. Slmllarly, we obtain that A satisfies condition (ii). Consequently, A is
an AF-transducer. It is also clear that A is an inferior F-transducer, too. In the
opposite case we would arrive at a contradiction by assuming the maximality of
the trees g, (a€A).
Next we define the rules of A in the following way.
(i) x—arcX (x¢X,UF,) if and only if
x—arcX, where r=F-.q,.
(i) flay, ..., q)—~are X (f€ F, k=0) if and only if
f(ay, ..., a)—~aF, where the tree F=r(g,(z,), . ,qak(zk)) is equal to F-¢,.
First, we show that the rules of 2 can be constructed It is obvious, that this
construction can be performed if the rule satisfies the assumption (i) or (ii) provided
the equality ¢,=
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Then let f(a,, ..., a)—~ar€Z (feF,, k=0) be an arbitrary rule such that
Ga€ Te (Y. ON{%}). We have that for every final states @ and all trees p;€dom t3',
q:.€13(p;) (i=1, ..., k) the following conditions hold.

(a) r(qla [ ] qk)ET:—(f(pla (KRS} pk)) and
(b) r(qla"" qk)=r(q~1'qala"'a qk'qak)‘:
=r(qa1(zl)5 secy qak(zk))(qla ety qk) = F(qla (RS qk)

Let f(py, --»p)=p and r(q, ..., q)=q. By Definition 4, g=4-q,. Therefore,
F(él? EERE) qk)=q'qa'

Let s be a tree for which there exist trees rq,...,r,6Tc(¥Y,UZ,) and
oo € T6(Y,,U{3#}) (m=0) such that s{ry,...,r,)=F and s{t;, ..., I,)=4,,
moreover, for each index j (1=j=m) at least one of the conditions r;¢Z; and
1— # holds. It means that for an arbitrary index j (1=j=m), r;(q, ..., §)=

Assume that r;€Z,, i.e. there is an index / (1 =/=k) satisfying r;=z,. Thus
for each tree p,Edom 73 and q,Era'(p,) the equalities §;- g, =q; and §=q-t;
hold, that is ¢; is a supertree of §;.

If teT, G( m) then q=§-1;-q,=t;-q, 1mplles that range % is a smgleton
On the other hand the symbol z, is contained in the frontier of the tree 7. There-
fore, it should occur in the frontier of r, too. This means that range 7, & T¢(Y,,),
thus by the condition (i) of Definition 1 range t% is not a singleton which is a
contradiction. Then we have that #;€ T¢(Y,,).

If ¢;#4 then, by q,=§-¢;-q,, the transformation 7% can be cut by the
tree ¢; qa, which contradicts the maximality of ¢,,.

Now we have that for each index j (1=j=m), ¢t;= 4. It implies that s=gq,.
Therefore, F=gq,(r,, ..., rmy. Using (b) we obtain that

7(q.'ls cety qk) = qa<r1(qla CERYY q~k)a eeey rln(qlv sy qk)) = q'qaa

consequently, g=r;(¢,, ..., q) (j=1,...,m).

We shall prove that the trees ry,...,r, are equal to each other.. Let
1, 82€ {r1, ..., Iy} be arbitrary. Then the equality s5,(dy, ..., ) =52(s, ..., §,) holds
for each p;¢domt% and ¢;£t%(p,) (i=1,...,k). Let j (1=j=k) be an arbitrary
index. Let p,¢dom % and t,€t%(p) (i=1,...,k; i£j) be arbitrary fixed trees,
moreover #;=3#. Denote the trees s,(7;, ..., %) and sy(f, ..., %) by u; and v;
respectlvely We have that for each p;¢dom T“J and gq;€1%(p;) the equahty q;- uj—
=4;-v; holds. It is obvious that wu;¢T¢(Y,) if and only if v;€T(Y,), more-
over, if u; ETG(Y,,,) then range 1% 1s not a singleton. From thlS we obtain that
u;=v; It means that for all indices j (1=j=k) the equality u;=v; holds, which
implies that s;=s,.

We now have that r,=ry=...=r,, and this tree is denoted by F. It follows
that F=F-gq,, thus the rules of f can be constructed.

Consider the F-transducer A=(Ty(X,), 4, Tsc(Y,), A’, £) constructed in this
way. We will show that A has the properties (1)—(4) By the construction, it is
easy to see that (1) and (2) hold. The property (3) shall be proved by induction.
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Let acA and @cA’ be arbitrary states and p€dom 74 ,. Assume that 4(p)=0.
If p€X,UF, then p—+agcZ if and only if p—~aj-q,€Z. Therefore, (p, §)€15 ,
if and only if (p, §-q,)€14,,.

If p=4 then a=a and g,= 4, thus 4 ,(p)=15,(pP)=#.

Assume that p=f(p,, ...,p,) and g€14 ,(p). There is a rule f(a,, ..., a)—~
—~ar€X and there exist trees g€t a(p) (i=1,...,k) such that g=r(qy, -.., qu)-
By the induction hypothesis we have that there are trees q,Et- z(p) for which

gi-9.,=q: (i=1, ..., k). Therefore, q=r(gq,(21); ..., 94,(20)(Gs, -- o 3
By our constructlon there is a rule f(a,,. ..., a)—~aF€X, where

r(qal(zl)’ LRE qhk(zk)) =F- qa-

Then §G=r(g,, ..., f)€73,:(p) and g=§-q,. Similarly, we get that if F€t5% .(p)
then §-g,€74,,(p). It means that A has property (3).

Let pcdomrt, , and rét, ,(p) be arbitrary trees. By the proof of (3), there
is a tree FE€ty,, (p) such that for each pédom 14 and g€v3(p), g-r=4-F and
§-q,=q under a suitable tree §. It is easy to show that reT;(Y,) if and only if
FeTG(Y,). It follows that if reé T4(Y,) then F=r=g,.r. If ré T¢(Y,) then none
of range 14 and range 7§ is a singleton. Using this we obtain that #=g,-r. It
means that if (p,r)€ts,, then (P, 9o r)€tz .. The inverse claim can be shown
in a similar way. -

This ends the proof of Lemma 7.

Let A=(Tp(X,), 4, To(Y,), A’, £,) and B=(Tg(X,), B, Ts(Y,), B', Z5) be
AF-transducers for which dom t A-dom 7a. We construct the F-transducers Al=
—(TF(X) AXC, T(Y,), A'XC’, 5Y) and B'=(T¢(X,), BXC, T¢(Y,), B’XC’, £b),
where C=AXB, C’=A"XB’ and the sets of rules satisfy the following condi-
tions.

(a) For each c¢=(q, b)¢C and x€X,UF,,

x—(a,c)gqeZy and x-(b, c)rc X} if and only if
x—aqeX, and x-—~bréZy.

(b) For each f¢F, (k=0) and ¢;=(a;, b) (i=0,1, ..., k),
f (als c1)7 (RS (ak’ ck))_’(a03 c())qE 2}4 and
S((by, ¢, ..., (by, &) ~(by, cp)r€ X} if and only if
flay, ..., a)—~ayqc X, and f(b;, ..., b)) —~b,rc Zg.

Using a standard construction we get two connected F-transducers AZ=
=(TF(Xn)5 AX C9 TG(Ym)9 A’XC,’ 2124) and B2:(TF(Xn)7 BX C9 TG( )’ B’ XC’ 23 )
such that A? is equivalent to A! and B2 is equivalent to B'. Moreover, using the
constructions of the proofs of Lemmas 2 and 7 we obtain two inferior F-transducers

:(TF(Xn)a A X C3 TG(Ym): A,X C,y fA) and E=(IWF("‘,H), BXC’ TG(Ym)a B,x C,9 Z-‘B)
which are equivalent to A® and B? resp. Let us denote the inferior F-transducers
A and B by A(B) and B(A), respectively. Since t,=t,p, both 7, and 74, will
be denoted by ¢. Similarly, ¢ will denote 75 and 74, .

In the next lemmas and Theorem 11 we shall use the above notations.

Lemma 8. Let ‘(a, b)y=c, (a, b)=c€C. Then the following conditions are sat-
isfied :

3 Acta Cyvbernetica
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() (a, 0)€AXC if and only if (b, )€ BXC,
(i) (a, )€ A’X C’ if and only if (b, c)€B’'XC’,
(iii) dom @*¢=dom Y’ <,

(]V) dom Pa, c—dom wb,cw

(v) dom @Zi=dom yf:¢

Proof. By the definitions of X and X} there is a natural bijective mapping
of X% onto X}. It is easy to see that the restriction of the above mapping to X,
is a bl_]CCthC mapping, too. Using this the statement this lemma is obvious.

In Lemmas 9 and 10 and in Theorem 1 we assume that the AF-transducers
A and B are equivalent i.e., ¢=vy. Then dom 7,=dom tg, thus we may use
the above notations and Lemma 8.

Lemma 9. Let ¢=(a, b)¢C and pcdom ¢, . be arbitrary. Assume that the
AF-transducer A is functional. Then ¢, .(p)€T(Y,) if and only if ¥, (p)C
ETe(Y,)

Proof. First of all we note that, by Lemma 3, the transformations y, ¢
and ¥, . are mappings. Assume that there is a tree p for which the conclusion of
this lemma does not hold. Let ¢, .(p)=g and ¥, .(p)=r. Then exactly one of
g and r is in T¢(Y,,), say rETG(Y) and qe T:(7, ) We have that p== 4. Thus
by condition (i) of Definition 1, range ¢*¢ is not a singleton. It means that there
are trees py, pp(€dom ¢®9) for which ¢;=¢"(p)#¢"(p)=qs. Then ¢;-g—
=@(p;-p)=yY(p;-p)=r (i=1,2), consequently, ¢,-g=g,-q, which contradicts
the_assumption ¢,#q,. Similarly, we arrive at a contradiction by assuming
re Ts(Y,) and g€Ts(Y,)

Lemma 10. If A is functional, then @®¢=y>< for all (a, b)=c(¢C).

Proof. First we note that if (a,¢) and (b, ¢) are final states then the equality
=Yy implies @®“=y*°. We may assume that (a,c¢) and (b,¢) are not final
states. By Lemma 9, range ¢™° is a singleton if and only if range y*¢ is a sin-
gleton, too. If both range ¢*° and range y*° are singletons then the equality
(pa’c(p)fy]Il/!b’c(p) holds for each tree p€dom @*°. Therefore, in this case
(pﬂ,t= .C' .
Suppose that range ¢®° is not a singleton By the note following Definition 1.
we have that range ¢, & T5(Y,,) ie., there is a tree pEdom @, . satisfying the
inclusion ¢, (p)€ To(Y,). Let @, ,_.(p) g and ¥, (p)=F In the same way as
in the proof of Lemma 7, one can see that there exist trees s€ T5(Y,,), r1s ..., T
and ¢, ..., ¢, (m=>0) such that the equalities F=s{ry, ..., 7) and §=s{qx, --s qm)
hold, moreover, at least one of g; and r; is 4 for each index i (1=i=m). It is
easy to show that gq;, € Tg(Y,) (i=1, ..., m).

Next we prove that all the r; and q, are equal to # (i=1,...,m). Let i be
an arbitrary index (1=i=m). Assume that ¢i=#% and reTg(Y, )\{#} For
each final state (@, ¢) ((a@, b)=¢) and for all trees pedom ¢%<(p)=dom Ybe,
g€02s(p) and reyi(p) then

(PE,E(P‘P) = qq = S<q qis -5 g4 qm> and
Use(p-D)=r-F=5(r-ry,...r-r,
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Since (@,¢) and (b, ¢) are final states @®e=y52 which implies ¢;:(p-p)=
=g :(p-p). Therefore, r-r;=q-q;, ie. r-r;=g. It means that the transforma-
tion ¢*< can be cut by the tree r;, which is a contradlctlon Slmllarly, the assump-
tions r;=# and q;¢ Tg(Y,)\{4} imply the equality ¢,=

Now we have that r=g=s and r=gq. It means that for each

pEdOm (pa,c(gdom ’(pg:g), (pn,c(p) — lﬁ""(p)
holds. This ends the proof of Lemma 10.

: Theorem 11. If the AF-transducer A 1is functlonal then the inferior F-trans-
ducers A(B) and B(A) are isomorphic.

Proof. Let us define a mapping u: AXC~BXC, such that for an arbitrary
state (a, )(€EAXC) the equahty ula, )= (b ¢) holds if c¢=(a, b). It is clear
that u is a bijective mapping of 4X C onto BXC, moreover, u(A’XC)=B"XC".

Next suppose that x—(a, c)g€X, (x¢X,UF,), where c¢=(a,b). We have
x€dom %€ thus -x€édomy®c. By Lemma 10, g=¢*°(x)=¢y*°(x) implies
x—(b, ¢)g€Xy. Similarly, if x—»(b c)reXy then we get x—(a, c)rcX,.

Let f((ay, ¢, - (@, &) ~(aqg, c0)q€Z 4 where ¢;=(a;, b) (i=0,1, ..., k). By
the construction of A(B) and B(A) we know that there is a rule of the form
f((b19 c1)s o (By» Ck))"(bo, c)r in Iz Let pi(€dom g% ci=dom ybec) be
arbitrary trees (i=1, ..., k) and let j be an arbitrary index (1=;=k). We define
the trees s; (i=1,...,k) in the following way. If i=j then s;= 4, otherwise
s;i=g%a(p)(=yea(p)) (=1, ..., k).

Denote by q; and r; the tree q(s,, ...,s,) and r(sl, ..., 5), respectively. We
have that @ <(p;)=yb <(p;) for each pJEdomq) From this it follows
easily that the equallty 7;=q; holds. Since j is arbltrary we get r=gq. It means
that f((bn ey ees (Bis Ck)) (b, c0)gELg-

: Similarly, one can see that if f ((b, , €1y -eny (B, ck))—>(b0, Core X s then the rule
((als ¢y, ..., (ay, Ck)) ~(ay, co)r isin Z4.

Therefore the inferior F-transducers A (B) and B(A) are isomorphic.

The next corollary is known from [2], where the result has been achieved in
a different way.

Corollary 12. There exists an algorithm to decide for an arbitrary F-trans-
ducer B and a functional F-transducer A whether they are equivalent, i.e. 13=15.

Proof. Let A and B be AF-transducers equivalent to A and B, respectively.
Clearly, A and B are equivalent if and only if so are A and B. By Theorem 11, 7,=13
if and only if domty=dom 75 and the inferior transducers A(B) and B(A) are
isomorphic. It is known that the equality dom 7,=dom 7y is decidable (c.f. [3, 4]).
Obviously, A(B) and B(A) can be constructed. Moreover the isomorphism of these’
inferior transducers can be verified. Thus the statement of Corollary 12 is valid.
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