
On the congruences of finite autonomous 
Moore automata 

B y A . ÁDÁM 

1. Introduction 

By a congruence of an automaton, a partition n of the set of its states is meant 
such that n is compatible both with the transition function and with the output 
function. The general problem of describing the congruences of finite Moore auto-
mata seems to be a very difficult question. 

In the present paper, the congruences of (possibly non-connected) finite Moore 
automata which have only one input sign are presented by a recursive construction. 
After introducing the most important notions, the question is elucidated in three 
phases. (The first and third phases are almost trivial.) First, an overview of the 
congruences of cyclic automata1 is given in Section 3. The second phase is the single 
stage of the procedure which requires labour; in this phase the congruences posses-
sing the following property are obtained by a construction: whenever a is a cyclic 
state, then the congruence class containing a intersects every connected component 
of the automaton (Section 4). This result can easily be extended into a complete 
solution of the main problem of the paper (Section 5). 

The considerations of Section 4 are illustrated by an example in Section 6. 
The final section of the paper gives a broad survey of several problems concerning 

the congruences of finite Moore automata; some related earlier investigations are 
referred to here, too. If the reader wants first to get a comprehensive overview of a 
variety of problems, and thereafter to narrow down his interest to the particular 
question analyzed actually, then he can be recommended to begin the study of the 
paper with Section 7. 

The author wishes to express his gratitude to the referee, Dr. G Y . POLLAK, 
for his various suggestions which made the considerations clearer at several places 
of the paper, primarily in section 4. 

1 The attribute "cyclic" is used in the sense that the graph of the automaton is a (directed) 
cycle. (In some articles, the same attribute is used to mean that the automaton has a state which 
constitutes a one-element generating system.) 
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260 A. Ádám 

2. Terminology 

We shall use the standard terminology of automaton theory and certain basic 
notions in graph theory without explicit definitions.2 We shall consider automata 
so that no state is distinguished in them as an initial one, and (if not otherwise stated) 
we do not pose any connectivity restriction. 

A finite Moore automaton A=(A, X, Y, 5, X) is called autonomous if the 
input set X consists of a single element x. The automata, studied in this paper, are 
thought to be autonomous (unless otherwise stated). The graph-theoretical struc-
ture of these automata is described by the (simple but important) well-known theo-
rem of Ore ([8], § 4.4; [1], Chapter I). Denote the connected components of A by 
A l5 A2, . . . ,A t . Ore's theorem implies that 

(i) each connected component A; (where 1 S / S i ) contains exactly one 
cycle Zi5 

(ii) A,- has no other circuit than Z f , 
(iii) an edge of A; which does not belong to Zf is directed towards Z ;. 
A state a is called cyclic if a belongs to the cycle of the connected component 

containing a. In the contrary case, a is called an acyclic state. 
Let a, b be two states of an automaton. Define %{a, b) as the smallest non-

negative number i such that <5(a, x')=b. (Possibly %(a, b) is undefined.) 
Connected components and cycles are, obviously subautomata of A. Let a be 

a state; we denote by A [a] the connected component containing a and by Z[a] the 
cycle of A [a]. 

The next evident assertion yields a recursive description of the subautomata of A. 

Proposition 1. Let A be an (autonomous) automaton. Then 
(i) the union of an arbitrary number ( s i ) of cycles is a subautomaton of A, 

(ii) whenever B=(B, {x}, Y, <5, A) is a subautomaton and a is a state of A 
such that 

a & <5(a, x)£B, 

then C=(BU {a}, {*}, Y, 5, A) is a subautomaton, 
(iii) each subautomaton of A can be obtained by applying (i), (ii) (where (ii) is 

applied several—possibly zero — times). 
Let a be an arbitrary state of A. The smallest i such that S(a, x') belongs to 

Z [a] is called the height of a. We denote by Mi the set of all states of height i. (Hence 
M0 is the set of cyclic states; M„UM1U...UMy constitutes a subautomaton for 
each 0).) 

A partition 7i of the state set A of an (autonomous) automaton A is called a 
congruence (of A) if a=b (mod n) implies 

S(a, x) = S(b, x) (mod7t) 
and 

A(a) = A(b). 

' In particular, "cycle" is understood as a directed graph and the word "circuit" is used if we 
do not take orientation into account. 
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On the congruences of finite autonomous Moore automata 261 

For each congruence я, we can introduce the factor automaton А/я so that A¡n is 
the state set of А/я and the functions д, A are defined in А/я in the natural manner. 

The minimal partition о of A is always a congruence. The automaton A is 
called simple (or reduced) if A has no other congruence than the minimal partition 
of A. It is easy to see that, for an arbitrary automaton A, there exists a maximal 
congruence3 ягаа,, moreover, А/я is simple precisely in the case я = я т „ . 

An isomorphism between automata is understood as a state-isomorphism, an 
analogous agreement holds for homomorphisms. 

Let us define a partition nc of A such that two states a, b are in a common class 
modulo я exactly if they are in the same connected component. nc fails to be a con-
gruence in general. 

A partition я of the state set of an automaton A is called extensive if each class 
modulo я which contains at least one cyclic state meets every connected component. 
(In other words, more explicitly: я is said extensive if, whenever to a pair a, b of 
states there exists a positive number j satisfying xJ)=a, then there is a state 
с which fulfils a=c (mod я) and b=c (mod irt).) 

Consider two connected components Af, A¡ of A. Denote the maximal con-
gruences of the cycles Z¡, Zy by n¡ and n¡, respectively. If Zjn^ and Zjlitj are iso-
morphic automata, then we call A¡ and A j similar components. The similarity is an 
equivalence relation in the set of all connected components of the automaton. An 
automaton A is called pan-similar if every pair of connected components of A is 
similar. (A connected automaton is trivially pan-similar.) 

3. The congruences of cyclic automata 

Consider an automaton A such that A is a cycle. (See Fig. 1.) Denote the number 
of states (i.e., the length of the cycle) by v. Suppose that the states of A are denoted 
by a1} a2, ..., av so that 

S(alfx) = a2, d(a2,x) = a3, ..., <5(iJK_a, *) = S(av,x) = ax. 

Fig. 1. 

3 The maximality means that each congruence n is a refinement of 7rm„. In general, nm u x is not 
equal to the maximal partition t of A. 
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262 A. Ádám 

Let s be the smallest number4 such that the v equalities 

A(ax) = A(a1+S), A(a2) = A(a2+s)>...,A(a„_s) = A(a„), 

A (a._.+ I) = A(flj), A(a„_s+2) = A(a2), ..., A (a,,) = A(aJ (3:i) 

are true, s is called the periodicity number of A. We have clearly 1 S iS i ) . The cycle 
is called primitive or imprimitive according as s=v or s<v holds. 

It is obvious that the periodicity number s is a divisor of the cycle length v. 

Construction I. Choose an integer d such that Introduce the partition 
7Td of A by 

a, = cij (mod nd) <=> d\j — i 
(where l ^ i S v , l ^ j ^ v ) . 

The index of nd is d. Each class modulo nd has v/d elements. 

Theorem 1. A partition n of the state set A of a cyclic automaton A is a 
congruence of A if and only if there exists a number d such that and) n = nd. 

Proof Sufficiency is evident. — Consider an arbitrary congruence n of A. If 
we define d as the smallest positive number such that a=b (mod n) for suitable 
states satisfying x(a,b)=d, then it is easy to see that n = nd. 

Corollary 1. The congruence lattice of A is isomorphic to the lattice of divisors 
of v/s. 

Proof. Let d* be an arbitrary divisor of v/s, let us assign to d* the congruence 
nvjd,. It is easy to see that this assignment is an isomorphism. 

The following assertions are immediate consequences of our former considera-
tions : 

Corollary 2. The maximal congruence of A is ns. Among the factor automata 
A/nd (where d runs through the numbers fulfilling s\d\v) only A/ns is reduced. 
A is reduced if and only if A is a primitive cycle. 

4. The extensive congruences of pan-similar automata 

4.1. introductory considerations 

Let A be a pan-similar automaton. Consider an arbitrary state a of A, let i be 
the height of a. There is a state b, determined by a uniquely, such that b belongs to 
Z [a] and 

8(b, x!) = 5 (a, x'). 

We shall denote b by a (a). Thus we have defined an idempotent mapping a of the 
set of all states onto the set of cyclic states. It can be seen easily that o(p(a, x)) — 
=5(a(a), x). 

4 The existence of s follows from the fact that the formulae (3.1) are valid for v (instead of s). 
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On the congruences of finite autonomous Moore automata 263 

Denote by D=(D, {*}, Y, <5, A) the largest subautomaton of A which satisfies 
the implication 

a£D =>• A (a) = A(a(a)). 

The following statements are obvious. 

Lemma 1. 
(I) D exists and includes all the cycles of A. 

(II) D can be obtained also as the smallest subset of A fulfilling the following 
two requirements: 

(A) Every cyclic state belongs to D. 
(B) If a is acyclic, d(a,x)£D and A(a)=A(<r(a)), then a£D. 

(III) The formulae a^D and a=o(a) (mod^max) are equivalent (where a£A 
and 7cmax is the maximal congruence of A). 

Since we have supposed that A is a pan-similar automaton, there exists a cyclic 
automaton Z such that Z is isomorphic to each Zk/nk where nk is the maximal 
congruence of the cycle Zk of the connected component Ak of A. (k runs from 1 to t, 
where t is the number of components.) Z is primitive. For each choice of k, there is 
exactly one homomorphism rk from Zk onto Z. 

Denote the number of states of Z by s and, for any choice of k, the number 
of states of Zk by vk. (Clearly j|wt.) 

Lemma 2. Let a,b be two elements of D. Define k and m by Zk—Z[a], 
Zm=Z[b]. If xm(a(a))=Tk{a{b% then X{a)=X(b). 

Proof. We have 

A(a) = A (a (a)) = k*(xk(a(aj)) = A*(tm(ff(6))) = X(a(bj) = A(fe), 

where A* is the output function of Z. Indeed, the first and fifth equalities are valid 
by the definition of D, the second and fourth ones hold because zk, zm are homo-
morphisms. 

4.2. Recursive description of the extensive congruences 

Construction II. 

Step 1. Choose a subautomaton G0=({?„, {x}, Y, 5, A) of A such that G0 
is included in D and each cycle Zk is included in G0. 

Step 2. Define an ascending sequence 

GO.GLG, , . . . 

of subautomata of A so that5 a£Gi+1 if and only if d(a, x)£G¡. (The sequence is 
finished when A is entirely exhausted.) 

Step 3. Choose a number d such that s\d and ¿ i s a common divisor of the 
cycle lengths vlt v2, ..., vt. Choose, furthermore, a sequence zl, z2, ..., z, of 

6 Of course, Gi is here the set of states of G, . 
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states such that zk belongs to the cycle Zk (1 sk^t) and the equalities 

f i (zi) = T2(Z2) = . . . = T,(Z,) 
hold. 

Step 4. Introduce a sequence of partitions 7t(0), n(1), n(2),... in the following 
(recursive) manner: 

(I) Each 7i(i) is a partition of G;. 
(II) Two elements a, b of G0 are congruent modulo 7t(0) exactly if 

zk) = x(b, zm) (mod d), 

where k and m are defined by Zk=Z[a] and Zm=Z[b]. 
(III) Suppose that 7t(i) has already been defined. Introduce 7t(i+1) so that 

the following three rules be observed: 
(a) If a^Gi and ¿>£G;, then a=b (mod 7i(i+1)) holds precisely when a=b 

(mod 
(fi) If a£Gi and b^Gi+1-Gh then a^b (mod 7t<i+1>). 
(7) If a and b belong to G i + 1 - G f and a=b (mod 7t(i+1)), then X(a)=X(b) 

and ¿(a, x)=5(b, x) (mod 7i(i)). 
(It is clear that (7) admits a certain liberty in partitioning the elements of' 

Gj+!—G,- into classes.) 
Step 5. Denote by n the partition 7i<i*) with the largest possible superscript 

i*. (Obviously, n is a partition of Git=A.) 

Lemma 3. If a=b (mod n), then /. (a)=X (b). 

Proof. Suppose a=b (mod n). There exists a subscript i such that a, b belong 
to G ; but (if />0) they are not contained in Gj_x. The proof proceeds by induction 
on i. 

Let a, b be elements of G 0 ( g D ) , recall (II) in Step 4 of Construction II. 
We have 

y.{a(a), zk) = x(a, zk) = x(b, zm) = x{a(b), zm) (mod d) 

(the first and third congruences are clearly true modulo vk,vm, resp., this implies 
their validity modulo d), hence xk(a(a))=xm(a(b)), thus X(a)=X(b) by Lemma 2. 

Assume that the lemma is valid for i. Let a, b be elements of G i + 1 — Gt such 
that they are congruent modulo n. Then they are congruent also modulo n ( i + 1 ) . 
A(a)=A(b) follows from the rule (7) in the item (III) of Step 4 of Construction II. 

Lemma 4. n is a congruence. 

Proof. After the preceding lemma, it suffices to show that a=b (mod n) implies 
S(a, x)=d(b, x) (mod ri). 

Let a=b (mod 7t) hold. There is an i as in the previous proof. Again, we use 
induction. First we consider the case /=0 . Use the short notations a'=S(a, x) 
and b'=5(b, x), recall item (II) of Step 4 of Construction II. We have 

X(a', zk) = x(a, zk)~ 1 = x(b, z j - l = l(b;zm) (mod d), 

where the second congruence follows from a = b (mod 71), the first and third congru-

M 
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ences are valid6 because d is a divisor of the lengths of the cycles containing zk and 
zm. Hence d=b' (mod n). 

If i is positive, then the inference 

a - - b(mod 71) =>• a = b (mod 7t(i)) => 8(a, x) = 5(b, x) (mod 7 t ( i - 1 ) ) => 

=> 8 (a, x) = 8(b, x) (mod 71) 

is valid according to item (III) of Step 4 of the construction. 
Theorem 2. A partition it of A is an extensive congruence of A if and only 

if it can be obtained by Construction II. 

Proof. 

Suff ic iency. Having Lemma 4, we are going to show the extensivity of a 
congruence % obtained by the construction. Assume that a belongs to Zk and b be-
longs to Am, we want to find a c(£Am) with a=c (mod n). The choice c=S(zm, xx) 
is convenient, where / stands shortly for x(zk, a). 

Necessi ty . Let an extensive congruence it of A be considered. Our next aim 
is to determine the circumstances (more precisely: the choices of d, z l5 z2, . . . ,z ( , 
(?„, 7t(0), (?!, i tw , G2,7i(2), ...) under which just the prescribed n is obtained by 
Construction II. 

Let G0 be the set of states a(£A) for which there is a cyclic state c such that 
a=c (mod n). Let Gi+1 (where i can be 0,1, 2, ...) be the set of states a satisfying 
5 (a, Let 7t(i) be the restriction of it to the set Gf. 

Let z l5 z2, ..., z, be arbitrary states in the cycles Zx, Z2, ..., Z(, respectively, 
such that they are pairwise congruent modulo n. 

Choose a cyclic state z and denote by d the smallest positive number which 
satisfies z=8(z, xd) (mod n). It can be seen that d does not depend on the choice 
of z. 

Let 7t* be the congruence which is yielded by Construction II with the para-
meters introduced above and with a suitable application of (III/y) in Step 4. We 
want to show n*=n. Consider two states a,b; we are going to get that they are 
congruent modulo it* exactly when they are congruent modulo it. 

Suppose first a£G0 and b£Ga. Consider the three statements 

, a = b (mod TT*), 

X(a, za) = x(b, zb) (mod d), 

a = b (mod 7t). 

It can be seen that the second statement is equivalent both to the first and the third 
one. 

We turn to the case a£Gh b£Gi+l—GL. With this choice of a and b, we have 
a^b (mod 71*). On the other hand, a=b (mod 7:) would imply 

8(b, x i+d) = 8(a, xi+<i) = 8(a, x') = 8(b, x1) (mod it) 

' Except the possibility a=zk, the equality x(a', zk)=x(a, zk) — i is also true (and analo-
gously for b). 
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(the second congruence follows from 5(a, xi)€G0), and this is impossible since 

¿(¿.xOGGJ-G,,. 
By getting a contradiction, a b (mod ri) is verified. 

Finally, assume that a and b belong to the same G i+1—Gf. The equivalence of 
a=b (mod n) and a=b (mod n*) follows from the fact that we have defined 7 t ( i + 1 ) 

as the restriction of n. It remained still dubious whether or not the sequence 

(as we have derived it from 7t) satisfies (Ill/y) in Step 4 of Construction II. This 
holds, however, because n is a congruence. 

By analyzing Construction II and Theorem 2, we get the following result: 

Corollary 3. The maximal congruence 7tmaj[ of A is extensive, and just nmax 
is obtained when we apply Construction II in the following manner: d is chosen as 
equal to s; G0 is chosen as equal to D; for each possible value of i, let a=b (mod 
7 t ( , + 1 ) ) hold precisely when both ).(a)=X(b) and 

5(a,x) = S(b,x)(mod 7i(i)) 

are true (where a and b belong to Gi+1—Gf): 

4.3. The question of unicity 

Construction I has yielded uniquely the congruences of cycles. (Also Construc-
tions III, IV will prove to be unique.) It may happen, however, that two different 
applications of Construction II lead to the same extensive congruence. More nearly: 
if we modify either G0 or d or the 7i(i,'s, then the obtained congruence n is necessarily 
altered; but it is possible that two different systems of form zx, z2, ..., z, give the 
same congruence. 

Proposition 2. Let two realizations of Construction II be considered. Suppose that 
d, G0,7i(0), G±, 7t(1), G2,7t(2), ... are common in them. Denote the states which represent 
the cycles by zlt z2, ..., z, in the first execution, and by z[, z2, ..., z[ in the second 
one. Denote the obtained congruences by n and n, respectively. Then n=n' if and 
only if the numbers 

X(zi, 4), X(z2, z0, . . . , x(zt, z't) 

are congruent to each other modulo d. 
Next we show two lemmas. 

Lemma 5. First apply Construction II with the system zlt z2, ..., z„ and then 
modify the application in such a way that the system of the z?s is replaced by the 
system 

z* = 5(z±, x), z\ = <5(Z2, X), . . . , z%
t = 8(z,, x). 

Both realizations of Construction II give the same congruence. 

I 
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Proof. The statement is implied by the construction (especially, item (II) of 
Step 4) and the deduction 

X(.a, 4) = X(a, zk) +1 = x(b, zm) +1 = *(£>, z*) (mod d). 
Lemma 6. Apply Construction II with the system z l5 z2, ..., z„ select a number 

i (1 ^iSt) and modify the application in such a way that z{ is replaced by zf — 
=S(Zi, xd). Both realizations give the same congruence. 

Proof. It is easy to see that 

X ( a , zt) = x(a, z.) (mod d) 

for each state a of Af; hence the statement follows immediately. 

Proof of Proposition 2. 

Su f f i c i ency . Consider the system zu z2, ..., zt. First apply Lemma 5 
x(zi >ZD times, thus we get a system zjf ,z2 , ..., z* such that z*=z^ and dfx(z*, z\) 
for each i (ISi^t). We can obtain the system z[, z2, ..., z't by applying Lemma 6 
(several times, in a straightforward manner). 

Necess i ty . Suppose 
Z(z;, z'i) ^ x(zj, zj) (mod d) 

for a suitable pair i,j (1 si^t, 1 sj^t). Then zf and Zj are congruent modulo n, 
and it is easy to see that they are incongruent modulo n'. Hence n ^ n ' . 

4.4. Considerations on how certain subautomata can be generated 

Construction II relies upon the subautomata of D containing all the cyclic 
states. From a theoretical point of view, Proposition 1 gives a good survey of these 
subautomata. 

This survey has the practical disadvantage that a subautomaton is handled 
as the set of all states of it. It would be more useful, to characterize the subautomata 
in terms of certain sets which consist of a relatively small number of states. The 
present subsection is devoted to this subject. 

Let B—(B, {x}, Y, 5, X) be a subautomaton of A such that B includes each 
cycle. Denote by I?(B) the set of states a satisfying the condition 

a£B & (\/b)[b£B => 5(b, x) ^ a]. 

/?(B) is called the minimal generating system of B. Each element of JR(B) is an acyclic 
state. (If, in particular, B is the union of all cycles, then I ? ( B ) = 0 . ) 

It is evident that a state b belongs to B if and only if either b is cyclic or there 
is an a(£R(B)) and a number /(SO) such that S(a,x ' )=b. 

Proposition 3. If Bx and B2 are different subautomata of A which contain all 
the cyclic states, then RiB^^RiB^). 

Proof. If R(B1)=R(B2), then BX equals B2 in consequence of the sentence 
before the proposition. 
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Proposition 4. Let R be a (possibly empty) set of acyclic states. The following 
statements (A), (B) are equivalent: 

(A) There exists a subautomaton B c / A such that B contains all the cyclic states, 
B is a subautomaton of D and R(B)=R. 

(B) R is a subset of D and whenever a£R and i is a positive number, then 
S(a,xi)$R. 

Proof. ( A ) = > ( B ) is evident. — If a set R satisfies ( B ) , then it is easy to see that 
a is acyclic and R=R(B) holds for the subautomaton B which is defined by the 
following rule: b£B if and only if either b is cyclic or there is an a(£R) and a non-
negative number i such that <5 (a, x')=b. 

Construction III. The construction consists of an initial step and an arbitrary 
number ( ^0 ) of general steps. 

Initial step. Let Rx be an arbitrary non-empty subset of M^D. 

General step. Consider a set R{ such that Rt has been obtained by the preceding 
step of the construction, RiQM1UM2[J ...UMt and R^M^®. Choose a 
non-empty subset Q of RiC)Mi such that 5~1(q)ClD9i& for each choice of 
q£Q, where <5_1(<?) is the set of states a satisfying 5(a,x)=q. Choose for each 

Q) anon-empty subset 0(q) of §~1(q)C\D. Let us form the set 

i m = № - e ) u ( u « ( ? ) ) . 
9€Q 

Construction III can be finished after an arbitrary step. It breaks up necessarily 
when there is no possibility for the non-empty choice of Q. 

Proposition 5. The realizations of Construction III give pairwise different sets. 
A set R is obtainable by Construction III if and only if R=R(B) with some sub-
automaton B such that B contains all the cyclic states, B is included in D, and 
B has at least one acyclic state. 

Proof. The first assertion follows from the requirements that certain sets must 
be non-empty in Construction III. The second assertion is an easy consequence of 
the characterization of the sets R(B) stated in Proposition 4. 

5. Overview of the congruences in the general case 

Let A be an arbitrary finite autonomous Moore automaton. Denote by nh the 
partition of A such that a=b (mod nh) holds precisely if the connected components 
which contain a and b are similar. Evidently, ncQnh. 

Construction IV. 

Step 1. Let a partition n* of A be chosen such that ncQn*Qnh. Denote by 
A J , A 2 , . . . , A 4 the (pan-similar) subautomata of A which are determined by the 
classes Alt A2, ..., Aq modulo n*, respectively, (q is the index of 7t*.) 

Step 2. For each choice of i (1 Si^q), let us consider a partition 7r; of A which 
satisfies the following assertions: 
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(i) AlUA2U...UAi-1{JAi+1U...UAq is (precisely) one class modulo n^ 

(ii) The restriction of n{ to At is an extensive congruence of A,. 

Step 3. Let us form the partition 

% = Jt1flwin...ri7ts of A. 

Theorem 3. A partition n of A is a congruence of A if and only if n can be 
obtained by Construction IV. fi 

Proof. Sufficiency is evident. — Consider a congruence n of A. If we take %* 
as nUnc and define each 7rf so that 7t, coincides with n on Ah then it is clear that 
Construction IV gives n. g 

An easy consequence of the previous considerations of Section 5 is: 

Corollary 4. The maximal congruence of A is obtained when we choose (in 
Construction IV) 7i* as equal to nh and we determine each ni so that its restriction 
to At should be the maximal congruence of A;. 

Proposition 6. An automaton A is reduced if and only if the following three 
assertions hold: 

(i) Each cycle of A is primitive. 
(ii) The cycles of A are pairwise non-isomorphic. 
(iii) There is no pair of different states a, b in A such that S (a, x)=S (b, x) 

and X(a)=X(b). 

Proof. 
Necess i ty . If (i) does not hold, then we get a nontrivial congruence so that 

we select an imprimitive cycle Z and we define n so that a=b (mod n) if either 
a=b or a, b are states of Z which satisfy s\%(a,b). 

If (ii) is not true, then we can choose two different cycles and an isomorphism 
a between them; the following partition n is a nontrivial congruence: a=b (mod TC) 
is either a=b or one of a, b is the image of the other under a. 

If (iii) is not valid, then let us choose a pair a, b fulfilling X(a)=X(b) and 
8(a, x)=8(b, x); the following partition is a nontrivial congruence: {a, b} is one 
of the classes and all other classes consist of one element. 

Suff ic iency. Suppose that (i), (ii), (iii) are fulfilled. It is clear that n c =n h . Let 
us recall the considerations of Section 4 in case of an arbitrary connected compo-
nent A; of A. D consists of the cyclic states only. Corollary 3 and the last sentence 
of Corollary 2 imply that the maximal congruence of At equals its minimal congru-
ence, i.e., At is simple. Taking Corollary 4 into account, we get that also A is reduced. 

Remark 1. Consider the conditions (i), (ii) in Proposition 6. (i) & (ii) can be 
formulated in the following manner (equivalently): 

(iv) Whenever Z l 5 Z2 are cyclic subautomata of A and there is an isomorphism 
a of Zx onto Z2, then (ZX=Z2 and) a is the identical automorphism of Zx. 

Remark 2. The sufficiency of the conditions in Proposition 6 can be proved 
also by using the following idea (without any reference to the previous results): 
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we start with a congruence n and two different states such that a=b (mod n), and 
we strive to show by studying the sequences 

a, 5{a, x), ¿(a,*2), ... 
and 

b,S(b,x),5(b, x2),... 

that either (i) or (ii) or (iii) is violated. 
The question may arise when two congruences, obtained either by Construc-

tion II or by Construction IV, are related in such a way that one is a refinement of 
the other. The answer is given in the next results which can be verified by routine 
inferences. 

Proposition 7. Consider two realizations of Construction II (concerning .the same 
automaton A). Distinguish them from each other by the sub-or superscripts a and ¡i; 
in particular, let the obtained congruences be na and respectively. The relation 
n^Ttp holds if and only if the following four conditions are satisfied: 

(A) G l ^ G l 
(B) d,\da. 
(C) The numbers 

are congruent to each other modulo dp. 
(D) Whenever two different states a and b are congruent mod na in conse-

quence of (Ill/y) in Step 4 of the (first execution o f ) Construction II and they are not 
contained in G(¡, then a and b belong to the same Gf + 1 and they are in a common 
class mod (in course of Step 4 of the second realization). 

Proposition 8. Consider two realizations of Construction IV (concerning the 
same automaton A). Distinguish them from each other as in the preceding proposi-
tion. The relation holds if and only if the following conditions (I), (II) are 
fulfilled: 

(i) 
(II) The implication 

a = b (mod nf) =* a = ft (mod n1-) 

is valid for every i (lS/S^J, where j (ISj^q^) is the number determined by 
A f s A j . 

6. Example 1 

6.1. Exposition of the example 

In Section 6 we give an example to demonstrate how the extensive congruences 
of a pan-similar automaton can be constructed. 

Fig. 2 shows the graph of an autonomous automaton A (with |v4|=33 and 
|F | = 3). A has two connected components and is pan-similar. The simple homo-
morphic image of the cycles of A can be seen in Fig. 3. For the sake of brevity, we 
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Fig. 3. 

Table 1 

I 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 

a{f) 13 14 13 14 15 15 15 15 16 16 17 31 32 32 33 

denote a state simply by i instead of at. We make a perspicuous distinction between 
the output signsyx, y2, y3 so that we draw a circle, a square or a triangle, respectively. 

Table 1 shows the values of a on the acyclic states. D consists of the states 2, 5,. 
7, 9, 10, 11 and the eighteen cyclic states. 
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6.2. The realizations of Construction III 

The initial step of the construction can be applied in three different ways; we 
get the sets 

*ix) = {5}, *f> = {ll}, *i3 ) = {5, 11}. 
After an initial step, we have eleven possibilities for applying a general step; 

the resulting sets are 

* i» = {2}, RM = {9}, R p = {10}, R ^ = {9, 10}, R ^ = {2, 11}, 

*<«> = {5, 9}, R P - {5, 10}, R(
2
8) = {5, 9, 10}, R™ = {2, 9}, 

= {2,10}, J?<u> = {2,9,10}. 

(If we start with we get RgK The sets Ri3 \ R£4\ R£5) are obtained if we start 
with i?}2). The remaining seven sets are derived from i?i3).) 

If one ofR<s>, Rl«\ Rg>\ Ri9\ J?|u> is considered, we can execute a second 
general step. In this manner we arrive to the following six sets: 

Ri1] = {7}, = {7, 10}, ^3> = {5,7}, 

Ri» = {5, 7, 10}, R ^ = {2, 7}, ^ = {2,7,10}. 
We have exhausted all possibilities for performing Construction III. We have 

got that there are twenty-one choices for the subautomaton occurring in Construc-
tion II. (Twenty of these are generated by the constructed sets, respectively; among 
them, Ri,G) generates the whole sub-automaton D. A further subautomaton con-
sists of the cyclic states only.) 

6.3. The possibilities for choosing d, zx, z% 

Now we turn to how Construction II can be performed for the automaton A. 
We have two possibilities for choosing d: either d— 3 or d=6. As we have seen 
earlier, B can be selected in 21 manners. 

If d=6, then there are two essentially different7 possibilities for the choice 
of the pair {zl5 z2}. The first of these is zx= 12, z3=22; the other is zx= 12, z2—25. 
If d= 3, then we have only one possibility (apart from non-essential changes): 
zx= 12, z2=22. 

In the previous considerations, we have seen that the number of possibilities 
for choosing the parameters B,d,zltz2 is 63 (=21.(2+1)). In fact, A has more 
than 63 extensive congruences, because Step 4 (III/v) of Construction II is not strictly 
determined. 

6.4. Some notational conventions 

Before dealing with the extensive congruences of A in a somewhat (but not fully) 
detailed manner, it is appropriate to introduce how the partitions of the state set of 
A can be denoted shortly. We agree that, e.g., 

<1,4|2,3,1116, 19) 

' "Essentially different" is meant in sense of Proposition 2. 
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denotes the partition in which the three sets {1,4}, {2,3,11}, {6,19} are classes 
and each one of the remaining states forms a one-element class. If it is already known 
that H= {2,11}, then we can write 

< l , 4 | f f , 3 | 6 , 19) 
instead of the above formula, too. 

Let another notation also be introduced in the following way (for sake of con-
ciseness) : the formula 

<1,8, 11 | 3,9 || (2, 10), (4, 7)> 

will mean the system consisting of the four partitions 
<1,8, 11 | 3,9), 

<1,8, 11 | 3,9 | 2, 10>, 
<1,8, 11 | 3,9 14, 7), 

<1,8, 11 ¡3,9 12, 10|4,7>. 

6.5. Study of the extensive congruences obtained through certain 
subautomata 

We have seen in Subsection 6.2 that there are 21 possibilities for choosing G0. 
Among these, now we consider the subautomata generated by 

0, R ? \ R ? \ R ? \ 
and we are going to discuss the congruences obtained with these G0's. (The discus-
sion of any of the remaining 16 possibilities resembles to one or another of these.) 

Introduce the sets (of cyclic states) 
= {12, 15, 22, 25, 28,31}, 

H2 = {13, 16, 23, 26, 29, 32}, 
H3 = {14, 17, 24, 27, 30, 33}, 

K t = {12, 22, 28}, 
K2 = {13, 23, 29}, 
Ks = {14, 24, 30}, 
K,= {15, 25,31}, 
K5 = {16, 26, 32}, 
Ks = {17, 27, 33}, 
In. = {12, 25,31}, 
L2 = {13, 26, 32}, 
Ls = {14, 27, 33}, 
L4 = {15, 22, 28}, 
L6 = {16, 23, 29}, 
Le = {17, 24, 30}. 

3 Acta Cyberoetica VII/3 

L 
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Let us study first the case when G„ contains the cyclic states only. If d= 3 
(and z1 = 12, z2=22), then two congruences are obtained with these parameters: 

<//1 |i/2 |//3ll(9, 10)). 

Analogously, if d=6, zx=12, zz=22, then 

{KX\K2\K3\K,\K5\K,\\(9, 10)) 

are got; when d=6, Zj = 12, zz=25, then 

( L ^ L ^ L ^ L ^ , 10) ) 

are. Altogether, we have obtained six congruences for the smallest possible G 0 . 
If we start with the subautomaton generated by R[l) (as G0), then we get four-

teen congruences 
(Hlt 5\H2\H3\\(9, 10)), 

< ^ , 5 1 ^ 3 1 4 , 21||(3,19), (9, 10», 

(K^K^Kt, 5 № J ( 9 , 10)) , 

(L^L^L,, 5|X5|£6||(9, 10)>, 

<Z,1|JL2|i3|i4, 5|L5|Z6|4, 211|(3, 19), (9, 10)). 

With the subautomaton generated by R^3), three congruences are obtained: 

{H,\H2, 10|tf3, 11>, 

{ L ^ L ^ L A L s , 10|L6, 11). 

With the subautomaton generated by R2\ we get seven congruences: 

{Hi, 5\H2, 10|^3, 11), 

(Hu 5\H2, 10|#3, 11|4,21||(3, 19)), 

<tf|tf2 | tf3 |*4,5|*5 ,10|*6 , 11), 

(LJL^lLt, 5\Lb, 10\L6, 11), 

(L^LslLi, 5\LS, 10|L6, 11|4, 21||(3, 19)). 

Finally, the discussion of the subautomaton generated by Rleads to twelve 
congruences: 

(HJH, , 9, 10|tf3, l l | / i4 | t f6 |#. | | (5, 7), (6, 8)), 

<№1*31*41*5, 9, 10|̂ T8, 111|(5, 7), (6, 8)), 

9, 10|A, 1111(5, 7), (6, 8)). 

I 
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6.6. Short overview of the extensive congruences of A 

Out of the 21 basic sets, five ones were examined in Subsection 6.5. Now we 
cast a glance to the other 16 ones. The generating sets /?i2), behave simi-
larly to the smallest G0 (each of them leads to six congruences). R&2) and R^w) be-
have analogously to R a n d respectively. The behaviour of the eleven gene-
rating sets not yet mentioned is analogous to /q1 ' . 

Consequently, the number of extensive congruences of A is 

233 =(4.6+2.12+2.7+12.14+1.3). 

6.7. Maximal and minimal extensive congruences 

The maximal congruence of A is 

(Hlt 5, 7|H2 , 9, 10\H3, 2, 11|3, 19|4, 21|6, 8); 

it can be obtained from Rand d— 3. 
The question arises whether, for an arbitrary pan-similar automaton, there 

exists a minimal congruence among the extensive ones. The analysis of A shows 
that the answer is negative (in general). Indeed, let the extensive congruences 

nK = (K^K^K^K,), 

(got with the smallest G0 and d=6) be considered. The system {nK, nL} is minimal 
in the following weak sense: each extensive congruence n satisfies at least one of 
the relations n K ^ n and n L ^n . None of nK, nL is a refinement of the other, 
their intersection is not extensive. 

7. Appendix (Outlook) 

7.1. Theoretical considerations 

Let now A — ( A , X , Y , 5 , X ) be an arbitrary (not necessarily autonomous) 
finite Moore automaton. A partition n of the state set A was called a congruence if 
a=b (mod n) implies 

(A(a) = 1(b)) & (S(a, x) = S(b, x) (mod «))' (7.1) 

for every choice of a(€A), b(£A) and x(£X) (cf. Section 2). The question to 
which the present paper is devoted is a particular case of the following general one: 

Basic problem. Describe the congruences of an arbitrary automaton A. 

A satisfactorily explicit solution of this problem is, of course, hopeless in full 
generality. The importance of the basic problem (in spite of the fact that it seems 
to be an imaginary question) is that it can be considered as a common source of 
other problems. More explicitly, it admits several particularizations (into vairious 

3 * 
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directions) so that these particular questions are interesting and their solution lies 
already (more or less) within the limits of real possibilities. We can pose certain 
specializations of the basic problem so that one or another of the following con-
straints is accepted (possibly combined with each other): 

(A) A is autonomous, i.e., |Af| = l. 
(B) A is initially connected, i.e., a state ^ ( d A ) is distinguished and it is pos-

tulated that to each a(£A) there-is an input word p (depending on a) such that 
<5(ao> P)=a. 

(C) We are not interested in obtaining all congruences of the automata but we 
want to separate the simple automata from the non-reduced ones. (The results in 
this direction are considered to be valuable in so far as the method of separation 
is of constructive character.) 

(D) We are not interested in the output function of the automata. (This ap-
proach is, strictly spoken, the particular case of the basic problem when we restrict 
ourselves to the case | Y | = 1.) 

(E) The definition of congruence is strengthened by requiring 8 (a, xL)=S(b, x2) 
(mod 7i) in the second term of (7.1) faZX, xz£X). (From a rigidly formal point 
of view, this is not a particular case of the basic problem. However, this strengthen-
ing of the definition implies that the set of congruences of an automaton becomes 
narrower.) 

The specializations (A) and (A) & (E) are the same. If we accept both (D) and 
(E), we arrive at a purely graph-theoretical problem. 

In the paper [4], a (natural and easy) solution of the particular case (A) & (B) 
& (C) of the basic problem was stated (Section 3) and the constructive aspects of 
the question were dealt with (Sections 4—5). 

In [5], the case (A) &(D)[=(A) &(D) &(E)] was discussed (Chapter II) 
and these considerations were expanded into an elucidation of the case (D) & (E) 
for a large class of directed graphs (Chapter III). 

In the present paper, a treatment of the case (A) is contained. Thus the theory 
elaborated now is a common generalization of Section 3 of [4] and Chapter II of [5]. 

Among the articles whose subject is more or less related to the present paper, 
let [9], [6], [10] and the most recent publication [7] be mentioned. A number of further 
references can be found in [10] and [5]. 

In the author's opinion, the most exciting subproblem of the entire domain 
of questions is the case (B) & (C). Unfortunately, the topic seems to become terribly 
more intricate when the autonomousness of the automata is abandoned. 

My intention with the papers [2], [3] was that they should be the first steps 
towards a constructive treatment of the subproblem (B) & (C). As far as it can be 
predicted, each further step in this direction will require to surmount immense 
difficulties. 

7.2. Examples 2 and 3 

Let us finish our paper with two examples which show the difficulties of handling 
the non-autonomous case. 

Statement 1. Let A=(A, X, Y, 3, X) be an automaton, consider the n auto-
nomous automata A t =(A, {xj, Y, 8h X) where n=\X\, xt runs through the elements 
of X and 8{ is the restriction of 5 to the case when the second argument is xt. 
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Table 2 

at 5{a,, JC,) <5(0i, Had 

fli a% a3 yi 

a, at yi 

03 05 a% yi 

«4 a. yi 

Oj a, yi 
a2 ya 

Denote by n^ the maximal congruence of A;. If fl n^ f].. . H equals the 
minimal partition o of A, then A is simple. 

Statement 1 is almost trivial. It may be asked whether the conversion of (the 
last sentence of) Statement 1 is valid. 

Example 2. Analyze the automaton A determined by Table 2 (see Fig. 4) (with 

( 1 
f 1 f s \ 

vV w Vy 
Y- . y 

•»« 

f f o 6 
vV y% 

Fig. 4 

n—2 and v—\A\=6). Form the autonomous automata Ax and A2. We get that 
the maximal congruence of Ax is 

a2 , «3, «sKI««). 
and the maximal congruence of A2 is 

<a1; a2, a3, o4, fl5|a6>; 

hence ng^. On the other hand, the automaton A itself is reduced. 
This means that the condition in Statement 1 is (sufficient but) not necessary 

for the simplicity. If we take into account the connection between the distinguisha-
bility of states and the simplicity8, then it becomes clear that whenever a pair of 
different states which are congruent modulo n i ^ f l i i S , is considered — e.g., a, 

' Cf. [2], Section 5. 
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and a2 —, then they are not distinguishable by any word of form xj1 or x£ (ms0) , 
but there is a "mixed" input word which distinguishes them, for example, 

X(8(aL, *2*i)) = ¿fas) = J i ^ Jz = -'•(as) = A(<5(a2, x ^ ) ) . 

Statement 1 has contained a sufficient condition for the simplicity of an auto-
maton. The next statement asserts that another condition is sufficient for non-simpli-
city. (We shall see later that also Statement 2 does not allow a conversion.) 

Statement 2. Let A=(A , X, Y, 8, X) be an automaton, consider two sub-auto-
mata Aj and A2 of A.9 Suppose that there is an isomorphism a of Ax onto A2 
such that a differs from the identical mapping of the state set of Ax. Then A is 
not reduced. 

Table 3 

Oi 8 (a,, *2) A (a,) 

dl a2 a3 yi 

"i at >t 

a3 «5 y2 

as ae .Vs 

«5 «7 "•> yi 

űo a* di y* 

a? a3 ax yt 

Proof There is a state a of Ax such that a and cf are different. It is easy to see 
that a and cf are undistinguishable, hence they are congruent for the maximal con-
gruence of A. 

Example 3. Consider the automaton A determined by Table 3 (see Fig. 5). 

9 It is permitted that A, Ai , As be not pairwise different (even all of them can coincide). 
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Thus the condition of Statement 2 does not apply for A. However, A is not reduced, 
its maximal congruence nmax is 

<ai|a2. a5\a6, a7). 
Consequently, the (sufficient) condition in Statement 2 is not necessary. 
The fact that A is not simple but this cannot be shown by use of Statement 2 is 

in connection with the phenomenon that the partial sub-automaton over the state 
set {a2, a4, a6} is isomorphic to the partial sub-automaton over {as, a5, a7}. It can 
also be observed that there exists no chain 

О — Щ d 7Г6 с % с л 4 = 7Гтах 

in A such that я4, я5, я„, л7 are congruences whose indices (i.e., numbers of classes) 
are 4, 5, 6, 7, respectively. (Indeed, A has no other non-trivial congruence than л т а х .) 
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