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1. Introduction 

Let <p be an arbitrary first order sentence. By the finite spectrum of <p, Sp (p, 
the following set is meant: 

Sp <p = {n£a>\(3A) (card A = n and A t= <p)}. 

The finite spectrum problem, due to Scholz [9], can be paraphrased in some dif-
ferent. ways. Here are four 'possibilities: 

FSP1 ([3], p. 512). Given <P arbitrarily, is there a first order sentence ip such 
that (V« € co) (n g Sp (p<=> n $ Sp \p) ? 
FSP2 ([7], p. 269). Given (p arbitrarily, characterize Sp cp as a set of positive 
integers. -
FSP3. Let Nam be arbitrary. Is there a first order sentence cp such that 
Sp (p = N1 
FSP4. Characterize those subsets of &> which are the finite spectra of first 

order sentences. N 

The finite spectrum problem, beyond its historical interest, is closely related 
to some recent problems in theoretical computer science concerning NP complete-
ness [5], [6]. Albeit a solution would be very useful, no general answer is known 
at the moment. For many interesting partial solutions, expecially for FSP3, see 
[2], [8]. As far as we know, however, no syntactically characterized non-trivial class 
of first order sentences has been given for which the finite spectrum problem is 
solvable. The purpose of the present paper is to provide one such class, the class of 
equality-free first order sentences, and to give answers to all of the four questions 
FSP 1—4 for this particular class. 

We hope, that our considerations can help to attack the general problem by 
indicating where difficulties arise. 

The class of equality-free first, order sentences is by no means trivial. Indeed, 
it is known that computability can be formalized in a fragment of equality-free 
sentences (by equality-free universal Horn sentences, cf. [1], for a proof) , which, 
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in turn , play an essential role in P R O L O G programming and thus, in the fifth-
generat ion computer projects. Hence, the results presented here can have some 
impacts on the problems of complexity theory connected to the finite spect rum 
problem too. 

2. Notations 

Structures will be denoted by underlined capitals A, B; the corresponding 
capitals without underlining A, B s tand for the universes of A, B, respectively. 
Cons tan t , relation and funct ion symbols are written in the lower case letters c, 
r,f ; while their realizations in a structure, say in A, will be denoted by C ( / l ) , R(A> 

and F<A\ 
We may suppose tha t there are only finitely many symbols in the first o rder 

language since our part icular topic concerns simultaneously only finitely many 
sentences. F o r the sake of convenience, we shall assume that there are cons tan t 
symbols, relation symbols and funct ion symbols in the language. Thus , the universe 
of any structure is nonvoid. Therefore, we shall be interested in the variants of 
F S P 1—4 where co is replaced by [<w] = {l, 2, ...}. In the sequel, we shall always 
mean these versions when we are speaking on the finite spectrum problem. 

3. An upward Lowenheim—Skolem theorem 

Theorem 1. Let A be any structure of cardinali ty to]. Then, there is a 
s t ructure B such tha t the cardinality of B is « + 1 and B is elementarily equivalent 
to A in the equality-free sense. 

Proof. Let b be a new element and define B=A U {¿>}. Let h: B-+A be any 
on to mapping such that the restriction of h t o A is the identity. Define by the 
following items. 

(i) For every constant symbol c, let C(B) = C(A>. 
(ii) For every funct ion symbol / of arity m and for arbi t rary elements 

bi,...,bm£B, put 

F™(b1,...,bm) = F<A\h(b1),...,h(bm)). 

(iii) F o r every relation symbol r of arity m and elements blt ...,bm£B, let 

( b l t . . . , b m ) ^ iff </»(*!), . . . . / » ( ¿ J K * ™ . 

It is easily seen, tha t h is a homomorphism f r o m B on to A in the algebraic 
sense and h preserves relations. I t follows, tha t the kernel of A is a congruence on 
B which is invariant over relations; hence B is correctly defined. 

W e shall prove by a straight-forward induction tha t B is elementarily equiv-
alent to A in the equality-free sense. More precisely, we prove : 

F o r arbitrary equality-free formula (p and assignment k: V—B (where V is 
the set of variables) 

Bt=<p[k] iff (1) 

where kh: V-*A is defined by kh(v)=h{k(v)). 
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First we notice, that for any term t, 

h(t(B)[k}) = t^[kh], (2) 

(Here, e.g. tiA)[k^[ stands for the familiar notion " the value of t in A at kh".) Indeed, 
if / is a variable or a constant symbol, then (2) trivially holds by definition. Let 
t be of the form f ( t l t ..., tm) and assume that (2) is true for tt (1 Si^m). Then, 

h(tW[k]) = h(FW(tiBnk],..., /<«[*]) = 

(where the equalities denoted by (*) and (**) hold by the induction hypothesis and 
since h is the identity on A, respectively). Hence (2) is true. 

Turning to the proof of (1), if cp is an equality-free prime formula of the form 
r(t 1 ; . . . , / m ) , then 

£ t = r ( / l 5 . . . , 0 [ f c ] iff > < N r ( ( „ . . . , O W 

is easily seen by using (iii) and (2). . 
The induction trivially passes over negation and conjunction. 
Let (p be an equality-free formula of the form 3 vij/, and suppose, that (1) 

holds for ij/. Then, 

B\=3vtl/[k] iff 

There is an assignment k': V—B such that (3) 

k(w)=k'{w) provided w^v and B\=il/[k']. 

Similarly, 

A]=3vip[kh\ iff 

There is an assignment k'h : V—A such that (4) 

k„(w)=k'„(w) if w^v and A)=^/[k'h]. 

By the induction hypothesis, (3) implies (4) for the assignment k'h, defined by k'h(v) = 
=h(k'(v)), k'h(w)=h(k(wj) if w^v. Similarly, if (4) holds, then, since h is onto, 
there is an assignment k' such that k'(w)=k(w) if v^w and h(k'(v)) = k'h(v) and 
B\=^\k']. Hence (3) and (4) are equivalent and thus, 

5 ( = 3 # [ k ] iff At=3v<p[k„]. 

This completes the induction. It follows, that B is elementarily equivalent to A in 
the equality-free sense. 

Q.E.D. 

Corollary 2. Let A be any structuie of cardinality n ( n £ M ) . Then for every 
- TM6[CO], nt=7i, there exists a structure B such that B has cardinality m and A if 

elementarily equivalent to B in the equality-free sense. 
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Proof. Iterate Theorem 1 m—n times. 
Q.E.D. 

Remark. Corollary 2 can be considered as a sharpened version of the (finitary) 
upward Ldwenheim—Skolem theorem for equality-free languages. For some gen-
eralization see [4]. 

The following assertion indicates, that the downward Ldwenheim—Skolem 
theorem has no similar sharpening. Besides, it has an application in the next section. 

Theorem 3. (i) For every «£[«], there exists a set T„ of equality-free sen-
tences such that Tn has a model of cardinality m iff m^n. 

(ii) There exists a set Tw of equality-free sentences such that Ta has only infinite 
models. 

Proof. Without loss of generality, we may suppose that there is a unary func-
tion symbol / and there is a unary relation symbol r in the language. Let c be a 
constant symbol. 

(i) We shall use the following notation: for / c€a ) , /<°>(c )=c , f^ + 1 \ c ) =/(/<">(c)). 
Let «€[«]. We set 

Tn = M < ) } U { H , ( / ( « > ( C ) ) | l ^ k < « - l } U { r ( / ' " - « ( c ) ) } . 

A trivial induction shows that if l S m < « then no model of T„ exists with 
cardinality m. On the other hand, it is easy to construct a structure A such that 
A has cardinality n and A\=T„. It follows by Corollary 2 that for each m S « , 
T„ has a model with cardinality m. 

(ii) The following additional notations will be used: for k£co, ~i0 is the empty 
sequence, _ i ( i +i=( — l , (~>*)); and |log2&| = max {m\m£a> and 2 m ^ k ) . Let 

r„ = {-i | l og !k ,rC/< t-"(c))|fce[a)]}. 

Aga'n, it is easily seen by induction that Ta has no finite models, but a model 
of Tm with cardinality co is easy to obtain. 

Q.E.D. 

4. The finite spectrum of equality-free sentences 

Corollary 4. Let <p be an arbitrary equality-free first order sentence. Then, 
(i) For every «€[<«], if n£Sp<p, then for all m£a>, m ^ n implies that 

m£Sp (p. 
(ii) For any equality-free first order sentence i//, if Sp (p^Q and Sp 

then Sp (pflSp 
(iii) For any equality-free first order, sentence ij/, if Sp <p7±0 and Sp tp^Q, 

then either S p i p c S p i / ' or S p i ^ c S p . ^ . 

Proof, (i) is immediate by Corollary 2. (ii) and (iii) are entailed by (i). 
Q.E.D. 

According to this corollary, the answer for FSP 1 is in the negative for any 
equality-free <p if we restrict ourselves to searching for equality-free ip, only. For 
FSP 1, however, we also have the following positive result. 
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Corollary 5. Let cp be equality-free. Then there exists a first order sentence 
such that for any n£[a>], n£Sp ip iff n$Sp<p. 

Proof. If Sp<p = 0, then we may choose 4/—(\/x) (x = x). Obviously, 
Sp ij/—[(o]. If Sp < p t h e n , by Corollary 4 (i), there exists a least number «Od[co] 
such that 

Sp (p = {n\n£co and n S n0}. 

Then, [ c o ] - S p < p = { l , 2 , . . . , w 0 - l } and we may choose for ip the sentence 
(3fi ...3yno_iVy) (v = ul...v = v„0_1). 

Q .E .D. 

Let Ncco. We say that N is a final segment of co iff there exists an n0£[co\ 
s u c h t h a t N= {n\n£co and n^n0}. 

For F S P 2, we have by Corollary 4, that, given the equality-free sentence <p 
arbitrarily, the finite spectrum of (p is a final segment of co or else Sp <p = &. 

For the remaining two questions F S P 3 and FSP 4, we obtain: 

Corollary 6. Let jVc[co], Then, the following two assertions are equiv-
alent : 

(i) N is the finite spectrum of an equality-free first order sentence. 
(ii) N is a final segment of co. 

Proof. (i)=>(ii) is immediate f rom Corollary 4 by definition. 
(ii)=»(i) Let N be a final segment of co, N¿¿0. Then there is a number /J0€[CO] 

such that N={n\n£u> and n = «0}- Consider the set T„o for w0 constructed in the 
proof of Theorem 3 (i). Obviously, T„0 is finite, hence <p = ATno is an equality-free 
"sentence. By Theorem 3 (i), Sp <p = N. 

Q.E.D. 
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