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1. Introduction 

Queueing models have been widely used in the analysis of time-shared compu-
ter systems. In these systems an arriving job competes for the attention of the single 
CPU. It is forced to wait in a system of queues until it is permitted a quantum Q 
of service time. When this quantum expires, it is then required to join the system 
of queues to await its required service time. By allowing Q to shrink to zero, pro-
cessor-sharing (PS) models are obtained, which provides a share of the CPU to 
many jobs simultaneously and equally. 

Following Kleinrock [6] in a priority round-robin system the jobs are divided 
into n separate priority groups. A program belonging to the z'-th priority group 
gets i\Q unit of service each time, where quantities rt are called service weights, 
/•¡>0, i '=l , ..., n. In the limit as 0 this model reduces to a processor-shared 
one with priority structure wherein a job from priority group i receives a fraction 
ft of the total capacity, where f-l=ri\lrinj, here iij is the number of jobs from group 
j in the system at time t. This kind of service discipline is referred to as PPS one. 
The PS model is a particular case /•;= 1 for all z", z'= 1, ..., n. 

We observe that the two processor-shared models are ideal in the sence that 
the swap-time is assumed to be zero. 

The present paper deals with a multiprogrammed computer system in which 
a number of n jobs are permitted to circulate among the peripheral devices and the 
CPU. The system is assumed to have enough peripheral devices, so no queueing for 
I/O operations occurs. Under PPS service discipline the jobs are supposed to be 
stochastically different, the z'-th program is characterized by exponentially distributed 
I/O time with parameter kt, exponentially distributed processing time with rate 
and service weight rh z'=l, . . . ,«. All random variables are assumed to be inde-
pendent of each other. 

The purpose of the paper is to generalize the PS model treated by Asztalos [1], 
Csige—Tomko [4], Cohen [3]. In steady state the main operational characteristics, 
such as CPU utilization, expected CPU busy period length, mean response times, 
waiting ratio, throughput, average number of jobs staying at the CPU are given. 

Furthermore, a system of linear equations for L—S transform of response time 
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for program / and CPU busy period length is obtained, respectively, which can be 
solved by the algorithm offered. For the moments of the random variables mentioned 
before another system of linear equations is derived which can be solved iterative. 

Finally, numerical examples illustrate the problem in question and performance 
measures under different service disciplines, such as preemptive resume priority 
(PR), PS are compared with the PPS one. 

For further probabilistic models for multiprogrammed computer systems the 
interested reader is referred to among others: Avi—Itzhak and Heyman [2], Cohen 
[3], Kleinrock [5], Lehoczky and Gaver [7], Sztrik [8]. 

The theoretical basis of the paper can be found in Tomko [9]. 

2. Mathematical description of the model 

Let the random variable v(t) denote the number of jobs at the CPU at time t, 
and let (oti(0> •••> avO)(0) indicate their indexes ordered lexicographically. Intro-
duce the process 

2f ( 0 — ( v ( 0 > a i ( 0 > . . . , a v ( 0 ( i ) ) . 

Since all distributions are exponential the process (x(i),/sO) is a stochastically 
• 

continuous, finite state, continuous time Markov chain with state space (J Ck + {0}, 
k = 1 

where Ck denotes the set of all combinations of order k of the integers 1, ..., n 
in lexicograpic order and {0} indicates the state that the CPU is idle. 

Let us introduce some notations 
n 

A .-„= 2 A =2xj> 
it J = 1 

k J k 
Rix, = 2 '-¡p = « 2 '-¡jVij+An j=i "k j=I 

For the distribution of x (/) consider the functions given below 
P0(0 = p(v(0 = o), 

ph ik(0 = P{v(t) = k; ax(0 = h,..., ak{t) = ik), (1) 
(1 == k «,(/!,..., y e c j ) . 

It is easy to see that functions (1) satisfy the Kolmogorov-differential equations 

P'o(.t)=-AP0(t)+2HjPj(t), 
j=i 

K J 0 = 2 k p h ..^(O-o-^ ikph i fc(0+ (2) 

+ 2 NrJ 

Pi,2 „ ( 0 = 2 ¿¡Pi ( 0 - f f i nPi „ ( 0 , 
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where i[, ...,/¿+1 denotes the lexicographic order of integers ..., ik,j. Then 
we have : 

Theorem 1. If Xh //¡>0, i = l , ..., n then the Markov chain (x(i), f=0) 
possesses unique stationary distribution 

P0 = lim/>„(/), 

f-*-oo 

pu = J™ ph ,.k(0, 

(il h)£Q, k = l,...,«, 

which is the solution to the following system of linear equations 
AP0= ZHjPj, 

j=i 

G'n, ifc 2 ^/i^i'i, ...,¡,-1,11 + 1, ..., ifc"l" 2 H j f j •p.' 
i = l 

'k . R. 'f-'k+i' (3) 

°1 n^l, ...,n — 2 ....1-1,1 + 1, ...,n> 
1=1 

satisfying the norming condition 

Po+2 2?h = 
k = 1 , 

(4) 

Proof. Since (x(t), iSO) is a continuous time finite state Markov chain with 
positive intensities, it is irreducible and all states are ergodic. In this case the stationary 
distribution exists and can be obtained as the solution to the Kolmogorov equations 
satisfying (4). As t-+ <=° from (2) we get (3). 

If all /'¡=1, ?'=1, . . . ,», the solution of (3) is 

Pn ,k=PoK\ IlhlHiJ, j=1 
(cf. Csige—Tomko [4], Asztalos [1]). 

In the following we give an algorithm for calculating the stationary distribution 
(P0,Ph, ...,ik, (ia, ...,4)€CZ, k = 1, ...,»). 

Let Yk be the vector 
[Pi * 

p. ii,..., ik 

n-k + l n. 

of dimension ^ j . The components Ph, ..., ik are listed in the lexicographic order 
of their indexes, k= 1, ..., n. Notice that eq. (3) can be written in the following 
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neat form 

Yo = BoS, 

Yl = A ^ + B x S , 

I t = —1 + l > 

Yn ~ 

where matrix Ak is of order X ^ j j k — l,...,n, Bk is of order X ^ ^ j j 
k=0, 1, ..., n— 1, Y0=P0. The elements of Ak, B* can be determined by the help 
of eq. (3). The solution to (5) can be obtained by an iterative manner F t = F t . y t _ 1 , 
k=\, . . . ,«. To verify this let F„=A„, furthermore assume that Yj,+1 = ¥kYk. 
Let us consider equation After substituting we get 
(1— B^F*+1)Yk=AkYk_! then 

Yk = (l-Bk¥k+1)^AkYk^. 
Let 

Ffc = ( l -B t F 4 + 1 ) - l A f c , 

so Y,[=Ffc7fc_1, k=l, ..., n. Starting with any Y0 after norming the stationary 
distribution is given. 

3. Performance measures 

In the following (x(t), t^O) is supposed to be in equilibrium. 
(i) CPU utilization. Using renewal-theoretic arguments it is well-known that 

P0 = ( lM)(lM+M<5)-\ 

where Mb denotes the mean CPU busy period length and IIA is its average idle 
period length. If the CPU utilization, which is the long-run fraction of time the CPU 
is busy, is denoted by U we have 

U=l-P0 = (M8)(llA+Md)-\ 
Consequently, 

Mb = (1 —P0)/AP0. 

(ii) Mean response times. During the execution a job is served by the CPU and 
takes I/O operations. If these periods are considered as cycles, then in steady state 
these cycles lengths are identically distributed but not independent random variables. 

Let P(,) denote the stationary probability that job i is in compute period and 
let the average response time be designated by R{. Furthermore, let Hi be the event 
that the program i is under service. Introduce the function 

rl if x W H i , 
to otherwise. 
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By the virtue of Theorem 1 and 3 in Tomko [9] we have 

l i m y / z ^ O * = 

Since P ^ can be easily evaluated as 

P(i)=2 2 P., 

for the expected response time of job i we obtain 

r. = pm/A, ( l -P«) . 

It is clear that ZZBl(t) gives the number of jobs statying at the CPU at time t. Thus 
in equilibrium the mean number of programs processed by the CPU is n = ZPV\ 
In addition, the Little's formula is valid 

r A , ( l - P w ) R t = ZP({> = n. 

(iii) Waiting ratio. Defining the waiting ratio for job i by W,=fii(R,—i/p,) 
the system waiting ratio can be obtained as 

W = EWi = ZfitRt-n. 

(iv) Throughput .-Denote by T the throughput of the system, which is the mean 
number of jobs serviced in unit time. If T, denotes the throughput for job i, we have 

T, = ^¡(1 -P(i>). 
Thus, we get 

T=ZTi = ZXi(l-P°>). 

4. L—S transform of the CPU busy period and response times 

Let us denote by t]x a random variable distributed exponentially with rate a. 
If rja and fy are independent, then min (rjx, rip)=rj<x+p which is a well-known fact. 
Furthermore, let the notation 0/«,=»/^+ ...+„,) mean the event that min (t]Xi, ... 

s 
..., rjx )=t]Xl, probability of which is a,/ a,, where ^ > 0 , i=l, ...,s. 

]=* i 
Let x(A) denote the characteristic function of event A, i.e. 

r 1 if A occurs, 
otherwise. 

(i) CPU busy period length. Let the random variable 5 a , ...,ik denote a busy 
time interval of the CPU initiated by state (ilf..., ik), (ilt ..., ik)£Ck, k=\,..., n. 
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Similarly to Csige—Tomkö [4] the following recursive relations hold 

<5, = t]a-i + 2 $i',i'X(nx, = Wi), 

(6) 

K b. = i » + 2 K ¡ j - 1 . i j + 1 , : . i k x U R i j r , j = n o h J + 
J = 1 r >k ' 

+ 2 . ^'i' - 's+i xOh, — i j , 

" ( U . f . "l 
¿1 n = Iff 1 n + 2 S 1 J - l . J + 1 .)( 1 o J J • >?gl, . . . ,J 

J=1 V „ 

where = denotes that the equality is meant in distribution. Introducing the L—S 
transform 

gilt...,ik(s) = Me~si>t s 
from (6) we get 

««(«) = - r ^ L f t + Z ^ i f t M ' C » ) ] . 4-T-Oj ¡¡ei 

£•1 >k I n 1 £¡1, + l ¡k(S) + 
¡k l Ä i l <"k 

(7) 

+ , „ . 2 . 4 « * i t l ( « ) ] . "'•l 'k 

gl - .00 = J J . 

Finally, 

Let Gk (s) be the vector 

Si, ...,j-l,J + l n(s)-

i=l ^ 

&1 I*(s) 

&. -* + l B(s) 

of dimension The components g l l 5 . . . , ik(s) are listed in the lexicographic 
order of their indexes (zl5 ..., /t). Thus (7) can be expressed as 

Gx(S) = A 1 ( S ) G 0 + B 1 ( S ) G 2 ( S ) , 

G»(s) = A* 0)0^(5)+B*Gk + 1(s) , 

& ( « ) = A b (S)G„_ 1 (S) , 

(8 ) 
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where G 0 =( / / i , . . . , the matrix Ak(s) is of order ^ ) x ( j f c— ])> •••> n 

B t( j ) is of order ( f c } X 1 ) ' ^=0» 1, J. The elements of Ak(s), B k (s) 
can be readily determined with the aid of eq. (7). It is easy to see that the solution 
to (8) can be evaluated in the same way as in (5), that is 

&(s ) = F t(s)Sk_1(s), (9) 
where 

F„(s)= A„(s), F t(s) = (1 — B t(s)Ffc+i(s))~1 Ak(s), k = 1, ..., n~ 1. 

Finally, 

The moments of busy period <5 can be obtained from eq. (8) by differentiating 
and setting s=0 . If A ( , )(j) denotes the i-th derivate of matrix A(s), which is meant 
by elements, then it is easy to see that 

(A(s)B(*))«> = i ( ; ) A « ) ( s ) B C - ' > ( S ) . 

If we define and M^ by 

M<"') • — ( IV ^ g i l 
1 } ds« ,_„' 

and 
M i 0 = ( - i y g i ° ( 0 ) , 

then 

Q i H 0 ) = ¿ o ( ¡ ) Ai'>(0)CiL- 1 '>(0)+ i ( j ) B ^ i o m - S i o ) , 

which yields 

Mi° = i (-1)' ( j ) A(
k
l) (OMi'-f + i ( - 1 ) ' (I) B<<> (0) M f c 0 - (10) 

Introducing 

A F = A<0) (0), B<<> = B<°>(0), Cf> = I ( - 1)' ( J ) [A<<> (0 )Mi ' - i ) +B<<> (0)M№] 

(10) can be written as 

= A<;) M £ > l + B p Mtfl 1+C* < 0 -

Thus, the equations for the i-th moment of the busy period in matrix form are 

= BPMi'i+QP, 

M " = A ^ M ^ x + B ^ M ^ i + G S 0 * ( i i ) 

MP = ¿¡PM&i+cSP.. 

k 
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In the following we show that the solution to (11) can be obtained as 

MP = F^Mih+QP-

To derive this, define and Z>P by 

F « = A<'), DP = C<>>. (12) 

Assuming that M $ 1 = F $ . 1 M i ° -hD^h, after substituting to (11) we get 

(1 - B ^ ' F i ' ^ M " = APMi'h+BPVtti+Ci0, 

which yields 

F P = (1 - B W F « ^ - 1 ^ , ^ = (1 - B W F ^ - K B M ' ^ + C « ) . (13) 

Concluding M i ° = 

where matrix and vector D P are defined by (12), (13). Finally, 

MSV) = 2 ~T MSf'K (14) A L. 

In particular, if i= 1, (14) reduces to equations found in Tomko [10]. 

(ii) Response times. Let {tk, fcs0} denote the instants of consecutive changes 
of states in Markov chain (x (/), fsO). Let us consider the following imbedded 
Markov chain (Y„, msO) defined by Y„=X(rm+0). If we define by 

(?o> ?it »»)€«!, k = 1, ..., ri) (15) 
the stationary distribution of (£„,, msO) then it is clear that 

A/\ i=x cn <Ttu .... tl) 

K fc = (16) 
°ii I* I V. 1=1 c? ah h ) 

k=l,...,n, (cf. Tomko [9]). 
From (16), for (15) we get the following system of linear equations 

Po 
q o p z l ] + 2 Z - ^ - q h = 0 

\ A ) i c? u 

V 2
 V ^ q * 1H * = 0 . n ' cP.Ci! i , ) ^ ik) U 

which can be solved by standard methods. 
Let Ff'!...,ik denote the event that at the arrival epoch of job i programs with 

i n d e x e s . . . , i k ) are processed by the CPU, (ilt ...,ik)£C2, h^i, ...tik9±i, Isi^n, 
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Osfesn—1. In addition, let denote the response time of job i if event Egl„t,h 

occurs. Denote by qfH..,ik the steady-state probability of •E^. . Then similarly 
to Csige—Tomko [4], for we have 

< = ik = In 
A ah fk 

where <2(i) can be determined from the norming condition by 

* czah ¡J 

Using the results derived by Tomko in [9] the following iterative relations can be 
written 

Mi 

= Wh i + 2 XOlh = .•„,.•) + 

+ Z v l S . . . . , ^ » J n ^ - = J > (17 ) 

viil-.i-i.i+i,» = wi n+ 2vi?...j-i.j+i nX = wi J , 
J=1 V n ' 

Introducing the L—S transform 

»1?, ...,ik(s) = Me S 
from (17) we get 

(s) = -J- |>, + 2 (IB) S + ffj 

' i [ i / r ^ e . . . , , - , ^ 2 ; l 7 = l ifc.i M v - - , l k
 J 

« - i . « « - W - T X T •¿•^-^....J-uj* i . (»)• J + 0 I » }=1 

Finally, the L—S transform of the response time for job i can be easily obtained by 

««(5) = gpuPisH "2 
* = 1 cj 

Notice that eq. (18) can be treated in the same way as eq. (7). 

7 Acta Cyberaetica VH/3 
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5. Numerical results 

The algorithm generating these performance measures were implemented in 
PL/1 in the Computer Centre of University of Debrecen. Some sample results for 
different input parameters A ; , f i h n (i= 1, . . . ,«) are shown in Tables 1—4. In Table 
1 and 2 some comparisons are made with PS and PR disciplines, while in Table 3 
and 4 we give the characteristics under PPS discipline. 

Table. 1. Homogeneous I/O and CPU times 

Parameters: ^ = ¿ , = ¿ , = 0 . 3 , ^ = ^ = ^ = 0 . 7 

R< T, w , U MS n W T 

PR 1.428 0.21 0 
3.177 1.27 2.658 

PR 
2.413 
4.242 

0.17 
0.13 

0.689 
1.969 

0.74 3.177 1.27 2.658 0.51 

PS 2.450 0.17 0.715 
3.177 1.27 2.145 

PS 
2.450 
2.450 

0.17 
0.17 

0.715 
0.715 

0.74 3.177 1.27 2.145 0.51 

PPS weights 
0.026 125 1.467 0.21 0.026 

1.27 2.460 0.51 5 2.559 0.16 0.791 0.74 3.177 1.27 2.460 0.51 
1 3.776 0.14 1.643 

1000 1.437 0.21 0.005 

10 2.485 0.17 0.739 0.74 3.177 1.27 2.512 0.51 
1 3.955 0.13 1.768 

125 000 1.428 0.21 0.000 

50 2.396 0.17 0.677 0.74 3.177 1.27 2.561 0.51 
1 4.120 0.13 1.884 

1 000 000 1.428 0.21 0.000 
2.568 0.51 100 2.383 0.17 0.668 0.74 3.177 1.27 2.568 0.51 

1 4.143 0.13 1.900 

Table 2. Heterogeneous I/O and CPU times 

Parameters: Ai=0.5, As=0.3, Aa=0.2 
f i=0.9, ßi=0.1, ^8=0.5 

PR 1.125 0.32 0 
2.619 0.16 0.833 0.77 3.34 1.34 3.014 
6.363 0.08 2.181 

PS 1.885 0.25 0.697 
2.526 0.17 0.768 0.76 3.21 1.33 2,252 
3.574 0.11 0.787 

PPS 
1 2.056 0.24 0.850 
1 2.745 0.16 0.921 0.75 3.15 1.33 2.266 
2 2.990 0.12 0.495 
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Table 3. Homogeneous I/O times 

I'arameters: A 1 =A 2 =A,=0 .2 , / / ,=0 .4 , /¿<¡=0.6, / / s =0 .8 

weights 

1 4.831 0.10 0.932 
5 2.498 0.13 0.499 0.675 3.472 1.028 1.453 0.394 

125 1.277 0.15 0.021 

1 4.965 0.10 0.986 
10 2.407 0.13 0.444 0.675 3.472 1.024 1.435 0.395 

100 1.256 0.15 0.004 

1 5.100 0.09 1.040 
100 2.304 0.13 0.382 0.675 3.472 1.020 1.423 0.395 

1 000 000 1.250 0.15 0.000 

Table 4. Heterogeneous 1/0 and CPU times 

Parameters: 2, A„=3, Ai=4, A5= 5, A„=6 
/IL=6, HI — 5, №,=4. AU=3, HI = 2, / / e = l 

weights 

1 3.008 0.24 17.048 
2 1.834 0.42 8.170 
3 1.543 0.53 5.172 0.999 289.350 5.070 38.795 2.525 
4 1.549 0.55 3.647 
5 1.853 0.48 2.706 
6 3.052 0.31 2.052 -

36 0.329 0.75 0.974 
25 0.435 1.06 1.175 
16 0.659 1.00 1.636 0.999 94.777 4.145 33.764 3.775 
9 1.233 0.65 2.699 
4 3.379 0.27 5.758 
1 22.522 0.04 21.522 

Conclusion 

In this paper we have modelled a multiprogrammed computer system as finite-
source single server queueing system with different types of customers under priority 
processor-shared service discipline. The system performance measures were nume-
rically evaluated using an algorithmic approach. 

Acknowledgement. The numerical results were obtained by A. Pósafalvi whom . 
I am very grateful. My thanks are also due to Prof. M. Arató for several helpful 
comments. 

Abstract 

This paper deals with a heterogeneous multiprogrammed computer system under priority 
processor-shared (PPS) service discipline introduced by Kleinrock. The jobs are characterized by 
exponentially distributed input-output (I/O) and central processing unit (CPU) times. In steady 
state the main performance measures, such as CPU utilization, expected CPU busy period length, 
mean response times, waiting ratio, throughput of the jobs and throughput of the system, are given. 

7 • 
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In addition, a system of linear equations for Laplace—Stieltjes (L—S) transform of the response 
times and the C P U busy period length is obtained. Finally, by numerical examples characteristics 
under different service disciplines are compared with the PPS one. 

Keywords: I/O times, C P U times, utilization, mean response time, waiting ratio, throughput. 
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