On the equivalence of the frontier-to-root tree transducers II.

By Z. ZACHAR

In this paper we continue our study started in [6] about the equivalent and
isomorphic frontier-to-root transducers (F-transducers). First we introduce the
superior F-transducer which can be seen the dual of the inferior F-transducer from
part I. Then we deal with a subclass of the class of deterministic F-transducers,
namely the class of normalized F-transducers. It will be proved that the strongly
normalized forms of equivalent deterministic F-transducers are isomorphic.

Since this paper connects with [6] closely thus we use the notions, notations
and results of part I.

1. Notions and notations

Take an arbitrary positive integer k. Let p,, p,€ T¢(X,UZ,) be arbitrary trees
and z,€Z,. Then the zi-product p,-ip, of p; by p, is the tree

P22y, s Ziy, P, Zit1s oo Zh)-

For an F-transducer A=(Tx(X;), 4, T¢(Y,,), A’, £) andsets 4;S A (i=0, ..., k)
we denote by 749, 4, -the transformation induced by

(Tr(X,UZ), 4, Te(Y,UZ), Ay, ZU{z, — a;zjla€ 4;, i=1, ..., k}).

Finally, when we will refer to a definition or a result from a part of our paper
if the serial number of the part is I then it will be marked otherwise it will not be.

2. Superior F-transducers

Definition 1. Let A=(Ts(X,), 4, T¢(Y,), 4, Z) be an AF-transducer. The
transformation induced by the state a(€¢A4) can be increased by the tree
q°€ Te(Y,)\{#}if for all pcdom 1, , and g€, .(p), thereis a tree € T(Y,,U{#})
satisfying g=¢°- §, provided that range 75 is not a singleton. The tree ¢* increases
the transformation 74 maximally if the tree ¢ is a proper subtree of a tree g° then
1A cannot be increased by g%
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Definition 2. An AF-transducer  A=(Tp(X,), 4, Te(Y,), A, £) is called a
superior A F-transducer if none of the transformanons induced by its states can
be increased by any trees. .

Take an AF-transducer A= (TF( ), A, Tg(Y,), A’y Z). Assume that for each
state a€ A the tree ¢° increases t® maximally if 1t can be increased and q“—-
otherwise. It means that for all ac 4, pcdom 1, and g¢€t,(p) there is a tree § such
that g=¢°-4. We suppose that the tree ¢° is given for every state a(€4). Then
the following lemma is valid under these notations.

Lemma 3. There is a superior AF-transducer A=(T§(X,), 4, T(Y,y), 4’, )
which is equivalent to A.

Proof. We shall show that one can construct an A4 F-transducer
K:(TF( D A, To(Y), A, 2)

such that for each state a€A4 the following conditions hold.
(1) dom 4 =dom 4.
(2) dom 1, ,=dom 3, and dom 1, ,=dom 13 ,.
(3) {(p, 9-99|gc74(p), pedom 13} =15.

@ {(p, ¢°- Dlg€rz,.(p), pEdom 1, }=14 ,.
In a way similar to that in the proof of Lemma 1.7 we can see that A is an equiv-

alent superior 4 F-transducer for A.
Next we define the rules of ¥ in the following way:
(i) x—>are X (x€X,UF,) if and only if
x—-ar€¢X where F=r-q°,
(i) flay, ..., a)—arc X (f€F,, k=0) if and only if
flay, ..., a)—~are I where the tree 7(g%(zy), ..., ¢°(z)) equals the tree
r-qg-. .
It is clear that this construction can be made for each rule of form (i). Assume that
f(ala v ak)—'arez (fEFk, k>0)
Then let piedom g and ;€14 (p’) be arbitrary fixed trees (j=1, ..., k).
For each index j (1= _]<k) we use the following notations:

= f(pl, vy pj_l, # 1y Pj+1, sees pk)’
r;= r(tl, “eey lj-.1, %, tj+1a cees tk) and

i:_] = r_,- . qa.
1t is sufficient to show that for each index j (1=j=k) there is a tree §; such that
F;=g%-q;. From this we obtain easily that the tree 7 with

r- qa = F(qﬂl(zl.)a veey qak(zk))
can be constructed.

Let j be an arbitrary index (I1=j=k). If 7€Tc(Y,) or g%=¢ then let
g;=r;. In this case our statement holds obviously.

We may assume that F; ETG(Y,,,) and g%€ TG(Y,,,)\{i;} If ranget® is a
singleton then by the constructlon from Lemma I.2 the tree r is in T¢(Y,,). It fol-
lows that 7;€T6(Y,) which is a contradiction. It means that range 1° is not a
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singleton. From this we obtain that there are trees p€domt, and g€7,(p) such
that g€ T¢(Y,). It implies that r; -q€7,,(p;-p) and r; qETG(Y) By Deﬁm-
tion 2 we know that r;-g=¢%-§ under a suitable 4. It means that §€ Tg(Y,,
Moreover, one of the inclusions g%€sub (r;) and r;€sub(g*) holds.

Firstly, assume that g%€sub (r;). Then there exlsts atree g€ T5(Y,) for which
r;=g¢%-4. In this case let §;=g-q* It means that 7;=r;-q°=q%-4-q°=q%-q;.

Secondly, assume that r;€sub (g%). Then there is a tree ge To(Y N{%} for
which g%=r;-q. "We have that for each tree p€dom 1, and gq€1,(p), the 1nc1u51on
ri-q€t,,(p;- ) holds. Moreover, there is a tree § such that r;-g=¢%-4. From
thls we obtain that r;-g=r;-3-4. Since r; ETG( ) the equallty g=q -4 holds,
too. It means that 1° can be increased by the tree q. '

On the other hand we have that ¢=¢°-¢ under a suitable tree 4. Since the
tree ¢° increases ¢ maximally thus from the two equalities above we get g€sub (q")
i.e., there ex1sts a q for which g-g3=q° Let g;=g. It follows that 7;=r;.-q"=
=r;-q-4=4%-§=9%-q;.

It means that our statement is valid, thus the rules of ¥ can be constructed.

Finally, one can see easily that the F- transducer A=(Tp(X,), A Te(Y,), 4, %)
constructed in this way satisfies conditions (1)—(4).

This ends the proof of Lemma 3. :

Lemma 4. There is an algorithm to decide for each 4 F-transducer
A= (TF(Xn)7 A: TG(Ym)a A,y Z)

and arbitrary ‘'state a(€A4) whether the transformation z° can be increased. More-
over, every tree q° can be given effectively which increases z°

Proof. We have that if the transformation 7° can be increased by the tree ¢°
then h(g®)=min (r,(p)|p€dom ,). It means that the number of trees which increases
7% 1s finite. Moreover, by the proof of Lemma 3 it is easy to see that for each tree
¢° the transformation t°is increased by ¢° if and only if the rules of X can be rewritten
according to the conditions (i)—(ii) from the proof of Lemma 3. From this the
statement of our lemma is obtained obviously.

3. Normalized F-transducers

Definition 5. A deterministic 4F-transducer A=(Ty(X,), A, Tc(¥,), 4, 2
called a normalized F-transducer (N. F—transducer) 1f conditions (i) and (ii) below hold

(i) For every state a€ A4, range 7° is either a singleton or infinite.

(i) For all states a, @ if both range t* and range 7% are infinite, dom 1,=
=dom t; and there exist trees ¢, g¢T¢(Y,) such that for each tree p€domn,,
q-1,(p)=G -1a(p) then at least one of the following conditions are satisfied.

(ii,) There are trees r, 7€ T5(Y,) such that at least one of them i$ equal to
the tree # and for each tree p€domt, the equality r-7,(p)=F-13(p) holds.

(ii) The sets range t°(g and range t%(1§ are empty.

The next’'lemma, in a different form, can be found in [2]. The proof can be
performed easily thus it is omitted.
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Lemma 6. Let g;,r;€¢T;(Y,UZ) te arbitrary trees (j=1, ...,5). For each
positive integer i the equalities (1)—(7) imply the equality (8).

1) nirs=qivigs

(@ rnirgirs=¢,7iqp-igs

() ryvirgeiry=¢qii4g3igs

(@) rysirgirs=q14ga%¢s

(5) rivirgirgirs=q1iqrriqyigs

(6) ryvirpirgdirg=gq1-iqsigsigs

() rycirgeirgirs=¢17Gy-iqa-igs

() ryeirguiTgiTy Ty = Gyiqe-iqzriqyigs

Lemma 7. For any deterministic F-transducer A=(Ty(X,), 4, Ts(Y,), 4’, %)
an equivalent NF-transducer can be constructed.

Proof. Let K=max (h(z*(p))|p€dom 1%, a€ 4, h(p)=|4]) and

L, = max (h(z(p))|p€dom 1,, ac A, h(p) = 4-|4]?),

L, = max (h(z(p))|p€dom 1,, ac 4, h(p)=2-|4|, h#(p) = | ]) and
L=L,+L, - -

Moreover, set Q=1{qlg€ T¢c(¥ ), h(g)=max (K, L)} and C=0U{%}.
Construct the deterministic F-transducer

Al = (Te(X,), AXC, T(Y,), A’XC, ZY)
such that x—(a, ¢)r€ 2! if and only if x—aréX and c=r, moreover,

fl(as, ), , (@, c) = \a, )re 2t

if and only if f(a,, ..., @)—+aF€X where ¢ and r are defined in the following way.
Let g=F(ci(z), ..., c(z)). If g€Q then c=gq otherwise c=4%. If a¢ A’ and
g€Q then r=yp, otherwise r=gq. Itis obvious that A and A! are equivalent. Elim-
inating surplus states and rules in a standard way we get a connected deterministic
F-transducer B=(Ty(X,), B, T;(Y,,), B, £5) where BEAXC, B'SA’XC and
ZpS 2L It is clear that B and A! are equivalent.

We will show that B is an NF-transducer. Take an arbitrary state b=(a, ¢)€B.
By our construction it is clear that dom 1, ,=dom g, and if p€dom 75 then
p€dom 14, moreover, if ¢c=4 then the equality 74(p)=15(p) holds, too.

Assume that c¢=#. Then for each tree p€dom t4(Sdom 19) the inequality
h(h(p))>max (K, L)=K holds. It follows that there are trees p,, p., ps and a state

dsuchthat p=p, - py:ps, p,€dom1}, p,cdom 14 ;, p .€dom14 ;and h & (14,2(p2))=0,
74,s(P)€ T6(Y,). From this we obtain that pr=p,-p§-ps€domy (k=1,2,..)
and the trees t4(p*) are pairwise different. Since range 15=range 14\ Q thus
range 75 is infinite. Moreover, we have that for all trees pc¢dom 1y, and p€dom 1§
the equality 14(p) - 1a,.(P)=18(p) - 18,5(P) holds. From this we obtain that 1, ,=
=TB.b'
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Furthermore, we know that if c€Q then range i is a singleton and for each
tree pcdom tp, ,,\{#} 18,5(P)€Tc(Y,). It follows that B is a deterministic 4 F-
transducer and condition (1) of Definition 5 holds for B.

Then we have to prove that condition (ii) of Definition 5 can be satisfied. Take
arbitrary states b, bé B and trees g¢,3€Ts(Y,). Let b=(a,c¢) and b=(a,c).
Assume that dom t,=dom 15, both range t® and range t® are infinite, moreover,
for each tree p€dom 1, the equality ¢g-1,(p)=g-15(p) holds. In this case we have
that c=c¢=4% and dom t,=dom 1;.

It is sufficient to show that if at least one of two trees g and g is higher than
L then the following condition (ii,)" holds.

(ii,)” There are trees r, 7€ Tg(Y,,) such that at least one of them is equal to
the tree % and for each tree pcdom 1, R the equality r-t,(p)=F-1:;(p) holds
where  R={p|p€ Tp(X,), h(p)=4-[ 4|}

Now we prove this statement. First we show that h(q) h(g)=L,. Assume
that Ah(q)=L=L,+L,. It is clear that there is a tree p€domt, for which

h(p)=2-||Al, h* (p)=|4] and 7,(p)€ T5(Y,,). Since h(ta(p))=L, and g-1,(p)=
=3 - 15(p) thus k(g - 1,(p))=>L and a(q - 1a(p))=h(q)+ L,. It follows that h(q)>L1
Similarly, the inequality h(q)>L implies 4(g)=>L,.

We have that there is a tree p for which 2(p)=4-|4|? and at least one of
the trees 7,(p) and 7;(p) is in T;(Y,,). In this case there exist an s€ Tg(Y,,) and
Grs sG> A1s oos Gu€ T (Y U{#}) (m=1) such that the equalities 7,(p)=5(q;, ..., g,y
and 1;(p)=5(qy, ---, cj,,,) hold, moreover, for each index j (1<i<m) at least
one of the trees g, and q; equals %. It means that q-4;=q4-g; (j=1, ..., m). Since
h(gp, h(@)=L, we get q;,3,€ To(Y,) (j=1, ...,m).

Let j be an arbitrarily fixed index (lfj<m) and let r=g; and F=g;. It
follows that ¢g.r=g-.r. We show that for each tree p€dom t,(1R the equahty
r-t,(p)=r-15(p) holds.

Take an arbitrary tree pcdom t,M\R. If both 7,(p) and 1;(p) are in T4(Y,,)
then r-.t,(p)=7-1;(p) because of the equality ¢q-7,(p)=3-1:(p).

In.the opposite case the equalities t,(P)=5(q, ..., Gmy and t(P)=5{Gy, . » Gmy
hold where the trees s, g5, ..., G, G1, ---3 dm satisfy the above conditions. Slm1lar1y,
we have that g-¢;,=q-q; and q,,q,ETG(Ym) (j=1,...,m). :

Assume that r=14#, consequently, g=g-r. It follows that q-7-q;,=q-q
(j=1,..,m). If ¥=4% then g-q;=g-g;. Since h(g)=L, and h(g)), h(q;)= L1
thus qJ g;j=# (j=1,...,m). From this we obtain 7,(p)= -ra(p) ie. r-t,(p)=
=¥.13(p). We may suppose that 7= 4. Then §;# %, because in the opposite
case .4 -7-q;=g which is a contradiction -(j=1, ...,m). It means that for each
index j (15]<m), g,=% and q-r=q-g;. From this we obtain that 7=g;
(j=1,...,m). It implies that r.1,(p)=F-1:(P).

From the assumption F=$# we arrive at the equality r-t,(p)=F-7;(p) in
a similar way.

Now we can prove that conditions (ii) of Definition 5 are satisfied. If
h(g), h(@)=L then (ii,) holds because each tree of both range * and range % is
higher than L. In the opposite case condition (ii,) holds. We w1ll show by induction
that r.t,(p)=F-15(p) for each tree p€dom1,.

If h(p)=4-|4||* then r -7, (p)=F-1a(p) by (ii). Now let h(p)=4-|A|>
We have that there are trees p,, ps, Ps, Ps, P5 and states d,a€A such that
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p=pi2ps2ps2py2p; and p,€dom 1i1dom rE,p,Edom 2 .Ndom 5(=2,3,4),

ps€dom 1, s;Ndom 153, where p;€ TF(X Uz, (i=1,. 5) and the symbol z,
occurs exactly once in the frontier of the tree p; (i=2, .. 5)
Let

Gy =T- Ti(Pl): rn=r 'Tg(Pl),

q: = T‘:,a(Pz), ry, = g&( 2),
qs = Tg,a(Pa), = Z #(Ps),
gs = Ta,a(py), = 15,5(Pa),

g5 = 10,a(ps), T15= TE,??(Ps)-

By the induction hypothesis it is clear that the trees r;, q; (i=1, ..., 5) satisfy the
conditions of Lemma 6. It means that gq,-2g,-2g;2q,2qs=r;2ry-2ry2ry2iy
1.c., r'Ta(l_’)=F'TE(p)'

We have that t,=7t, and 7;=15. It follows that for each tree p€dom 1, the

equality r-7,(p)=F- 15( p) holds. It means that B is an NF- transducer Consequently
the statement of this lemma is va11d

Lemma 8. Let A=(Tx(X, ), A, Tg(Y,), A’, Z4) be a deterministic F-transducer.
Then there is an superior NF- transducer B Wthh is equivalent to A.

Proof. By Lemma 3 we can construct a superior F-transducer
A= (TF(Xn): A’ TG(Ym)y Al} ZA)

with 7,=13;. From the proof of Lemma 3 one can see that A is deterministic,
too. Next we consider the NF-transducer B=(Ty(X,), B, T¢(Y,), B’, Z5) con-
structed for A by Lemma 7. From the proof we have that for each state b€B if
range 15 is not a singleton then there exists a state acA such that 74 ,=1g,.
It follows that 75 can not be increased by any tree g°, because in the opposite case

the transformation 74 is increased by ¢® which is a contradiction. It means that B
is a superior NF-transducer equivalent to A.

Definition 9. Let A=(T:(X,), 4, T5(Y,), A, £) be a superior NF-transducer.
We say that the state d(€A4) can be substituted by the state a(¢ A) if the condi-
tion (i) holds or there is a tree g€ 7T;(Y,,) such that the conditions (ii,)—(iis) are
satisfied.

(i) t,=t; and if range 7% is a singleton then range t®=range 7.

(i,) dom 1,=dom 1;.

(iip) range 1* is infinite.

(iiz) range @ is a singleton.

(ii,) For each tree pedom t,\{#} the equality g-t,(p)=1z(p) holds.

(ii;) If G€ A’ then range 13=g.

(iig) If there is a state a(€ AN\ {a, @}) for which dom 1,=dom 13 and range 1%
is infinite, moreover, there exist trees ¢, §€T¢(Y,,) such that for each
tree pcdom 1, the equality ¢-7,(p)=g-13(p) holds then either gg or
1,{(P)=13(p) for each tree pcdomz,.



On the equivalence of the frontier-to-root tree transducers 189

We note that 7,=1; if and only if dom 1,=dom t; and for each tree pcdom 1,
the equality 7,(p)=1s(p) holds.

Definition 10. A superior NF-transducer A=(Tp(X,), 4, T¢(Y,), 4", Z) is
called a strongly normalized F-transducer (SNF-transducer) if none of the states
can be substituted by another state.

Theorem 11. For each deterministic F-transducer
A = (Tr(Xp), 4, To(Y,), A, Z,)
an equivalent SNF-transducer can be constructed.
}’roof. By Lemma 8 we construct a superior NF-transducer
A =(Te(X,), A, Te(Y,), A, )

which is equivalent to A. Next we will show that by rewriting rules and eliminating
states an equivalent SN F-transducer is obtained.

Assume that the states a, a€ A satisfy the condition (i) of Definition 9. Then
we construct the F-transducer A'=(T¢(X,), A\{a}, T¢(Y,), A°\{a}, Z}) in the follow-
ing way. Let us eliminate the rules of X, wherein the state a is in the left side. Then
we replace the state a by a in each rule. It is clear that A! is deterministic. More-
over, for each state acAN\{a, a}, ta,a=7a1,; and 14=14, hold. We have that
dom 14:=dom 14 Udom 74 and range 1§, =range 7§ Urange 14. From this one can
easily show that Al is a superior NF-transducer equivalent to A. It means that for
A we construct an equivalent superior N F-transducer B=(Tx(X,), B, T;(Y,,), B’, Zp)
such that there are no states b, b€ B satisfying condition (i) of Definition 9.

Next we assume that there are states a, ac B(S A) and a tree g¢T¢(Y,,) for
which the conditions (ii;)—(iig) hold. In this case we eliminate the rules containing
the state a in their left side. Then we replace by ag the right side of rules wherein
the state @ occurs. Let B'=(Ty(X,), B\{a}, Ts(Y,), B'\{a}, Z}) be the F-trans-
ducer obtained this way. By the construction it is obvious that B! is deterministic.
We have that for each state acB\{a, a}, tp,a=18,z and t4i=1§ hold. More-
over, dom 1§ =dom t§Udom 1§ and range t§.=range t§Ug. It is clear that B! is
a superior A F-transducer equivalent to B.

We will show that B! is normalized. By the construction of B! condition (i) of
Definition 5 holds. Let b, be B\ {a} be arbitrary states of B'. Assume that domtp:,,=
=dom tg: 3, both range 4 and range 74 are infinite, moreover, there are trees
g, 3¢ Ts(Y,) such that for each tree pcdom 1g1 ,, 4151, ,(P)=7 - 151 3(P)- If none
of the states b, b is a then by the above connections it i1s obvious that condition
(ii) holds.

We may assume that b=a. In this case we know that for B.condition (iig)
are satisfied by the states a, a, b and the trees g, g, §. Furthermore, we have that
the equality 75 ,(p)=1g 5(p) does not hold for each tree pcdom 1p ,. Indeed, in
the opposite case 1y ,=15 5 Which is a contradiction. By condition (iig) it means
that g+g. From this we obtain that range 7p ,Ng=0 and range 75 ;G=0.
Consequently, condition (ii) of Definition 5 holds for B! thus B! is a superior nor-
malized F-transducer.
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Applying this construction we can get an SN F-transducer which is equivalent
to A.

Let A=(Tp(X,), 4, To(Y,), 4', Z,) and B=(Ty(X,), B, T5(Y,,), B’, Z5) be
SNF-transducers such that A and B are equivalent. First we construct the inferior
AF-transducers A (B) and B(A) as in part I. Next we consider the superior 4 F-trans-

ducers A(B)=(T:(X,), AXC, T(Y,), A’XC’, £,) and
E(‘A) = (TF(Xn)a BXC: TG(Ym): BIXC'_;’ fB)

which are constructed from A(B) and B(A) by Lemma 3, respectively. We have
that AXCEAXC, A’XC'STA'XC’" and BXCSBXC, B'XC'SB'XC’ where
C=AXB and C’'=A"XB’. From Theorem I.11 we know that A(B) and B(A)
are isomorphic. By conditions (i)—(iv) from the proof of Lemma 3, it follows that
A(B) and B(A) are isomorphic, too. It means that 7,=175 thus both of these
transformations shall be denoted by ¢. Similarly, ¥ can be used instead of 13
and Tg(a) -
The next lemmas are valid under the above notations.

Lemma 12. For each state (a,c)€AXC (c=(a,b)) the following condi-
tions hold.

@) dom @,=dom ¢, ,=dom, .=dom .

(i) If range p*° is infinite then for each tree p€dom ¢, the equalities ¢@,(p)=
=0, (P) =V, (P)=¥s(p) hold.

(iii) If range ¢®¢ is a singleton then there are trees g, g€ T¢(Y,,) such that

for each tree pedom o, \{4} the equalities g-@.(P)=¢, (D)=} (P)=7 - s, (D)
hold, moreover g=¢°(p) and G=y*(p) where pedom @*°.

Proof. Let (a,c)€AX C te an arbitrary state where ¢=(a, b). Let p€dom ¢*¢
be a fixed tree. Then p&dom @*Ndom y>Ndomy®. Let péedom ¢,. Since
p-p€dom ¢ the tree p is in dom ¢, .. Consequently, dom ¢,Sdom ¢, .. In the
same way one can prove the inclusions dom @,Sdom ¢, .Sdomy, .S dom S
Cdom @,. From this we obtain that condition (i) holds.

Assume that range ¢®°¢ is infinite. It follows that range ¥*¢ is infinite, too.
Then there are trees p,, p,€dom @*¢ such that ¢*°(p,)=¢*°(p,). For each tree
p€dom @, the equality ¢““(p): @, (D)=¥>°(p)-¥s,(p) holds (i=1,2). In a
similar way as in the proof of Lemma 3, we can obtain that there exist trees r, 7
such that at least one of them equals the tree # and for each tree p€dom ¢,,
r-@a(P)=T" @4, c(P)-

On the other hand we have that both A(B) and B(A) are superior F-trans-
ducers. It means that r=r=4 1.e., for each tree p€dom ¢, the equality ¢,(p)=
_‘(\Da c(p) hOIdS

Furthermore we know that range Y*° is infinite. In the same way we get
that for each tree p€dom i, Y, (p)=y,(p). Since A(B) and B(A) are isomorphic
it follows that condition (ii) of our lemma holds.

Next we assume that range ¢ is a singleton. Let p€dom ¢*°¢ be an arbi-
trarily fixed tree. We have that p€dom @°. Let g=¢%(p). 1t means that for each

tree pedom @,\{#} the equalities q-¢,(P)=(p-P)=0¢"(p): ¢y, (P)=a,c(P)
hold. In this case range y>° is a singleton, too. It follows that if 'V’ ‘(p)=3 then



On the equivalence of the frontier-to-root tree transducers 191

for each tree pedom Y, N\{#}, G- ¥s(P)=Vs (p). It is clear that if acA’ then b,
(a, ¢), (b, ¢) are final states. From this we obtain g=g. It means that condition
(iii) holds, too.

Lemma 13. For each state a€ A there is exactly one state b(¢B) satisfying
the inclusion (a, (a, b))€ AXC, and conversely, for each state b€B there is exactly
one state a(€A) with (b, (a, b))EBXC Moreover, if (a, )€ AX C (c=(a, b)) then
for each tree pcdom ¢, the equalities ¢,(p)=0,, c(p) Vs, (P)=V¥,(p) hold.

Proof. Let ac A be an arbitrary state. Denote by B, the set

Blc = (a, b), (a, )EAXCT).

It is clear that B, is a nonvoid set.
" Firstly, we assume that range ¢° is infinite. Then there are trees p;€dom ¢*
(i=1,2,...) such that the trees ¢?(p;) are pairwise different. Moreover, we know
that there exists a state b(¢B,) such that p,cdomyb (i=1,2,...). Since B, is a
finite set of states there are indices k, / (k<I) satisfying b,=b,. Denote by b this
state. Let c¢=(a, b). It is clear that neither range ¢*° nor range y>° are a sin-
gleton. By Lemma 12 we get that for each tree p€dom ¢, the equalities ¢,(p)=
=@a,(P) =Y, (P)=Y,(p) hold.

_ Next we show that the set B, is a singleton. Assume that there is a state b¢ B,
differing from b. Let ¢=(a, b). Now there are three cases.

First, suppose that range ¢%¢ is infinite. By Lemma 12 we have that ¢, (p)=
=04, :(P)=V5.:(p)=¥5(p) hold for each tree pcdom ¢,. It means that the state
b can be substituted by b which is a contradiction because B is an SN F-transducer.

In the second case assume that both range ¢%¢ and range /b are singleton.
Then we know that for each tree pcdom ¢, \{#} the equalities g- @,(p)=¢q (p)=
=y;5.:(P)=¥5(p) hold, where g=¢%(p) and pédom %% It 'is clear that
g=rtange b if b is a final state. From this we obtain ¢-y,(p)=y5(p) for each
tree pedom y®\{#). Since the state b cannot be substituted by the state b and
conditions (ii,))—(ii;) of Definition 9 hold for the states b, b and the tree g con-
dition (iig) can not be satisfied. It means that there is a state be B\ {b, b} and a

tree G€Tg(Y,) for which domy,=dom y; and range W’ is infinite, moreover,
for each tree pe&dom s, the equality ¢-,(p)=g - y¥5(p) holds. One can see easily
that there is a state ac A\ {a, a} such that dom pz=domy; and for each tree
pEdom Vi3, oz(p)=y35(p). It implies that for each tree p€dom ¢,, 4 - ¢.(p)=§ - pz(P).’
Since A is an NPF-transducer condition (ii) of Definition 5 has to hold. We have
that gNrange @°=0 thus there are trees r, 7€ Tg(Y,,) such that r- @, (P)=F- ¢3(p)
- for each tree pcdom ¢,, where at least one of the trees r, F equals #. It is clear
that r=F=4# because A is a superior NF-transducer. It implies that for each tree
pedom ¢, the equality ¢,(p)=¢z(p) holds which is a contradlctlon

In the third case suppose that range ¢®¢ is a singleton and range Y8 is infinite.
We have that for each tree pcdom o\ {#} the equalities ¢-¢,(P)=¢4(P)=
=y5,:(p)=q - Y5(p) hold where g€range ¢° and ge€range y*. We have that if a
is a final state then b is also a final state and g=g. It implies that for each tree
pEdomyr,, q- W, (p)=g - Ys(p). From Definition 5 we obtain that either for each
tree pcdom s, the equality ¥,(p)=y;5(p) holds or range y5Ng=40N. It contra-
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dicts the above statements. It means that if range ¢® is infinite then B, is.a sin-
gleton.

Similarly, we can show that for each state b¢B if range §® is infinite then
there is exactly one state a€ 4 satisfying the inclusion (b, ¢)€ BX C where c={(a, b).
Moreover, for each tree p€domy, the equalities @,(P)=0¢, (P)=VY, (p)=
=y,(p) hold.

Secondly, we may assume that range ¢? is a singleton. It is clear that B,=0
and for each state b€ B, range Y, is a singleton, too. Let b€ B, be arbitrary. Then
for each tree pcdom ¢, the equalities @,(p)=9, (P)=V¥s (P)=Y¥,(p) hold where
c¢=(a, b). We have that b is a final state if and only if @ is a final state. It implies
that range ¢°=range *. From this and Definition 9 we get that B, is a singleton.

In a similar way we can see that for each b€ B if range ¥® is a singleton then
there is exactly one state a€A such that (b, )¢ BXC (c=(a, b)) and for each

tree pEdom @, the equalities @,(p)=0p, c(p) Y. .(P)=v,(p) hold. This ends the
proof of Lemma 13.

Lemma 14. The SN F-transducers A and B are isomorphic.

Proof. Let us define a mapping u: A—B such that u(a)=>» if and only if

(a, (a, b)) AXC. By Lemma 13 it is clear that u is a bijective mapping of 4 onto
B, moreover, u(A’Y=RB’.

Next suppose that x—~aq€ X, (x€ X,U Fy) and b=p(a). We have that x—~brc %,
and for each tree p€dom @,=dom y, the equality ¢,(p)=y¥,(p) holds. It implies
that q-¢,(p)=¢(x-p)=y(x-p)=r-y,(p). From this we can obtain that g=r.
It means that x—bq€ 2. Similarly, if x—~br€Zy and a=u~1(b) then x—arc¥,.

Let f(ay, ..., ¢)~ayq€ Z, where f€F, (k=0) and a4 (i=0,1, ..., k). We
have that there is a rule of the form f(by,...,b)—bor in Xz where b,=u(a,)
(i=0,1, ..., k). Moreover, it is clear that dom @p%=dom /%, and for each tree
pi€dom @, @%(p)y=y>(p;) (i=0,1, ..., k). From the proof of Lemma 13 we know
that if range @% is a singleton then g=range p%=range Yto=r.

Next we may assume that range ¢% is infinite. In this case we have that there
is a tree p€dom ¢,, for which ¢, (p)€Ts(Y,). Let p,cdomee (i=1, ...,k) be
arbitrary trees and let j be an arbitrary index (1=j=k). We define the trees s;, f;
(i=1,...,k) in the following way. If i=j then s;=t¢,=#, otherwise s;=p, and
ti=¢%(p)=yb(p) (i=1,...,k). Denote by 5;, g; and 7; the trees f(s, ..., sy,
q(ty, ..., ) and r(t,, ..., 1), respectively. By Lemma 13 we have that the equalities
q;- (pao(p) ¢q,(5;-P)= %,(s “P)=7; ¥y, (P) and @, (P)=¥,,(p) hold. It follows
that g;=r;. Since jis arbitrary we get r=gq. It means that f(b,, ..., b;)—~b,g€ Z;.

Slmllarly, one can see that if f(b,, ..., b)—~bor€Zp then f(a,, ..., a)—~a,re X4
where a;=p~1(b) (i=0,1, ..., k). Therefore, the SNF-transducers A and B are
isomorphic.

By this lemma we get the following theorem.

Theorem 15. The SNF-transducers A and B are equivalent if and only if they
are isomorphic.



On the equivalence of the frontier-to-root tree transducers 193

References

[1]1 ENGELFRIET, J., Bottom-up and top-down tree transformations — A comparison, Math. Systems
Theory, v. 9, 1975 pp. 198—231.

[2] ENGELFRIET, J., Some open questions and recent results on tree transducers and languages,
Formal language theory, ed. by R. V. Book, Academic Press, 1980, pp. 241—286.

[3] Esik, Z., Decidability results conserning tree transducers I, Acta Cybernet., v. 5, 1980, pp.
1—20

[4} GEcseg, F.—STEINBY, M., A faautomatak algebrai elmélete 1, Matematikai Lapok, v. 26,
1975, pp. 169—207.

(5] GicseG, F.—STemBY, M., A faautomatak algebrai elmélete 11, Matematikai Lapok, v. 27,
1976—1979, pp. 283—336.

[6] ZacuAr, Z., On the equivalence of the frontier-to-root transducers I, Acta Cybernet., to appear.

Received Apr. 19, 1984
TATABANYA COAL MINES

" VERTANUK TERE I
2800 TATABANYA, HUNGARY



