Metric representations by v.-products

By F. GEcseG

The purpose of this paper is to compare the metric representation powers
of the product and v;-products introduced in [1]. It is shown that a class of automata
is metrically complete with respect to the product if and only if it is metrically com-
plete regarding the v,-product. It is also proved that the vs-product is metrically
equivalent to the product.

We start with some basic notions and notations.

An alphabet is a nonvoid finite set. The free monoid generated by an alphabet
X will be denoted by X™. An element p=x,...x,€ X" (x,€ X, i=1,...,n) is a word
over X, and n is the length of p, in notation, |p|=n. If n=0 then p is the empty

“word, which will be denoted by.e. For arbitrary integer n(=0), X® will stand
for the subset of X* consisting of all words with length less than or equal to n.

An automaton‘is a system U=(X, 4, 8), where X is the input alphabet, A is
a nonvoid finite set of states and the mapping 6: AXX—~A is the transition func-
tion of A. We extend J to a mapping 6: AXX*~A4 in the following way: for
arbitrary a€ A, 6(a,e)=a and d(a, px)=5(5(a, p), x) (PEX*, xE€X).

Take an automaton W=(X, 4, §), a state a€A4 and an integer n(=0). We
say that the system (U, a) is n—free if 8(a, p)#0(a, q) for arbitrary p,gqcX®™
with ps#gq.

If we add an output to an automaton then we get the concept of‘a sequential
machine. More precisely, a system WU=(X, 4, Y, d, 1) is a Mealy machine, where
(X, 4, 8) is an automaton, Y is the output alphabet and the mapping A: AXX-Y
is the output function of W. We can extend A to a mapping A: AXX*—~Y* in the
followmg way: for every acA, X(a,e)=e and A(a,px)=41(a, p)l(é(a p), X).
A mapping u: X*—~Y* is called an automaton mapping if there exist a Mealy
machine A=(X, 4, Y, 5,1) and an ac€A such that u(p)=2~(a, p) (p€X™*). If this
1s the case then we say that i can be induced by U in the state a.

Take a Mealy machine W=(X, 4, Y, §, 1), an automaton mapping u: X*—~Y*
and an integer n(=0). Itis said that U induces u in length n if for some a€A, u(p)=
=A(a, p) (p€X™).

Let A;=(X;, 4;,6;) (j=1,...,1) be automata, X and Y alphabets, and
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mappings. Then the Mealy machine U=(X, 4, Y, 8, 1) is the product (a;-product,
viproduct) of U; (j=1,...,1) with respect to X, Y and ¢, ¥ if the automaton
(X, 4, 8) is the product (x;-product, v-product) of A; (j=1,...,¢) with respect
to X and ¢, and for arbitrary a=(a,, ..., ¢)€A4 and x€X, A(a, x)=y(ay, ..., a;, X).

A class K of automata is metrically complete with respect to the product («;-
product, v-product) if for arbitrary automaton mapping u: X*—Y* and integer
n(=0) there exists a product (a;-product, v-product) U=(X, 4, Y, 5, 1) of auto-
mata from K inducing g in length n. Moreover, the v,-product is metrically equiv-
alent to the product provided that for every class K of automata and non-negative
integer n an automaton mapping u: X*—~Y* -can be induced in length »n by a
vi-product A=(X, A4, Y, , 1) of automata from K if and only if it can be induced
in length » by a product B=(X, B, ¥, 8", 1) of automata from X.

Let A,=(X;, 4;,9) (i=1, ...,t) be automata, and take a product

t
Y __ v S __
% = \4, A, v) = EAI{X’ g ]

Then for arbitrary a=(a, ..., a)€ A, p€X* and i (1=i=t) define ¢;(a,p) in
the following way: ¢;(a, e)=e and o¢;(a, gx)=0;(a, q)0;(6(a, 9), x) (g€ X*, x€X).
For notions and notations not defined here, see [3] and [4].
Now we are ready to state and prove

Theorem 1. A class K of automata is metrically complete with respect to
the product if and only if K is metrically complete with respect to the v,-product.

Proof. The condition is obviously sufficient.

To show the necessity assume that K is metrically complete with respect to
the product. We prove that for every alphabet Y and integer k(=0) there exist
a v;-product D=(Y, D, ") of automata from K and a state dé D such that the
system (D, d) is k-free. This obviously implies that K is metrically complete with
respect to the v,-product.

It is shown in [2] that K is metrically complete with respect to the product
if and only if for arbitrary integer k(=0) there exist an A =(X, 4, ) in K a state
a€A and a word peX* with |p|=k such that &(q,, p) is ambiguous, that is
d(ay, px)=d(a,, px) for some x, x’€X. Let us distinguish the following two
cases.

Case 1. Kcontains an A=(X, A4, 6) such that for certain pairwise distinct states
4y, Ay, ..., d,_y, a5 and inputs xy, Xy, ..., X,_1, X1 we have

6(‘10: x]) =, 5((1]9 x2) = dg, .. 6(0,,_2, xn-—l) = an—]’ 5(an;l, x()) = qQ
and 0(ay, x7) = aj.

Let k(=0) be an integer, and take two words p=y;...%,¥,41-- Vs §=V1.--VpZpp1---
e Z€Y® (y L Ve, Zegns - 2€Y) with f=s, and y,,,7#z,4, if ts#r, where
Y is an arbitrarily fixed alphabet. Consider the v,-product

: 541
B=(,B,6)= ][ BlY, ¢, ]
i=1
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given as follows.
B, =AU (=1,..,s+1)

v() =9 and v(@) =i—1 (E=2,..,s+1).
(Pi(aj’y) —_‘—xj (i=2a"~,s+1; j=0,~--,n_1; J’EY)

x, f i=r4+2 and y =z, .4,

ouai, ) ={ (=2 .., 5+1; ye),

x} otherwise
In all other cases ¢ is given arbitrarily such that the resulting product is a v, -product.

Take the state b=(b,, b, ..., by YEB with b, =af, b;=a, ;- (i=2, ...,s+1),
where the indices of a’s are taken modulo n. One can easily show by induction on j
that for every j(=1,...,s)

o’ (b, J’1'--J’j) = (c15 - Cit15Cjt2s --os Cs+1)

where ¢;1=a; and c¢;=a,_g_g; (=j+2,..,5+1). Moreover, for every

H=r+1,..,1)
(B, y1o- Vi Zrs1---2)) = (€15 o5 €15 -ov5 Cs41)

where ¢;=a,_g—-g+; ((=j+1, ..., s+1). (The indices of a’s are considered modulo
n in the latter two cases, t00.)

Therefore, the last component of &(b,p) is ef, and the last component of
(b, g) is in the set {a,, ay, ..., @,1}. Thus (b, p)=d'(b, q)..

Case 2. K does not satisfy the conditions of Case 1. Then for every integer
k(=0) there is an W=(X,4,6) in K with pairwise distinct states ay,ay, ...
vy @ Oy g1, Gy and INPULS Xy, X, ooy Xpy Xpy1s Xiy1 SUCh that 6(a;, X;41)=a;41
(i=0,...,k) and d(ay, x;,1)=a;,,. Again take the alphabet Y and the words p,
q of Case 1. Consider the v;-product

B = (Y, B,5) = [[ B, ¢, ]
i=1

given in the following way.
B,=A (=1,..59).

v(1)=0 and v,=i—1 (i=2,..,5).
01(3) = xi41 (and @1(2) = Xiyy if r=0 and 135 0).

if i=r+1, j=k+1 and y=z,,,

ey e
:(a;, 7) { otherwise

Xj
(=28 j=1 .. k+1).
(pi(al,ﬂ-la J’) = xl’(+1 (122’ ey S)'

In all other cases ¢ is given arbitrarily in accordance with the definition of the v,-

product.
Take the state b=(a,, a,_;, ..., @;.s+1)€B. Again it is easy to show that for
every j(=1,...,9)
. o' (b, y1...¥)) = (€15 ..y €y oory €y
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where ¢;=a;_G_1)+j (i=/, ..., 5). Moreover, for every j(=r+1,...,5)
8 (b, ¥1o-YpZrg12) = (€15 ooes €y ooy €5)

with ¢;=a;,; and c¢;=a,__n4; (=j+1, ..., 5).

Therefore, the last component of 6’(b, p) is a,,,. If s=t then the last com-
ponent of §'(b, q) is a;,,. Moreover, if t<s then the last component of (b, q)
IS @y_(s—1)4¢- In both cases we have (b, p)=5'(b, q).

To end the proof of Theorem 1 take an integer k(=1) and an alphabet Y.
Moreover, set I={(p, q)|p, g€ Y®, ps~q}. As it has been shown for every pair
(p, @)€1 there exist a v,-product D, ,=(Y, D, o, 6, ) of automata from K
and a state d, € D(,,, suchthat O, (d(, o> 2)#0(p, (d(p, 0> 9)- Form the direct
product D=I1(Dy, »[(p, 9)€I), and take the state d€D with pry, () =d, ,,
where pr, ., denotes the (p, g)'" projection. Obviously, (D, d) is a k-free system.
Since the direct product of v,-products of automata is isomorphic to a v,-product
of the same antomata this completes the proof of Theorem 1.

Let us note that the v,-product used in the proof of Theorem 1 is also an a,-
product.

Next we prove

Theorem 2. The product is metrically equivalent to the v;-product.

Proof. Let K be a class of automata. If K is metrically complete with respect to
the product then, by Theorem 1, for arbitrary integer k (=0) every automaton mapp-
ing u: X*—~Y* can be induced in length k+1 by a v;-product U=(X, 4, Y, 4, 1)
of automata from K. Thus we assume that K is not metrically complete with respect
to the product. Therefore, none of Case | and Case 2 holds for K. This implies
that either there is no ambiguous state in any of the automata from X or there is
a maximal positive integer k such that for some =(X, 4, 5)€K, acA and peX*
with |p|=k—1, 6(a, p) is ambiguous. In the first case every product of automata
from K can be given as a quasi-direct product of the same automata. Thus we sup-
pose the existence of the above k.

Let

“]'I = (Xa A’ 5) = Is] QIi["/’ (P] (QII = ",i’ Ai’ 5,)€K, i= 1’ LERE S)
i=1

be a product and a=(a,, ..., a)€ 4 a state. We shall prove the existence of a v,-
product

B=(X,5,6) = [[BX, ¢, (8=, 58,8 i=1,.,1)
i=1

with a state b=(b,,...,b)c¢B such that the following conditions are satisfied.

(i) (B,,b,) is k-free, X{=X, ¢ is the identity mapping on X and B, is a
v,-product of automata from K.

(i) B, is a v;-product of automata from K, X;=X and for any two words
p,q€X* with |pl<k and |g|=k, 6;(bs, p3(b, p))#55(bs, 05(b, g)).

(i) B;eK (=3, ...,1).

(iv) For arbitrary two words p, g€ X* with |p|=|q|=k and integer i (1 =i=ys)
there is a j (1=j=¢) with B,=%, b;=a;, 6;(b;, (b, p))=6,(a;, ¢;(a, p)) and
6-,,‘(bj’ (p_,,(bs q))zai(ais (pi(a’ q))
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This will imply that the subautomaton of U generated by a is a homomorphic
image of the subautomaton of B generated by b. Indeed, take two words p, gc X*
with &(a, p)=4(a, g). Itis enough to show that 8(b, p)=5&(b, q). Let us distinguish
the following cases. . :

(M |pl, lgl=k. Then &(b, p)=5’(b, g) since they differ at least in their- first
components. '

(ID |p]<k and lg|=k. Then &(b,p) and &'(b,q) are different at least in
their 2" components.

(11D |p], |g|=k. First of all observe that, by the maximality of k, for arbitrary
automaton €=(Y, C, §")¢€K, state ¢€C and words r,r, r,€ Y* with |r|=k and
Irs|=lrs|, 6”(c, rri)=0"(c, rry). Let p=p,p, and g=q,q; (|p,|=1g:|=k). Moreover,
leti (I =i=s) be an index for which §,(a;, ¢;(a, p))6;(a;, ¢:(a, g)). Take the index
Jj given by (iv) to this i and p,, g,. Then by our remark above 5}(bj, @b, p1p2))=
=85(b;, @b, p)ps)=6:(a;, 0:(a, p))ps)=5;(a;, ¢:(a, p,p,)) where pr€ X" is a word
with |pj{=|p,|. Similarly, &}(b;, ¢}(b, :9,))=0d:(a;, ¢i(a, g,42)). Therefore,
5'(b, p)#5°(b, q) since they differ at least in their j*® components.

The k-free automaton in (i) can be constructed by using the same method as
in the proof of Theorem 1 (according to Case 2).

To give B, take an automaton €=(Y, C, §)E€K with pairwise distinct states
Cos Crs vy Ch1s Cx» € and inputs  y;, ..., ¥u_1, ¥, ¥r such that 67(co, y)=cy, ...
ey O(Chmgs Vie) =1y 87(Ch1>y)=0¢, and 8"(cy_y, ¥i)=ci. Form the single
factor v, -product

%2 = (E[Xa (p,la V’]
where v'(1)=1 and ¢"(¢;, X)=y;;1 (i=0, ..., k—1; x€ X). Moreover, in all other
- cases " is given arbitrarily. Since K is not metrically complete B, satisfies (ii).

Next we show that for arbitrary words p, g€ X* with |p|=|g|=k and integer

i (Il =i=s) there are a v;-product

D=(X,D,5) = [JCIX, 0" V]
i=1

(€=(Y, C,,8))€K, i=1,...,r) and a state d=(d,, ...,d,)€éD such that € =,
d,=a;, 6,(d,, 9(d, p))=d,(a;, pi(a, p)) and &/(d,, ¢;d, q))=5,(a;, ¢i(a,q)). Then
taking the direct product of B,, B, and these automata D the resuiting automaton
B with a suitable bé B will obviously satisfy (i}—(iv).
Since the case
(*) 5i(a‘i’ (P,'(a, p)) = 5i(ai’ (Pi(as q))
is trivial we may assume that (*) does not hold. Then p#q. Let p=x,... Xy Xp41...
e Xks  GEXy e X Ymir Y Xmi1%Vma1s 0@, P)=P=uy . Uyl iy 4 and
02, 9)=G=u,...u, v, ...v,. Moreover, set p;=x,...x;; p;=uy...u; (j=0,1, ..., k)
and
_{xl...xj T if O0=j=m,

9= Xpoo X Vmer.-¥j N m<j =k,

_ _{ul...u- if 0=j=m,

q; 4 " .

Upe UpUpyr.--0; if m<j=k
Denote g; by ¢,. Let [, be the smallest integer u for which there is a v with u<zv=k
such that §;(c,, p,)=6:(co, p,)- If there are no such v and v then let /,=k. Sim-
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ilarly, let /; be the least integer u such that for some v (u<v=k), 6;(cy, 3.) =6;(co, G,)-
Again if there are no such u and v then let /,=k. Assume that /,=/,. Finally,
denote by w the maximal number with 6;(c,, p,)=6:(¢y, G.) (0=w=k). Since
d;(co, P)##0;(co, g) the inequality /,>w holds. Moreover, w=m. Let us introduce
the notations d;(co, p)=c; (j=0, ..., L) and &;(cy,q;)=c¢} (j=O0, ..., ). Then the
elements ¢, ..., C,, Cuy1, Crwyyr are pairwise distinct, and so are the elements of
the sets {cy, ..., ¢;,} and {cg, ..., ¢f,}. We continue the proof by distinguishing
the following two cases.

Case I. w=m. Then let r=2 and €,=C,=A;. Moreover, V(1)=1, v(2)=
={1,2} and
(Pil(cja x)= Ujpy (G=0,..,5L—-1; x€X),

(pg(cja Cjaxj+l) = uj+1 (] = Oa ters 11—1);
(Pg(cj’ C;', yj+1) =V (j=m,. .., LL-1).

In all other cases ¢” is given arbitrarily. ¢” is well defined. It is obvious that ¢7
is a function. Assume that (c;, ¢;, x;;,)=(c;, ¢}, ¥j+1) holds for some j (m<j<lI,).
But this would imply w=>m.

It is seen immediately that by taking d=(c,, ¢,) the equalities

6”(d, Pj) = (Cj, Cj) (J=0,.., L)
37(d, g =(c;,¢)) (j=0,...,1y

hold. Since K is not metrically complete with respect to the product, by the choice
of /; and /,, this implies

and

5”(d3 P) = (C, 6i(60> ﬁ)) (CEAl)

8"(d, ¢) = (¢, 8:(co» D)) (c'€AY).
Case 2. w=m. Let r=w—m+2 and €,=..=C =A,. Moreover, v(I)=1,
V(N=j-1(j=2,..,r=2),v(r—1)=r—1 and v'(r)={r—2,r—1, r}. Furthermore,

07 (Commsts X141) = Uy_mpgsr (1 =0,...,m),
01 (Cws Yms1) = Vi1,

(P_I;"(Cw—m-j;tzﬂ, Xp41) = Uy m—j+2+1 G=2,..,r=2; 1=0,.., m+j—1),
Q7 (Chmm-jrotts V14D = Upm—jyosr (J=2,..,7r=2; l=m, .. ,m+j-2),
¢}’(C:v+1a ym+j) =0y (J=2,...,7=2),

o/l xpp) =uwy (1=0,..,5L-1),
el ae ) =t (U=m, ., L—1),

e (Csrs s € Xe) = U (1=0, ., w),

@/ (Cre15 C1s s Vis) = Uy (=m, .., w=1),

@7 (Cht15 Cws Cus Yiwt1) = Vi1,

@7 (€, Cotts Cooits Xypi141) = Upyipsn (CEA.', I=1,.., ll_(w+1))a
' ‘P:i(ca Cowtls Cowtls Vuwsr+) = Vpira1 (CEA.', I=1,.., 12—(W+1))-

and
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In all other cases ¢” is given arbitrarily in accordance with the definition of the v,-
product. ¢” is well defined. This is clear in all cases except when

- ’ ’
(C Cw+la cw+l: xw+l+1) - (C Cw+is Cowits ,VW+1+1)

for an / (1 <1<1 —(w+1)). But this would contradict the choice of w.
One can easily show by induction on / that for d=(¢,,_,,, Clo—m—15 ---» €15 Co» Co)
the following equalities hold.

0"(d, p) = (Comms1s Cwmm=1415 s Qs €, €) (=0, ..., m),
0"(d, P+ = (€15 -+r €115 Coot1> Cus -5 Crpt 1415 Cmsts Cont 1)
(ct, ..., c{’_léA;; I=1,.., w—m),

" (d, ge) = (€15 -5 €115 Crog1s Cous o5 Cont 1415 Cont > Cmtd)
(cfs oy ¢f1€A;; 1T=1, ..., w—m),

0"(d, p) =(cfy oo Cl_gs i) (€f, o ef_ €A I=w+1, .., 1),
87(d, q) = (cys s €lgs ey )} (ers s €l o€AG I=w1, .., ).

Since K is not metrically complete with respect to the product, by the choice of /;
and /,, the last two equalities imply

6" (d; p) = (Ci” cees €5_15 0i(Cos [3)) and 47(d, q) = (El’ ces E:—l; 0;(co, é))
(N P E,_IGA()

- which ends the proof of Theorem 2.
Let us note that the v;-product B in the proof of Theorem 2 is also an «-
product.
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