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Summary 

In this paper the author reduces the input-output analysis of a signal flow 
graph containing sampled-data elements to the analysis of a signal flow graph 
consisting purely of basic (linear) elements. By this reduction, the algebraic for-
mula of the output signals known f rom the literature can be substantially simpli-
fied. The new formula can advantageously be used to calculate the response signals 
by computer as well as by topological methods. 

Introduction 

The input-output analysis of a linear system excited by continuous and sampled-
data signals is possible by calculating the output signals of a signal flow graph 
consisting of basic and sampled-data elements [1]. In practice, the methods for 
these calculations adopt algebraic [5] or topological apparatus [4]. The main advan-
tage of a topological apparatus is in its graphic quality, but the application is recom-
mendable in special cases only, for it is complicated in respect of computer tech-
nique. The algebraic method presented in [5] can be used in more general cases but 
the formula of the output signals is still complicated. 

In this paper, a procedure is introduced which gives a simpler algebraic for-
mula of the analysis. Hence, on the one hand, the earlier method [5] can be reduced 
from the point of view of computer implementation, on the other hand an effective 
topological procedure can be designed for more general cases. The present procedure 
is applicable to signal flow graphs containing sampled-data elements working syn-
chronously, however there is no limitation either for the number of the elements 
or for the number of the input-output vertices. 
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The new algebraic formula of the analysis 

Consider the signal flow graph G containing sampled-data elements of num-
ber r. Let the number of input vertices be m and that of the output vertices n. Associ-
ate with each edge of G a transfer function as a parameter, and excite the system 
at the input vertices by the vector X=(x1, ..., *m) the components of which are 
Laplace transforms of the exciting signals. Due to this excitation, the response 
vectoi Y=(yx, ...,yn) appears at the output of G, the components of which are 
Laplace t ransforms of the output (response) signals. For example Fig. 1 shows a 
signal flow, graph with one input and one output and with two sampled-data ele-
ments. Oh Fig. 1 the sampled-data elements are marked by dotted lines and the 
transfer directions are also indicated by arrows. The task is to calculate the output 
vector Y. 

X• • r 

Let B be the vector of (the Laplace transform o f ) the signals appearing at the 
starting points of the sampled-data elements and denote by K the vector the com-
ponents of which are (the Laplace transform o f ) the signals at the endpoints of the 
sampled-data elements. 

Vector B and K are of size r. 

For the calculation, we transform G as follows. Delete all sampled-data ele-

ments f rom G and consider as the exciting vector of the remaining graph 

and let | y J be the response vector. As the remaining graph is linear we can write: 

= (1) 

where W denotes the transfer matrix of the remaining graph. Moreover, the con-
dition 

K = B* (2) 

must be fulfilled. The star in (2) refers to the sampling operation. During the trans-
formation neither the topology nor the signals of the original graph change, par-
ticularly the vector Y remains the same. 

Fig. 2 derived from Fig. 1 illustrates the transformation. Observe that now the 
input and output vectors of the remaining graph are of size 3. After partit ioning W, 
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(1) can be written in the following fo rm: 

B] rw n W12lpM 
Y J lw21 w 2 2 J k J ' 

and hence the system of equations 

(B = w u *+w i a x: 
\Y = w21;r+w22K ' 

follows. 
Let us consider the sampled form of the second equation of (3). Taking into 

account (2), we can write: 

B* = ( W n A 0 * + W i 2 5 * . (4) 
Hence we obtain: 

( l - W i o ) « * = ( W n - A T , (5) 

where 1 is the unit matrix of size rXr. If det ( 1 — W ^ ^ O , f rom (5) 

^ ( l - W ^ - M W n * ) * (6) 

follows, where the upper index —1 refers to the inverse matrix. Finally, substituting 
the right-hand side of formula (6) into the second equation of (3), and taking (2) into 
consideration, we have: 

y = w 2 1 l + w 2 2 ( l - w a - 1 . ( w u . i r . (7) 
Notice that the practical application of the formula (7) requires the calculation 

of the transfer matrix of a linear signal flow graph, which is possible by the method 
elaborated in the reference [5]. 

Computer implementation 

Comparing the response vector (7) with the transfer matrix formula of a signal 
flow graph consisting of basic elements only given in [5] it can be observed that 
both of these calculations require the same matrix operations (i.e. partitioning, 
substraction from the unit matrix, calculation of the inverse, multiplication). Since 
the application of (7) also requires the calculation of the transfer matrix of a signal 
flow graph with basic elements, there is a possibility to construct a common program 
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for the analysis of signal flow graphs without as well as with sampled-data elements. 
Such a program gives either the transfer matrix (first case) or the output vector 
(second case). Fig. 3 shows the scheme of the program mentioned above. 

The input data of the program are as follows: m and n denote the numbers of 
the input and output vertices, r is the number of the sampled-data elements while 
v stands for the number of the internal vertices. The basic elements are given by 

Input data of the program 

signal flow graph: 
m, n. r, v, parameters; 
input and output points 

Exciting vector: X 

I 
procedure of W t 

X 
k:= 1 
m 

W:= W, 

partitioning of W: 
w „ w l 2 w21, w22 

i 
k--= 1 

yes no 

\V12:=(1-W12)-' 

1 
W : = W 2 2 W 1 2 W n 

1 i 
0 

yes [ no 
L 

l o u t : W 

C stop ) 

. k> -1 
no yes 

k:=k+ 1 

y:=W21A-+W 
X 

out: Y 

( stop ) 

W12 := WÎ, 
WX1 := ( W u A1)* 

Fig. 3. 
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their endpoints. For the calculation of the transfer matrix, the components of vector 
X can be chosen arbitrarily. The program is executed in one cycle if the task is 
to determine the transfer matrix, or in two cycles if we wish to calculate the output 
vector Y. The program parameter k counts the necessary cycles and W, denotes the 
node matrix of the original signal flow graph. 

For the sake of comprehensibility we summarize the calculation of the transfer 
matrix on the left side of Fig. 3 (case r = 0 ) . If sampled-data elements are also 
present ( r^O) , the calculation proceeds on the right-hand side of the scheme and 
the second cycle starts. For performing the iterative steps, the program returns 
to the appropriate blocks on the left-hand side of Fig. 3. The location of the nec-
essary sampling operations can also be easily seen in the scheme. 

A topological procedure 

Notice that matrices W u , ..., W^2 occuring in (3) can be obtained by topologi-
cal formulas f rom the signal flow graph without sampled-data elements, namely 
each of them can also be regarded as a transfer matrix belonging to a special excita-
tion. (For example to determine W31 let the input vector be ^ J , the output one 

B'; in case of W12 the input vector the output one B"\ because of the linearity 

B=B' + B", and so on). For determining Y by topological method it is enough to 
show that K can also be produced by a topological formula. 

For this purpose, let us introduce the .nota t ions S ^ S ^ ..., S r )=(W u .Y)*. 
Taking (2) into account, we have: 

K = S + W t 2 K (8) 

.Now, let us consider the signal flow graph G M associated with the linear system 
of equations (8) in the usual manner (MASON graph, [2]). In the general case, 

Fig. 4. 
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GM arises from the directed full graph with r vertices, the edges of which are para-
metrized with the elements of Wjf2, namely using the notation W 1 2 =(w u ) r x r the 
parameter of the loop coinciding to the z'-th vertex is ivi, while the parameter of 
the edge directed from the z'-th vertex to the y'-th vertex is w*\ (i,j= 1, ..., r) . This 
full graph has to be supplemented by r edges, each of which has a parameter 1 as 
transmission. The starting points of the supplementary edges are the inputs of G M , 
the endpoints are the vertices of the full graph which are at the same time the out-
puts of G M . Exciting GM by S at the inputs, the vector K appears as the response 
vector in the outputs. 

Fig. 4 indicates a part of GM in a general case. From G M the vector K can 
be obtained by a topological formula, and finally, the first equation of (3) gives the 
vector Y. 

Application 

Let us consider the signal flow graph with sampled-data elements given in Fig. I 
and let our first task be the calculation of the response vector Y by formula (7). 

Investigating Fig. 2 one can write the vector equation (1) in the following 
form: 

(9) 
X 

B2 = w Ki 
Y K2 

Using the method described in [5] the transfer matrix is: 

1 -Wi w2 -vv3w2 
w = 0 WiW2 w3w2 

0 Wx w2 W3w2 

(10) 

In (10) the dotted lines indicate the partitioning of W. After some calculation 

L - K w 2 ) * l - ( w 3 w 2 ) * J 

1 I 1 — (w3W2)* - (w3VV2)* 

! _ w * = [ l + O i 1 ^ ) * (w3w2)* 

arises. Finally we get: 

( L - W J Y - ^ I 1 - (w3 W2)* + K w2)* L (M>! W2)* 1 + (uvv 2 ) ' 
(11) 

Taking into account (10) and (11), from (7) we can write for the output vector: 

1 
Y = K vv2 w3w2] • [ ~(w3w2)* 

(»V, w 2 y 1 ~(w3w2)*+(}»№)* 

Wj w2 - w t tv2 (vv3 W2)* + W3 W2 (Wi w2)' 

l - i w s W ^ ^ + O ' V i W a ) * 

- ( w 3 w 2 ) * 
I +(vv1vv2)+ 

- • X* (12) 

As a second task let us determine Y in the previous example by topological 
procedure. Using the MASON formula, from Fig. 2 the matrices W n , ..., W22 
can immediately be read. Then it is sufficient to determine A" by topological formula. 

Taking into account the elements of \Vi2, the signal flow graph GM associated 
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w i t h t h e s y s t e m o f e q u a t i o n s (8) can b e given. G M is d r a w n o n F ig . 5. A p p l y i n g the 
M A S O N f o r m u l a d i rec t ly t o F ig . 5 

a r e fu l f i l led . 

j r * ( l - ( w 3 w 2 ) * ) 

l + ( w i w a ) * - ( w a w , ) * ' 

X*{\Vx w2)* 

a n d 

X** 

(13) 

Fig. 5. 

Fina l l y , by (10) a n d (13) w e ge t f r o m t h e first e q u a t i o n o f (3) 

X * ( l - ( w 3 w 2 ) * ) 

v r n l + ( w 1 w 2 ) * - ( w 3 w 2 ) * 
y = [ W l W 2 w 3 w 2 ] . x * ( W i W 2 r (14) 

l + ( w 1 w 2 r - ( w 3 w 2 r 

A f t e r c a l c u l a t i n g t h e p r e sc r ibed o p e r a t i o n s in (14) t h e resu l t is i den t i ca l w i t h (12). 
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