
On products of automata with identity 
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In spite of the fascinating Krohn—Rhodes theory the homomorphically com-
plete classes of automata have not yet .been satisfactorily characterized for the a0-
product. Recently there has been keen activity in finding nice homomorphically 
complete classes. Continuing the work which was begun by N. V. Evtusenko [6], 
P. Domosi gave a very interesting homomorphically complete class for the a0-product 
consisting of automata having 3 input signs (cf. [3]). His idea was to use not only 
permutation automata for the homomorphic realization of permutation automata. 
He applied a technique combining shiftregisters with permutation automata, and 
in a sense his use of shiftregisters originates in [4]. It was apparent for us that Domosi 
did not completely exploit the advantages of this method. The present paper is a 
collection of a few remarks immediately obtainable just by simple generalization. 

The basic idea behind the use of shiftregisters is this. Let a part of the product 
automaton work in an absolutely free way by sections, and if enough information 
has been accumulated try to have this information govern the next move simulating 
the behaviour of the automaton to be realized homomorphically. Not surprisingly 
this has something to do with generalized products, i.e. products allowing an input 
sign to be coded with an input word of arbitrary length. Namely, this shiftregister 
technique can be used for converting generalized products to ordinary products. 
Unfortunately this conversion can not always be carried out. But the presence of 
input signs inducing the identity mapping on the state set does make the conversion 
possible under wide circumstances. 

1. Preliminaries 

We shall be using standard automata theoretic notions. An automaton is meant 
a system A = ( A , X, S), where A and X are finite nonvoid sets, the state set and the 
input alphabet, and the transition function 5 maps AxX into A. Denoting by X* 
the free semigroup with identity A generated by X, the transition function extends 
to a map AxX*->-A as usual. Given a word p£X*, the length of p is denoted |/>|. 
Every word p£X* induces a translation t j :A->-A of the state set: t$(a)=8(a, p) 
for all ad A. If no confusion may arise, we write tp instead of All translations 
tp,p£X*, form a semigroup with respect to function composition. This semigroup 
5(A) is called the characteristic semigroup of A. 

For every automaton A = ( A , X , 5 ) , we define the automata Ax and A* as 
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follows: A*=(A,{t$,t$\x£X},8x), A*=(A, 5(A), <5*), where 8\a,t*)=tlt(a)=a, 
8x(a,t$)=t$(a), and 8*(a, tf)=tj(a) for any a£A, x€X, p£X*. Notice that 
5 ( A ) = S ( A X ) = S ( A * ) . For a class X of automata put 

JT1 = {Ax\Adtf}, 

X * = {A*|A €Jf}. 

Let A=(A, X, 8) and B-(B, Y, 8') be two automata. A is called an X sub-
automaton of B, if AQB, XQ Y, and 3 is the restriction of 5' to AXX. If X= Y, 
we speak about a subautomaton. Take two mappings h1: A-*B and h2: Y. 
This pair of functions is said to be an J-homomorphism A—B if /^(¿(¿z, x)) = 
=8'(h1(a), h2(x)) for every ad A, x£X. If in addition both ht and h2 are bijective, 
we call the pair (h1, h2) an X-isomorphism, and A Z-isomorphic to B. Letting X= Y 
and h2 the identity map X^Y,hx becomes a homomorphism A—B. B = ( B , X, 8') 
is a homomorphic image of A if there is a surjective homomorphism A—B. Bijec-
tive homomorphisms are called isomorphisms. 

Take a class J f of automata. Then S(j?f), H ( J f ) and I ( j f ) will respectively 
denote the classes of all subautomata, homomorphic images and isomorphic images 
of automata from X . 

Now we recall the concept of general products of automata. Let A¡— 
= (Aj, Xj, 8j), y€["] = {l, -.., "}, «SO be arbitrary automata and take a system 
of so called feedback functions (pj". AxX •••XAnXX—Xj, /£[«], where X is any 
alphabet. The automaton A—(A1X...XA„, X, 8) will be called the general product 
(g-product, for short) of automata A j with respect to (p and X, provided that 

<5((al5 ...,a„), x) = (S1(a1,x1), ..., 8„(an, xn)), 

Xj = (Pjia-L, ...,an,x) 

forevery a^Ax, ..., a„£A„, x£X and /£[«]. We use the notation A2X.. .XAn((p, X) 
for general products. If all the A/s coincide, we speak about a power. 

Take the general product above, and let i s 0 be an arbitrary integer. If none 
of the feedback functions cpj depends on the state variables ak having indices k>j+ 
+ /—1, the g-product is called an a rproduct. In case of an a;-product. we shall 
indicate only those variables of a feedback function on which it may depend. 

We shall make use of an interesting generalization of g-products. Take the 
automata Ay as in the definition of a g-product but now let cpj\ AtX... XAnXX—X*, 
j€.[ri\. The g*-product AjX-.-XAn(X,<p) is defined on exact analogy of the g-pro-
duct with the exception that 

<5(al5 ...,a„,x) = (81(a1,p1), ...,8„(an,pn)), 

where pj=(pJ(a1, ..., an, x), j€[ri\. Allowing only words of length not.exceeding 
1 in the ranges of the feedback functions, we get the notion of a gA-product, or general 
A-product. Note that g-products are special g-products, and gA-products are special 
cases of the g*-product. The concept of an a*-product or that of an a*-product is 
derived in the same way as af-products were obtained. 

Take a class X o f automata. We put 

P9 ( J f ) : all g-products of automata from J f , 
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P a i ( j f ) : all a rproducts of automata from j f , 
P* ( j f ) : all g*-products of automata from J f , 
P* ( ( j f ) ; all a*-products of automata from ¿T, 
Vg ( j f ) : all gA-products of automata from J f , 
P^.(Jf): all a'-products of automata from J f . 

Observe that the following are identities: 

= Pg(X*\ F*(K) = P j j f * ) , 

PJ-W = P9{*% PJ;(K) = 
Our principal interest will be in operators HSP where P is any of the product 

operators above. We shall give a sufficient condition for having HSP*0(jf ) = 
—HSP^0(X), as well as a necessary and sufficient condition assuring HSP^ ( J f ) = 
=HSP^(^f ) . As regards <xrproducts with /==2, we show that H S P ^ ( J f ) = 
=HSP* (JT) is identically valid. These are the main results. In addition, we shall 
discuss homomorphically complete classes. Recall that a class JT is homomorphi-
cally complete for the g-product if HSPg ( J f ) is the class of all automata. Isomorphic 
completeness and homomorphic completeness with respect to other types of the 
product are similarly defined. We end the paper by presenting a class of automata 
which is homomorphically complete for the a0-product and contains automata 
having only 2 input signs. 

The concept of g-products was introduced by V. M. Gluskov in [10]. The hier-
archy of (¡¡¡-products is due to F. Gecseg [8]. The a„-product was called loop-free 
product or /t-product earlier. Or even, the formation of a0-products is equivalent 
to the iterated quasi-superposition. Generalized products appear in F. Gecseg [7]. 
Some elementary properties of the products will be used in the sequel without any 
reference. 

We are indebted to Prof. F. Gecseg for inspiring conversations. His new book 
{9] is an excellent summary of recent results on products of automata. 

2. Homomorphic realization 

The reason for introducing the (Xj -products was to decrease the complexity 
of the general product. On the other hand, it made possible the investigation of 
deeper structural properties of automata and, at the same time, gave a framework 
for achieving deep results. The cruical example is the Krohn—Rhodes theory. 
F. Gecseg observed how to translate this theory into the scope of a j -products. His 
achievements will be summarized in Theorem 1. In this theorem, as well as throughout 
the paper, A0 denotes the two-state reset automaton ([2], {x, y}, ¿0), ¿„(1, x)= 
=<50(2, *)=1, 80(i,y)=5Q(2,y)=2. The automaton Aj} can be identified with 
([2], {x0, x, y), <5£), where 5'0 coincides with <50 on [2] X {x, y}, and x0 induces the 
identity. 

Theorem 1. A class J f of automata is homomorphically complete for the a £ -
product if and only if the following are valid: 

(i) There is an automaton in j f whose characteristic semigroup contains a sub-
semigroup isomorphic to S(Ao). 
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(ii) For every finite simple group G, there exists an automaton such 
that G is a homomorphic image of a subgroup of 5(A). 

Consequently, there exists no minimal homomorphically complete class of 
automata for the a£-product. 

Combining the proof with the Krohn—Rhodes theory one gets: 

Corollary 1. Let X be a class satisfying (i) above, and take an automaton A. 
Then A£HSP*0(Jf) if and only if whenever a simple group G is a homomorphic 
image of a subgroup of 5(A), there is an automaton for which a subgroup 
of 5(B) can be mapped homomorphically onto G. A part of this holds for any class 
j f . Namely, whenever a simple group G is a homomorphic image of a subgroup 
of 5(A) and A£HSP*0(Jf), then a subgroup of 5(B) can be mapped homomorphi-
cally onto G for an automaton B£ J f . 

We think the above theorem clearly justifies the importance of generalized prod-
ucts. Our present purpose is to show that generalized products can be replaced 
by A-products in most cases as far as homomorphic realization is concerned with. 
Theorem 1 will be our starting point for <XQ -products, and we shall make an attempt 
to combine it with a technique used by P. Domosi in [3]. 

First of all we need a few concepts. Automata C„ = ({a1? ..., an}, {x}, <5) satis-
fying 5(ahx)=ai+1 (i= 1, ..., n— 1), 8(a„,x)=a1 will be called counters. Count-
ers of one state are said to be trivial. An automaton A = ( A , X, 8) is called counter-
free if and only if, whenever a counter C is an A'-subautomaton of A, it follows 
that C is trivial. In other words this means that 5(a1, x)=a2, ..., S(an_1, x)=a„, 
S(a„,x)=a1 implies n— 1 for all x£X and different states ...,a„6A. A class 
Jf of automata is counter-free if every A£ is counter-free. 

Besides counters we shall be using shiftregisters. Let X be an alphabet. A shift-
register over X of length n^ 1 is an automaton (X",X,8) with transitions 
¿(xj...xn, x)=x2...xnx, xx...x„£.Xn, xd.X. 

Let X and Y be arbitrary alphabets and take a mapping r: X"—Y", « s i . 
Following the ideas of P. Domosi we put RT— {(p, q)£X*X T*|l \q\^n, 
\p\ + \q\~n+1} and define the automaton RZ=(RZ, X, ¿r) as follows: 

e// \ \ i(.PX,q) if I p\*n, 
, r (p)) if | , | = „, 

where x£X, (p,yq)C_Rz with y£Y. 

Lemma 1. Let C„ be an «-state counter. Then R t6HSPao ({C„, A0}). 

Proof. The proof is a slight modification of Domosi's construction." 

Let A1=C„=([n],_{x0}, be an «-state counter, A2=(X",X,52) a shiftregis-
ter, and set A3=(F", YnUY, <53), where Y={y\y£Y} and 

¿aCVi — yn,y)=y* •••yny^ 

A 
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all y1...yn^Y", ...zn£ Y", y£Y. Form the <x0-product A=A1XA2XA3(<P, X) 
with 

<P l(x) = Xg, 

<p2(i, x) = x, 
_ J T ( X I . . . X „ ) if i ^ n 1 

{arbitrary y£Y if i * n, 
xtX, i€[»], xi...xH^X". 

It is easy to check that the assignment (i, x1...xn,y1...yn)-+(xB-i+1...x„, 
j i g i v e s a homomorphism A—RT. On the other hand, both A2 and A3 
are definite automata of degree n. Recall that an automaton (B, Z, S) is called defi-
nite of degree n, if and only if 8(b, vv)=S(c, w) holds for every b, c£B and iv£Z". 
Thus, A2, A3elSPao ({A0}) by a result of B. Imreh (cf. [11]). (Note that also the 
Krohn—Rhodes theorem helps in establishing A2, A3£HSPao ({A<>}) what would 
be enough for our purposes in this section.) Since A2, A3£ISPao ({A0}) and R t6 
€HSP«0({A1 ,A i ,A i}), it follows that R ^ H S P ^ ({C„, A0}). 

Lemma 2. If HSP^0 ( J f ) contains a nontrivial counter then HSP^0 ( j f ) con-
tains an infinite number of counters of different lengths. 

Proof. This statement was proved in [3]. 

The following theorem will bear fundamental importance in our discussions. 

Theorem 2. Suppose that X is not counter-free and A0£HSPA
0(jf) . Then 

Proof. Take an automaton A = ( A , X , S ) £ J f . Then whence 
we may assume that there is a s ignx 0 6^ inducing the identity mapping A-+A. 
We are going to show that A *=(A, 5(A), <5*)€HSPA

A
0(,?F). Let 5(A)= ..., 

— Y, where px, ... pk are words in X*. Since x0 induces the identity mapping 
A-+A, the words pt can be picked out so that \pi\ = ... = \pk\=n. Or even, the pre-
vious lemma makes possible to choose n in such a manner that an «-state counter 
is in HSPj 0 (Jf) . Obviously, there exists a mapping T: Y"-*X" satisfying the equa-
tion /£,* = for every wd Y". We form an a0-product of Rz and A and show 
that A* is a homomorphic image of this product. Since R t £HSPj 0 (X) , this yields 
A*€HSPa

A
0(Jf). 

Take the a0-product RtXA(<p, Y) with <Pi(y)=y and <p2((p, xq),y)=x, and 
define the mapping h: RtXA—A by h((p,q),a)=8*(5(a,q),p). Then h is a homo-
morphism of the product onto A*, ending the proof of Theorem 2. 

Theorem 3. Suppose that a class X of automata is not counter-free and the 
reset automaton A0 is in HSP£,(jf) . Then HSP^0 ( j f )=HSP* 0 (Jf) . Further, 
an automaton A is in HSP^0 ( JT) if and only if, whenever a simple group G is a ho-
momorphic image of a subgroup of 5(A), then G is a homomorphic image of a 
subgroup of 5(B) for an automaton 

Proof. The inclusion HSP^, ( J f ) g HSP*0 ( j f ) is obviously valid. Con-

1 For a word yi...y„€ Y", yi...yn=y1...yn. 
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versely, HSPi ( JO=HSP« D ( j r* ) iHSP ( l 0 HSPi ( j r )=HSP* 0 ( j r ) follows by The-
orem 2. The second statement is a consequence of the first one and of Corollary 1. 

Corollary 2. A class JT of automata is homomorphically complete for the 
ao-product if and only if the following conditions hold: 

(i) № is not counter-free, 
(ii) A06HSPi0(Jf), 

(iii) for every finite simple group G, there exists an automaton such 
that G is a homomorphic image of a subgroup of S(A). 

Proof. The sufficiency follows by Theorem 3. The necessity of condition (ii) 
is trivial, while the necessity of (iii) comes from Theorem 3. P. Domosi proved in [2] 
that no counter-free class can be homomorphically complete for the a0 -product. 
The reason is that only the trivial counters are in HSPao (Jf) if J f is counter-free. 

Example 1. For every w s l , let A„ be an automaton whose characteristic 
semigroup is isomorphic to the symmetric group S„ of all permutations [«]—[«]. 
The class consisting of AQ and these automata A„ ( n ^ l ) is homomorphically com-
plete for the ao-product. Consequently, 3CX is homomorphically complete for the 
a„ -product. Since S„ can be generated by 2 permutations, there exists a homo-
morphically complete class of automata for the a<) -product which contains automata 
having 2 input signs. On the other hand no class Jf consisting of automata having 
a single input sign can be homomorphically complete for the -product since every 
automaton in X would be commutative. Consequently, S(A) would be commu-
tative for each A£ J f , henceforth neither condition (ii) nor (iii) of Corollary 2 could 
be satisfied by X. Or even, every homomorphically complete class for the OCQ-
product must contain an infinite number of automata having at least 2 input signs. 

Corollary 3. There exists no minimal homomorphically complete class of 
automata for the ao -product. 

Proof. Suppose that X is homomorphically complete for the a^ -product. 
Then X contains an automaton B0 which is not counter-free, and there are B l5 ... 

such that A06HSP^0({B,, ...,B„}). Since every simple group is iso-
morphic to a subgroup of a larger simple group, also X — {B} is homomorphically 
complete for the «q -product for any B£j f— {B0, ..., B„}. 

Corollary 4. There exists a class of automata which is homomorphically com-
plete for the (XQ -product but not homomorphically complete for the a0 -product. 
Similarly, there is a homomorphically complete class for the aj-product which 
is not homomorphically complete for the a^ -product. 

Proof. By a result of P. Domosi, there exists a minimal homomorphically 
complete class of automata for the a„ -product (cf. [1]). Thus, the first statement 
follows by comparing this result with the previous corollary. To prove the second 
statement, we give a class JT homomorphically complete for the aj-product but 
not homomorphically complete for the a^ -product. 

For every integer n s 2 , let A„=([2«]U {2'}, {xlt x2, x3, x4}, <5„) be the auto-
maton with transitions dn(i, 1 if i is odd, S„(i, x2)—i+1 mod 2n if i is 
even, <5n(l, x3)=2, 5n(2, x4)=3, Sn(3,x3)=2', S„(2',xj=l, and finally,5„(i,x)=i, 
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5„(2',x)~2' in all remaining cases. Put X = {A 0}U{A>sl} . To show that tf 
is homomorphically complete for the a£-product observe that all automata B„= 
=([«], [x1; x2, x3}, S'„) ( n s i ) are in I S P ? A ( ) ( J F ) 2 where S'„ is defined so that Xj, 
induces the cyclic permutation (12...n), y the transposition (12), while x3 induces 
the identity permutation (1). Thus, H S P * ( X ) = H S P * ({A0) B I , B 2 , . . .} ) is the 
class of all automata. On the other hand X is counter-free, hence X is not homo-
morphically complete for the a«-product. 

Before turning to -products we need a few definitions. 
Acycleinan automaton (A, X, 5) is a sequence of pairwise distinct states ax,..., a„ 

so that 5(ah xt)-ai+1 (i = l, ..., n - 1 ) and 8(a„,xn)=a1 for some xu xn£X. 
The integer n is called the length of the cycle. Cycles of length 1 are called trivial, 
and an automaton is said to be monotone if and only if it contains only trivial cycles. 
An automaton (A, X, S) will be called discrete if S(a, x)~a for every ad A, x€X. 
Finally, one-state automata will be referred to as trivial automata. 

In the sequel we shall need 

Lemma 3. Suppose that an automaton A = ( A , X , 3 ) contains a cycle of length 
at least 2. Then A 0 € H S P A ( { A } ) . 

Proof. Let us assume that A contains the nontrivial cycle alt ..., a„ so that 
d(at,Xi)=al+i (z'=l, ..., n~l) and 5(a„,x„)=a1 for some x, , ..., x„dX. 

Construct the ai-product B=A"+2(<p, {x, ;>}), where 

<¡"¡(^1, •••, Ci, x) = 
Xj if Cj = a j a l t 

xx if C[ = at and cm ax when I s m 
X in all other cases, 

<Pi(c 1, •••> C[, y) 

Xj if c( = aj ax, 
X] if cl = czx and cm = ct = aL for some I s m I < i, 
X in all other cases. 

Taking the subset 
C={(clf..., c„+2)|{a2, ..., an}cz{cu ..., c„+2} and ax is contained exactly 3 times in 
the system {q, ..., c„+a}}, the automaton C=(C, {x, ;>}, 5B) is a subautomaton of 
B. Lastly, it can easily be verified that the reset automaton A0 is a homomorphic 
image of C under the mapping h: C->-[2] defined by 

h(cx, ..., cII+2) = 

fl if a2 preceeds at least two occurrences of in (c,, ...,cn+2), 
— (.2 in all other cases. 

Theorem 4. Suppose that X contains an automaton which is not monotone, 
and let A be an arbitrary automaton. Then A€HSP^(Jf ) (AeHSP^CO) if and 
only if, whenever a simple group G is a homomorphic image of a subgroup of S(A), 
there exists an automaton B e P i ^ W (B€P*«i(•*")) such that a subgroup of 5(B) 

1 -Pia/-5^) denotes the class of all single factor a,"-products of automata from X . The oper-

ators P1Xt and P U i are defined similarly. 

5 Acta Cybcrnetica VII/3 
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can be mapped homomorphically onto G. Otherwise, i.e. if c/C consists of monotone 
automata, equation HSP^ (Jf)=HSP*, (X) is universally valid, and 3 cases 
arise. 

(i) If there is a nondiscrete automaton in j f , then HSP£(,3f) is the class of all 
monotone automata. 

(ii) If every automaton from X is discrete but X contains a nontrivial auto-
maton, HSP^(J f ) is the class of all discrete automata. 

(iii) Finally, if Jf contains only trivial automata, then HSP^C^T) is the class 
of all trivial automata. 

Proof. Assume that Jf contains a nonmonotone automaton. Then P^ ( j f ) 
is not counter-free and Ao€HSP*(Jf)- Since HSP* ( j f ) = H S P J P ^ ( j f ) = 
=HSP^Pio,! (X), the first statement of Theorem 4 follows by Theorem 3 for 
products. As regards a? -products, the proof is similar just use equation HSP* ( j f ) = 
=HSP^0Pictl (X). 

Now suppose that Xs contains only monotone automata. Then the same holds 
for j f* . and by HSP8*pf)=HSP f f(jf*), even for HSP*(^f). 

If there is a nondiscrete automaton in J f , then the elevator E=([2], {x, y}, 8) 
having transitions <5 (1, x) = 1, <5 (1, y) = <5 (2, x)=S (2, y)=2 is in IPx

A
ao (ct). By a 

result in [7], every monotone automaton is already in ISPao({E}). Hence we have 
HSP*(Jf)=HSP*(Jf)=HSP4(X)=ISPK oPiC I 0(X)=ISPio(Jf) is the class of 
all monotone automata. 

The proof in the remaining two cases is obvious. We have HSP* (Jf)=ISPao (jf). 
Corollary 5. There exists an algorithm to decide for a finite class X and an 

automaton A whether AeHSPa\(Jf) (A^HSP^ (X)). 

Corollary 6. Since HSP^ ( j f ) gj HSP* (Jf) always holds, HSP4(X)= 
^HSP^Cyf) if and only if one of the following 2 conditions is valid. 

(i) Jf consists of monotone automata. 
(ii) There is a nonmonotone automaton in J f , and whenever a simple group 

G is a homomorphic image of a subgroup of S(A) for an automaton A g P ^ j f ) , 
there is an automaton B£Piai(jT) such that a subgroup of 5"(B) can be mapped 
homomorphically onto G. 

Corollary 7. A class C/f of automata is homomorphically complete for the ai-
product (a*-product) if and only if, for every simple group G, there exists an automa-
ton A€Pi a i ( j f ) (A€ Pi* x (•#•)) so that a subgroup of 5(A) can be mapped homo-
morphically onto G. 

Corollary 8. There exists no minimal homomorphically complete class for the 
ai-product (a*-product). 

Now we present a new proof for a part of a nice result of F. Gecseg [7]. 

Theorem 5. The following 3 statements are equivalent for every class X of 
automata. 

(i) Jf is homomorphically complete for the a*-product. 
(ii) For every integer n g 1, there exists an automaton A„=(A, X, <5)gJf 
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having at least n different states ax, ..., a„€A such that for every /',/€[«], there is 
a word p£X* satisfying 6{ai,p)—a]. 

(iii) Xis isomorphically complete for the ajf-product. 

Proof. We prove that (i) implies (ii). Suppose that X is homomorphically 
complete for the ajf -product. It is enough to prove (ii) for n prime. Take the cyclic 
group Z„. Since Z„ is simple, there are an automaton A'n—(A, X', 8')^P*Xl(X) 
and a subgroup H of S(A'„) such that Z„ is a homomorphic image of H. Note that 
H is isomorphic to a permutation group of a subset A'^A. Since Z„ has an element 
of order n, there must be a translation tp£H of order kn for an integer Hence-
forth, there are different states a l 5 ..., aln£A' (/ = 1) for which 8(ahp)=ai+1 mod ln 
(i£[kn]). Taking a1,...,a„ we see that A'„ satisfies condition (ii). Let A„=(A, X, <5)6 
€ X be an automaton such that A^6Piai(A„). Clearly, also A„ satisfies (ii) with 

For the sake of completeness we recall from [7] that every n-state automaton 
is already in ISPiai ({A„}), while (iii)=>(i) is trivial. 

Suppose we are given n s l boxes B1,...,B„ and k ^ n pebbles numbered 
from 1 to k. In addition, k boxes, say Bh, ..., Bik, are distinguished so that 
. . .<4- Initially Bi} contains the pebble numbered /, j— 1, ..., k. The game goes 
on as follows. At each step we take out the pebbles from the boxes and put all pebbles 
which were in B{ back into B{ or put all of them into box Bi+1. The pebbles from 
Bn go into B„ or Bx. After a number of steps the pebbles get back into the distinguished 
boxes, each distinguished box Bit containing a pebble numbered j„ t£[k]. Clearly, 
(A•••A) is a power of the cyclic permutation (1 ...k). This proves our 

Observation. Let C„ be a counter, A6Piai(C„). Then every subgroup of S(A) 
is isomorphic to a subgroup of a cyclic group Zk with ksn, whence cyclic. 

Corollary 9. There exists a class of which is homomorphically complete for 
the ol* -product but not homomorphically complete for the -product. 

Proof. Take a class Jf consisting of a counter C„ for each n s l . X is homo-
morphically complete for the a.f -product by Theorem 5. Since every subgroup of 
S(C„) ( n ^ l ) is cyclic, but there are noncyclic finite simple groups, J f is not homo-
morphically complete for the a*-product. -

We do not know whether there exists a class X which is homomorphically 
complete for the a*-product but not homomorphically complete for the <xx -product3. 
It is clear that there exists a class X such that HSP4 l(Jf) is a proper subclass of 
H S P i ( J O , take e.g. X={{[2], {*}, ¿)}, 5(1, x)=8(2, x)=2. 

Now we turn our attention to the -product and the g^-product. 

Theorem 6. HSP^(Jf)=HSP*(Jf) for every class X. Furthermore, four 
cases arise. If X contains a nonmonotone automaton, then HSP*2 ( X ) is the class 
of all automata. If X consists of monotone automata one of which is not discrete, 
then HSP^2 ( X ) is the class of all monotone automata. If X consists of discrete 
automata and contains a nontrivial automaton, then HSP*2 ( X ) is the class of all 

3 Recently £sik has shown the existence of such a class. 
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discrete automata. Finally, if every automaton contained by X is trivial, then 
H S P ^ ( j f ) is the class of all trivial automata. 

Proof. First we recall a result proved in [4]. If J f is a class of automata such 
that there is an automaton (A, X, 8)dX having a state ad A, signs x, y£X and 
words p,qdX* with <5(a, (a, y) and S(a, xp)=S(a,yq)—a, then HSP a >(Jf) 
is the class of all automata. 

Now suppose that X contains an automaton which is not monotone. Then Xv 

is homomorphically complete for the a2-product. Hence, HSP^2 (X)=HSPa2 {Xk) 
is the class of all automata, and since HSPA

2 ( J f ) g HSP^ (X), the same is true for 
H8PJ(JT). 

For the proof of the remaining cases see Theorem 4. 

Corollary 10. There exists an algorithm to decide for a finite class X and an 
automaton A if A€HSP£(j f ) . 

Now we come to the point of comparing the strengths of our various products 
with respect to homomorphic realization. The following figure gives a summary. 
The figure is to be interpreted as follows. If two operators, say P and Q label the 
same node, then this expresses that P and Q are homomorphically equivalent, i.e. 
HSP (X)=HSQ (X) for every class X. If there is a directed path from a node 
labeled P to a node labeled Q then Q is homomorphically more general than P. 
This means that HSP(JOg HSQ(Jf) for every X , but there exists a class for. 
which the inclusion is proper. Further on this situation will be denoted by P < Q . 
The index i denotes an arbitrary integer exceeding 2. 

To justify the correctness of this figure first observe that all equivalences have-
been proved previously except for that the a2-product is homomorphically equivalent» 
to the general product. But this is the main result of [5]. On the other hand, all: 
relations P-=Q appearing in the diagram have been established in this paper or 
in several papers earlier (cf. e.g. [7], [8], [9]), the only exception being P* 0 <P^ . 

To prove HSP*0 ( X ) g HSP^ ( X ) for arbitrary X , let us distinguish 3 cases. 
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Case 1. X contains a nonmonotone automaton. Then the inclusion follows 
by Corollary 1 and Theorem 4. 

Case 2. o f consists of monotone automata, one of which is not discrete. In 
•this case we have HSPJ0 ( J f ) = H S P ^ (Jf ) equals the class of all monotone auto-
mata. (Hint ran automaton in IS(JfA) is ^-isomorphic to E.) 

Case 3. Jf consists of discrete automata. Now we have ISP a o (X)=HSP*(X ), 
thiis, HSPa*0 ( j f ) = H S P ^ ( j f ). 

On the other hand, HSP* (JF) is properly contained by HSP a(JT) e.g. for 

It should be noted that no more arrows could be added to the diagram. 

3. A homomorphically complete class for the a„ -product 

It was pointed out in Example 1 that there exists a class of automata having 2 
input signs homomorphically complete for the aà-product. Our principal goal in 
this section is to show that this result can be strengthened. Such a class does exist 
for the a0-product as well. This is interesting because we do not know any direct 
way for proving that the class of all automata with 2 input signs is homomorphically 
complete for the a„-product. 

Let A = ( A , X, <5) be an arbitrary automaton, and take a subsemigroup 5 of 
5(A) containing an identity element. Put A s = ( A s , S , S s ) , where As— 
= {b£A\ 3aeA, t£S b=t(a)} and Ss(a, t) = t(a) for any a£As, t£S. Observe 
that letting 5 = 5 ( A ) we get back the definition of A*. 

The following generalization of Theorem 2 is straightforward. 

Theorem 7. Let A=(A,X,ô) be an automaton, 5 a subsemigroup of 5(A) 
containing identity element. Assume that there exists an integer « s i satisfying 

Then As<=HSPao({C„, Ao, A}). 

The characteristic semigroup of As is isomorphic to 5. Let B=(B, Y, ô) be 
an arbitrary automaton. We may construct the automaton B'=(5(B), Y, ô') with 
transitions <5'(i®,y)=t*y, p£Y*, y£Y. It is well-known that B' is isomorphic 
to a subautomaton of a direct power of B. Henceforth B'€HSPao({B}), and we have 

Corollary 11. Under the assumptions of Theorem 7 it follows that As== 
=(5, 5, «5s)<EHSPi0({Cn, Ao,A}) where <5^ , J1)=J1J„ slfs^S. 

Suppose now a class X of automata satisfies the following list of conditions. 
(i) Ao€HSP^(JT). 

(ii) There exist an automaton B0£JF, a subsemigroup 5 0 g 5(B0) isomorphic 
to 5(Ao) so that for some «, an «-state counter C„ is in HSPao(Jf ) and, at the same 
time, all elements of 50 are induced by words of length «. 

(iii) For every finite simple group G there exist an automaton B c € J f , a sub-
group HgQS(Bg), and an integer « s ! satisfying 

(iiix) HG can be mapped homomorphically onto G, 
(i i i2) C ^ H S P ^ X ) , 
(iiis) every element o f # G is induced by a word of length«. 
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Set J f '={A ? 0 , AHc\G is a finite simple group}. Since X' is obviously not 
counter-free, ASo is Z-isomorphic to AQ, finally, the characteristic semigroup of Ag 
is isomorphic to H a , Corollary 11 yields that HSP*, (Jf) is the class of all automata0 

Since every automaton belonging to J f has an input sign inducing the identity 
state-map, HSP^0 ( J f ) = H S P a o (JT). However HSPao is a closure operator, thus 

is homomorphically complete for the K0-product. This is the basis of our last 
result. 

Theorem 8. There exists a class of automata having 2 input signs which is 
homomorphically complete for the a0-product. 

Proof. Let B0=([2], {x,y}, <5„) be the automaton with transitions <S0(1, x)=2, 
So(l,y)=S0(2,x)=50(2,y)=\. Translations t% ty, forrnia subsemigroup s'0 
of 5"(B0) isomorphic to S(A{;) under the correspondence ty^t^, 
In addition, for every odd integer «i=3, take the automaton B„=([«], {x, ŐJ 
so that x induces the transposition (12) and y induces the cyclic permutation (1 ...n). 
Besides, since n is odd, there exists an odd integer m satisfying ^„—{ipnl/JC {x, j^H. 
As a matter of fact, there is an m' such that every permutation of [n] can be induced 
by a word of length at most m'. Put m the least odd integer not less than m'+n; 
Let t=t%„, \p\=k^m'. If m-k is even, put q=pym~k. If m—k is odd, take 
q=pxnym-(-k+"\ We have t=fln in both cases. 

Now set 
JÍT = {A0, B0, B„|n ^ 3 is odd}. 

Since all counters of odd length as well as C2 are obviously in HSP^ (X) and every 
finite simple group is isomorphic to a subgroup of Sn for odd n, X is homomorphic-
ally complete for the a0-product. It should be noted that from the proof of Lemma 3 
we have that Ag can be omitted from J f . 

Corollary 12. The class X consisting of A^ and automata A„=([n], {x, ;>}, <5„) 
(ns3) with ^ = ( 1 ...n), iy=(12) is homomorphically complete for the a0-product. 
Recall that the main result of Dömösi's paper is the homomorphic completeness 
of for the a0-product. 
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