Varieties and general products of top-down algebras

By Z. Ésik

Unrestricted, i.e. both finite and infinite general products of unoids were treated in [2]. It has been shown that the unoid varieties arising with general products are exactly those classes of unoids which have equational presentation in terms of socalled *p*-identities. In addition, these type independent varieties coincide with the varieties obtainable with the more special α_0 -products. In other words this means that the unrestricted general product is homomorphically as general as the α_0 -product. Although unoids do have certain specialities as shown in [1] and [2], using a new method, the above mentioned results have been extended to arbitrary algebras in [1]. Due to the specific nature of unoids, all type-independent varieties of unoids have been described in [2]. No similar description is attainable for the general case of algebras at present.

The aim of this paper is to give similar results for top-down algebras, a less well-known type of algebraic structures originating from tree automata theory. Top-down algebras are elsewhere called root-to-frontier algebras or ascending algebras as eg. in [3] and [4], due to a converse visualization of trees. The whole treatment will be done parallel with [1].

1. Top-down algebras and general products

Let R be a nonvoid subset of the natural numbers $N = \{1, 2, ...\}$. R is called a rank type and will be fixed throughout the paper. A type of rank type R is a collection $F = \bigcup (F_n | n \in N)$ so that $F_n \neq \emptyset$ if and only if $n \in \mathbb{R}$. In the sequel every type F is supposed to belong to the fixed rank type R. A top-down F-algebra is an ordered pair $\mathfrak{A} = (A, F)$ with A a nonvoid set and a realization $f: A \to A^n$ for each operational symbol $f \in F_n$. The class of all top-down F-algebras is denoted K_F . $K_R =$ $= \bigcup (\mathbf{K}_F | F \text{ has rank type } R).$

Suppose we are given two top-down F-algebras $\mathfrak{A} = (A, F)$ and $\mathfrak{B} = (B, F)$. A mapping $\varphi: A \rightarrow B$ is called a homomorphism $\mathfrak{A} \rightarrow \mathfrak{B}$ if $\varphi f pr_i = f pr_i \varphi$ for every $\in F_n$ and $i \in [n] = \{1, ..., n\}$, where pr_i denotes the *i*-th projection and functional composition is written juxtaposition from left to right. If φ is onto, \mathfrak{B} is a homomorphic image of \mathfrak{A} . Further, \mathfrak{A} is called a subalgebra of \mathfrak{B} if $A \subseteq B$ and the natural inclusion is a homomorphism $\mathfrak{A} \rightarrow \mathfrak{B}$.

Let K be an arbitrary class of top-down algebras (of rank type R). Then $\mathcal{H}(K)$

and $\mathscr{G}(\mathbf{K})$ will respectively denote the class of all homomorphic images and the class of all subalgebras of top-down algebras from **K**.

Now we are going to introduce general products of top-down algebras. To this, take types F and F^i $(i \in I)$ as well as top-down F^i -algebras $\mathfrak{A}_i = (A_i, F^i)$ $(i \in I)$. Let φ be a family of feedback functions $\varphi_i \colon \Pi(A_i | i \in I) \times F \to F^i$. The φ_i 's must preserve the rank, i.e.,

$$(a, f)\varphi_i \in F_n^i$$

if $f \in F_n$, $a \in \Pi(A_i | i \in I)$. The general product of the \mathfrak{A}_i 's w.r.t. φ and F is that topdown F-algebra

satisfying

$$\mathfrak{A} = (A, F) = \Pi(\mathfrak{A}_i | i \in I, F, \varphi)$$

$$A=\Pi(A_i|i\in I),$$

$$afpr_j pr_i = apr_i f^i pr_j$$

where $a \in A$, $f \in F_n$, $i \in I$, $j \in [n]$ and $f^i = (a, f)\varphi_i$. A general product of a finite number of top-down algebras is denoted $\Pi(\mathfrak{A}_1, ..., \mathfrak{A}_n | \varphi, F)$.

Two restricted forms of the general product will be of particular interest. These are the α_0 -product and the direct product. The general product defined above is an α_0 -product if the index set I is linearly ordered, and for every $i \in I$, the feedback function φ_i assigning value in F^i to $((a_i|i\in I), f)\in \Pi(A_i|i\in I)\times F$ is independent of the a_j 's with $j \ge i$. In case of an α_0 -product we shall indicate only those variables of φ_i on which it may depend. Index sets [n] are supposed to have the natural ordering.

The concept of the direct product easily comes by specialization, too. A general product $\mathfrak{A} = (A, F) = \Pi(\mathfrak{A}_i | i \in I, \varphi, F)$ is a direct product if all factors \mathfrak{A}_i are top-down F-algebras and $(a, f)\varphi_i = f, i \in I, f \in F, a \in A$.

Take a class K of top-down algebras. The operators \mathscr{P}_{g} , $\mathscr{P}_{\alpha_{0}}$, \mathscr{P} and $\mathscr{P}_{f\alpha_{0}}$ are defined by the following list:

- $\mathcal{P}_{q}(\mathbf{K})$: all general products of factors from **K**,
- $\mathscr{P}_{\alpha_0}(\mathbf{K})$: all α_0 -products of factors from **K**,

 $\mathscr{P}(\mathbf{\tilde{K}})$: all direct products of factors from \mathbf{K} ,

 $\mathcal{P}_{fa_0}(\mathbf{K})$: all α_0 -product of finitely many factors from **K**.

According to the universal algebraic analogy (see also the next section), classes $\mathbf{K} \subseteq \mathbf{K}_F$ closed under the operators \mathscr{H} , \mathscr{S} and \mathscr{P} are called varieties. However, the main interest will be in type-independent varieties. By definition, a type-independent variety is a class $\mathbf{K} \subseteq \mathbf{K}_R$ closed under the operators \mathscr{H} , \mathscr{S} and \mathscr{P}_a .

2. Varieties of top-down algebras

Top-down algebras of rank type $R = \{1\}$ will be called unoids. Since in a unoid (A, F) every operation is a function $f: A \rightarrow A$, unoids are ordinary algebras.

Let $\mathfrak{A} = (A, F)$ be a top-down *F*-algebra. There is a simple way to associate a unoid $\mathfrak{A}^{u} = (A, F^{u})$ with \mathfrak{A} : put $a(f, i) = afpr_{i}$ for every $a \in A$ and $(f, i) \in F^{u}$. Here the unary type F^{u} consists of all pairs (f, i) with $f \in F_{n}$ and $i \in [n]$. It is obvious that every homomorphism from a top-down *F*-algebra \mathfrak{A} into a top-down *F*-algebra

294

 \mathfrak{B} becomes a homomorphism $\mathfrak{A}^u \to \mathfrak{B}^u$, and the resulting functor is an isomorphism of the category of all top-down *F*-algebras onto the category of all F^u -unoids. Varieties are preserved under this transition, if $\mathbf{V} \subseteq \mathbf{K}_F$ is a variety, then so is $\mathbf{V}^u =$ $= \{\mathfrak{A}^u | \mathfrak{A} \in \mathbf{V}\}$, and conversely. Anyway, this simple transition allows us to adapt well-known concepts and facts from universal algebra to our top-down algebras, e.g., for any class $\mathbf{K} \subseteq \mathbf{K}_F$, $\mathscr{HSP}(\mathbf{K})$ is least variety containing \mathbf{K} .

The concept of an identity also extends to our case in an obvious way. An *F*-identity is either a formal equation xp = xq or xp = yq, where x and y are different variables, p and q are words over the alphabet F^u , i.e., $p, q \in (F^u)^*$. Expressions zp with $z \in \{x, y\}$ and $p \in (F^u)^*$ are called polynomial symbols. The number of letters appearing in zp is called the length of zp and is denoted |zp|. The set pre(zp) is defined by $pre(zp) = \{zq | |zq| < |zp|, \exists r qr = p\}$. An *F*-identity is satisfied by an *F*-algebra \mathfrak{A} if it is satisfied by the unoid \mathfrak{A}^u in the ordinary sense. In this case we also say the *F*-identity holds in \mathfrak{A} .

For a class $\mathbf{K} \subseteq \mathbf{K}_F$, Id (K) denotes the set of all identities satisfied by every $\mathfrak{A} \in \mathbf{K}$. Further, if Σ is a set of *F*-identities, then Mod (Σ) is the class of all top-down *F*-algebras satisfying every *F*-identity in Σ . We write $\Sigma \models \Delta$ to mean that Mod (Σ) \subseteq Mod (Δ).

With these concepts in mind one can easily reformulate Birkhoff's Theorem for top-down algebras. A class $\mathbf{K} \subseteq \mathbf{K}_F$ is a variety if and only if $\mathbf{K} = \text{Mod}(\Sigma)$ for a set of *F*-identities Σ . Σ can be chosen Id (K). Consequently, $\mathscr{HSP}(\mathbf{K}) = \text{Mod}(\text{Id}(\mathbf{K}))$ for any class \mathbf{K} .

A crucial point in the universal algebraic proof of Birkhoff's Theorem is the existence of all free algebras in a variety. Free algebras exist in varieties of top-down algebras, too. If $\mathbf{V} \subseteq \mathbf{K}_F$ is a variety of top-down algebras then a free algebra $\mathfrak{A} = (A, F) \in \mathbf{V}$ with free generator $a \in A$ has the following property. An *F*-identity xp = xq holds in **V** if and only if ap = aq. Similarly, if $\mathfrak{A} \in \mathbf{V}$ is freely generated by $a_1, a_2 \in A$, an *F*-identity xp = yq belongs to Id (**V**) if and only if $a_1p = a_2q$.

3. Type-independent varieties

In this section we are going to develop a theory of type-independent varieties of top-down algebras similar to the theory of varieties exhibited in the previous one. To start with notice

Statement 1. For every class K, $\mathscr{HPP}_{g}(K)$ is the least type-independent variety containing K.

To show that type-independent equational classes also have equational characterizations we now introduce the notion of a p-identity. There are 3 types of p-identities, namely

- (i) (u, v) = (u, w),
- (ii) $(u, z_1, v) = (u, z_2, w),$
- (iii) v = w

where u, v, w are possibly void words in $\{(n, i) | n \in \mathbb{R}, i \in [n]\}^*$, and $z_1, z_2 \in \{(n, i) | n \in \mathbb{R}, i \in [n]\}$. In more detail, say $u = (l_1, i_1) \dots (l_r, i_r), v = (m_1, j_1) \dots (m_s, j_s), w = (n_1, k_1) \dots$

... (n_i, k_i) , $z_1 = (d, i)$ and $z_2 = (d, j)$. It is required that $i \neq j$. Given a type F, each of these p-identities induces a set of F-identities. These are given by the formulae below:

- (i') $xpq_1 = xpq_2$,
- (ii') $xp(f, i)q_1 = xp(f, j)q_2$,
- (iii') $xq_1 = yq_2$

where $p = (f_1, i_1) \dots (f_r, i_r)$, $q_1 = (g_1, j_1) \dots (g_s, j_s)$, $q_2 = (h_1, k_1) \dots (h_t, k_t)$, further, $f_1 \in F_{l_1}, \dots, f_r \in F_{l_r}$, $g_1 \in F_{m_1}, \dots, g_s \in F_{m_s}$, $h_1 \in F_{n_1}, \dots, h_t \in F_{n_t}$, and finally, $f \in F_d$. A *p*-identity is said to be satisfied by a top-down *F*-algebra \mathfrak{A} if all its induced *F*identities are satisfied by \mathfrak{A} . Alternatively, this is expressed by saying the *p*-identity holds in \mathfrak{A} .

Let Ω be a set of *p*-identities. The set of *F*-identities induced by *p*-identities from Ω is denoted Ω_F . Ω^* denotes the class of all top-down algebras satisfying every member of Ω . Further, if **K** is an arbitrary class of top-down algebras, **K**^{*} is the set of all *p*-identities which hold in every $\mathfrak{A} \in \mathbf{K}$.

The following proposition easily comes from the definitions.

Statement 2. $(\mathscr{HSP}_q(\mathbf{K}))^* = \mathbf{K}^*$ holds for every class **K**.

The clue in our treatment is

Lemma 1. If **K** is a type-independent variety then Id $\mathbf{K}_{F}^{*} \models \mathrm{Id}(\mathbf{K} \cap \mathbf{K}_{F})$.

Proof. Assume to the contrary there exists an F-identity in Id $(\mathbf{K} \cap \mathbf{K}_F)$ which is not a consequence of \mathbf{K}_F^* . Among these there is one having minimum weight. The weight of on F-identity xp = yq is defined card $(\operatorname{pre}(xp) \cup \operatorname{pre}(xq))$. Similarly, the weight of xp = yq is just card $(\operatorname{pre}(xp) \cup \operatorname{pre}(yq))$. We shall restrict ourselves to the case this minimum weight F-identity is xp = xq. The other case can be handled likewise.

Take a free algebra $\mathfrak{A} = (A, F)$ in the variety $\mathbf{K} \cap \mathbf{K}_F$ with free generator *a*. We are going to show that whenever $xr, xs \in \operatorname{pre}(xp) \cup \operatorname{pre}(xq)$ and ar = as, then xr and xs coincide. Thus, suppose $xr, xs \in \operatorname{pre}(xp) \cup \operatorname{pre}(xq)$ and ar = as. We may choose xr and xs so that $|xr| \leq |xt| \leq |xs|$ provided that $xt \in \operatorname{pre}(xp) \cup \operatorname{pre}(xq)$ and ar = at (=as). Let us substitute xr for xs if $xs \in \operatorname{pre}(xp)$, and apply the same substitution for xq. Denote the resulting polynomial symbols by $x\overline{p}$ and $x\overline{q}$, respectively. If xr is different from xs then both F-identities $x\overline{p} = x\overline{q}$ and xr = xs have weight strictly less than that of xp = xq. On the other hand, ar = as and $a\overline{p} = ap = aq = a\overline{q}$ yield $xr = xs, x\overline{p} = x\overline{q} \in \operatorname{Id}(\mathbf{K} \cap \mathbf{K}_F)$. By the choice of xp = xq we have $\mathbf{K}_F^* = \{xr = xs, x\overline{p} = x\overline{q}\}$, while $\{xr = xs, x\overline{p} = x\overline{q}\}$ follows via the construction. Therefore, $\mathbf{K}_F^* = \{xp = xq\}$. This contradiction arose from the assumption xr is different from xs, hence, xr and xs coincide.

Write xp and xq in more detail as

$$xp = x(f_1, i_1) \dots (f_r, i_r)(g_1, j_1) \dots (g_s, j_s),$$

$$xq = x(f_1, i_1) \dots (f_r, i_r)(h_1, k_1) \dots (h_t, k_t),$$

where $f_1 \in F_{l_1}, \ldots, f_r \in F_{l_r}, g_1 \in F_{m_1}, \ldots, g_s \in F_{m_s}, h_1 \in F_{n_1}, \ldots, h_r \in F_{n_r}$ and $(g_1, j_1) \neq 0$

 $\neq(h_1, k_1)$ if s, t>0. First suppose that $g_1 \neq h_1$ if s, t>0. Since $\mathbf{K}_F^* \models \{xp = xq\}$, $xp = xq \notin \mathbf{K}_F^*$. Consequently, the *p*-identity

$$((i_1, i_1) \dots (l_r, i_r), (m_1, j_1) \dots (m_s j_s)) = ((l_1, i_1) \dots (l_r, i_r), (n_1, k_1) \dots (n_t, k_t))$$

is not in K^{*}. This means that there exist a top-down F'-algebra $\mathfrak{B} = (B, F') \in \mathbf{K}$, operational symbols $f'_1 \in F'_{l_1}, \ldots, f'_r \in F'_{l_r}, g'_1 \in F'_{m_1}, \ldots, g'_s \in F'_{m_s}, h'_1 \in F'_{n_1}, \ldots, h'_r \in F'_{n_r}$, and an element $b \in B$ with

$$bp' = b(f_1', i_1) \dots (f_r', i_r)(g_1', j_1) \dots (g_s', j_s) \neq$$

$$\neq b(f_1', i_1) \dots (f_r', i_r)(h_1', k_1) \dots (h_t', k_t) = bq'.$$

Now define an α_0 -product $\mathfrak{L} = \Pi(\mathfrak{A}, \mathfrak{B}|\varphi, F)$ so that $\varphi_1: F \to F$ is the identity function and $\varphi_2: A \times F \to F'$ is any function with

$$(a(f_1, i_1) \dots (f_u, i_u), f_{u+1})\varphi_2 = f'_{u+1}, \quad u = 0, \dots, r-1,$$

$$(a(f_1, i_1) \dots (f_r, i_r)(g_1, j_1) \dots (g_u, j_u), g_{u+1})\varphi_2 = g'_{u+1},$$

$$u = 0, \dots, s-1,$$

$$(a(f_1, i_1) \dots (f_r, i_r)(h_1, k_1) \dots (h_u, k_u), h_{u+1})\varphi_2 = h'_{u+1},$$

$$u = 0, \dots, t-1.$$

The first part of the proof garantees the existence of such an α_0 -product. It is easy to check that

$$(a, b)ppr_2 = bp' \neq bq' = (a, b)qpr_2,$$

thus $x_p = x_q \notin Id(\{\mathscr{L}\})$. Since $\mathscr{L}(\mathbf{K} \cap \mathbf{K}_F)$, this gives a contradiction.

. . .

The second case, i.e. when s, t>0 and $g_1=h_1$ yields a similar contradiction just take the *p*-identity

$$\underbrace{ \left((l_1, i_1) \dots (l_r, i_r), (m_1, j_1), (m_2, j_2) \dots (m_s, j_s) \right) = }_{-} = \left((l_1, i_1) \dots (l_r, j_r), (n_1, k_1), (n_2, k_2) \dots (n_t, k_t) \right).$$

Remark. Since only α_0 -products were used in the previous proof, the statement of Lemma 1 holds even if closure under \mathscr{P}_{α_0} is supposed instead of closure under \mathscr{P}_g . Furthermore, closure under \mathscr{H} and \mathscr{S} is not strictly required.

Lemma 2. Id $(\mathscr{P}_{\alpha_0}(\mathbf{K}) \cap \mathbf{K}_F) = \mathrm{Id} (\mathscr{P}_{f\alpha_0}(\mathbf{K}) \cap \mathbf{K}_F)$ holds for every class **K** and type *F*.

Proof. This statement has been proved for ordinary algebras in [1]. The same idea applies here. However, it should be noted that [4] also contains the proof. We are ready to prove the main result:

Theorem. For any class **K** of top-down algebras, $\mathbf{K}^{**} = \mathscr{HSP}_g(\mathbf{K}) = \mathscr{HSP}_{a_0}(\mathbf{K}) = \mathscr{HSPP}_{fa_0}(\mathbf{K}).$

Proof. $\mathbf{K}^{**} \supseteq \mathscr{HSP}_{g}(\mathbf{K})$ is valid by Statement 2. Inclusions $\mathscr{HSP}_{g}(\mathbf{K}) \supseteq \mathscr{HSP}_{a_{0}}(\mathbf{K}) \supseteq \mathscr{HSP}_{fa_{0}}(\mathbf{K})$ are trivial. $\mathscr{HSP}_{a_{0}}(\mathbf{K}) \supseteq \mathbf{K}^{**}$ follows by Lemma 1 and the Remark. Finally, $\mathscr{HSPP}_{fa_{0}}(\mathbf{K}) \supseteq \mathscr{HSP}_{a_{0}}(\mathbf{K})$ is valid by Lemma 2.

Corollary. The following three statements are equivalent for every class K:

- (i) K is a type independent equational class,
- (ii) $\mathbf{K} = \Omega^*$ for a set Ω of *p*-identities,
- (iii) $K = K^{**}$.

Note. Equations $\mathscr{HSP}_{g}(\mathbf{K}) = \mathscr{HSP}_{\alpha_{0}}(\mathbf{K}) = \mathscr{HSPP}_{f\alpha_{0}}(\mathbf{K})$ have already been established in [4].

A. JÓZSEF UNIVERSITY BOLYAI INSTITUTE ARADI VÉRTANÚK TERE 1 SZEGED, HUNGARY H-6720

References

- Z. ÉSIK, On identities preserved by general products of algebras, Acta Cybernet., 6 (1983), 285-289.
- [2] Z. ÉSIK and F. GÉCSEG, General products and equational classes of automata, Acta Cybernet., 6 (1983), 281-284.
- [3] F. GÉCSEG, On a representation of deterministic uniform root-to-frontier tree transformations, Acta Cybernet., 6 (1983), 173-180.
- [4] F. GÉCSEG, Metric equivalence of tree automata, Acta Sci. Math., 48 (1985), 163-171.

(Received Febr. 6, 1985)