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By V. D. THI 

§ 1. Introduction 

The relational model, defined by E. F. Codd [3] is one of the most investigated 
data base models of the last years. Many papers have appeared concerning combina-
torial characterization of functional dependencies, systems of minimal keys and anti-
keys. A set of minimal keys and a set of antikeys form Sperner-systems. Sperner-sys-
tems and sets of minimal keys are equivalent in the sense that for an arbitrary Sperner-
system S a family of functional dependencies F can be constructed so that the mini-
mal keys of Fare exactly the elements of S (cf. [4]). 

In the present paper we propose some combinational algorithms to determine 
antikeys and minimal keys. In the second part of the paper, we are going to study 
connections between minimal keys and antikeys for special Sperner-systems. 

We start with some necessary definitions. 
Definition 1.1. Let £2 be a finite set, and denote P(Q) its power set. The mapping 

F: P(i3)—P(i2) is called a closure operation over Q if, for every A, BQ Q, 
(1) AQF(A) (extensivity), 
(2) AQB implies F(A)QF(B) (monotonity), 
(3) F(A)=F(F(A)) (idempotency). 
In few cases Q is represented by the set {1, ..., n} or by the set of columns of an 

mXn matrix M. If we use the second representation, a special closure operation FM 
can be defined over the set of the columns of M: 

The i-th column of M belongs to FM(A) if and only if for any two rows of M 
which are identical on A they are equal on the i-th column, too. • 

It is easy to see, that FM(A) is a closure operation. It is known (see [1]) that any 
closure operation F over a finite set £2 can be represented by an appropriate matrix 
M, that is we can choose M and represent Q by the set of the columns of M so that F 
coincides with Fm-

Definition 1.2. Let F be a closure operation over Q, and AQQ. We say that 
— A is a key of F, if F(A)=Q. 
— A is a minimal key of F, if A is a key of F and for any BQ A, F(B)= Q 

implies B=A, i.e. no proper subset of A is a key of F.. 
Let us denote by KF the set of all minimal keys of F. It is clear that KF forms a 

Sperner-system. 



362 V. D. Thi 

If K is a Sperner-system over Q, let us define S(K) as 5(A')=min {m: K=KPhf: 
M is an mXn matrix representation of i2}. For a Sperner-system K, we can define 
the set of antikeys, denoted by K ~ \ as follows: 

K~1 = {A<^Q: (B£K)^(B%A) and (AczC) =>(3B£K) (B g C)}. 

It is easy to see that K " 1 is the set of subsets of Q, which does not contain the elements 
of /Tand which is maximal for this property. They are the maximal non-keys. Clearly, 
K~x is also a Sperner-system. 

In this paper we assume thatSperner-systems playing the role of the set of mini-
mal keys (antikeys) are not empty (do not contain the full set Q). 

§ 2. Connection between minimal keys and antikeys 

The following important result was proved in [I], [5]: 

Remark 2.1. If K is an arbitrary Sperner-system, then there exists a closure 
operation F, for which K=KF and a closure operation F', for which K—Kf,1. 

Let us given an arbitrary Sperner-system K={B1, ..., Bm) over Q. We are 
now going to construct the set of antikeys K-1. Let us follow the algorithm described 
below: 

Let JT1={i2\{a}: a^B^. It is easy to see that K1={B1}-1. 
Let us suppose that we have constructed Kq= {Bx, ..., Bq}~x for q<m. We 

assume that Xl, ..., Xp are the elements of Kq containing Bq+1. So Kq=Fq\J {Xt, ... 
...,XP), where Fq={A£Kq: Bq+1%A). For all i (/=1,... ,/?), we construct the 
antikeys of {Bi+j} on Xi in the analogous way as which are the maximal subsets 
of Xi not containing Bq+1. We denote them by A[, ..., A\. (/= 1, ..., p). 

Let 
1 Kq+1 = {A't: A£Fq => A\ <$: A, 1 s= i ^ p, 1 ̂  t ^ t J . 

We have to prove, that A9+-1={J?1, ..., Bq+l}~1. For this using the inductive 
hypothesis Kq={B!, ...,i?9}_1 we show that 

a) if AdKq+1 then A is the subset of Q not containing B, ((= 1, ...,q +1) 
and being maximal for this property, i.e. A£{Bt, ..., i?9+1} -1, 

b) every AQQ not containing the elements B, (t=1, ...,q+1) and being maxi-
mal for this property is an element of Kq+1 . First we prove the validity of (a). Let 
A£Kq+1. If A£Fq then A does not contain the elements Bt (t= 1, ..., q) and A is 
maximal for this property and at the same time Bq+1£A. Consequently, A is a 
maximal subset of Q not containing B, (<=1, ..., <7+1). 

Let AdKq+1\Fq. It is clear that there is an A1, (1 si^p and 1 such 
that A—Aj. Our construction shows that B,A\ for all / ( /= 1, ..., qr+1). Because 
A\ is an antikey of {i?9+i} for Xt we obtain y 4 j = f o r some b£Bq+l. It is 
obvious that Bq+1QAi,(j{b}. If a£Q\Xi then, by the inductive hypothesis, for 
Ai

tU{a,b}=XiU{a} there exists Bs (s=l,...,q) such that Bs<gA\\J{a,b). X, 
does not contain Bu...,Bq by X£Kq. Hence a£Bs. If then 
BsQA't\J{a}. For every Bs (1 ^s^q) with ^ U f a } and BS%A} we have 
b(LBs. Hence Bs\{a, b}^Al

t. Consequently, there exists an A^Fq such that; 



Minimal keys and antikeys 363 

AjcA^. This contradicts A£Kq + l\Fq. So there is a Bs (1 Ss^q) such that 

Next we turn to the proof of (b). Suppose that A is the maximal subset of £2 not 
containing Bt (1 1). By the inductive hypothesis, there is a Y£Kq such that 
AQY. 

The first case: If Bq+1^Y then Ydoes not contain Bt, ..., Bq+l. Because A is 
the maximal subset of Q not containing B, (1 +1) we obtain A=Y. Bq+1%Y 
implies A£Fq. Consequently, we have A£Kq+1. 

The second case: If Bq+1c Y then Y=Xt holds for some i in {1, ...,p} and 
AQA} holds for some t in {1, ...,-r,}. If there exists an A1^Fq such that Ai

tcA1, 
then we also have AcAt. By the definition of Fq it is clear that A1 does not contain 
Bi, ..., Bq+1. This contradicts the definition of A. Hence A't£Kq+1. It is easy to see 
that A\ does not contain Bl, ..., Bq+1. By the definition of A we obtain A = A\, 
i.e. Kq+1={Bt, ..., 2? i+1}-1. 

By the above proof it is clear that Km={Blt ..., Bm}~1. Thus we have 

Theorem 2.2. K ^ K ' 1 . 

Because AT and are uniquely determined by each other, the determination of 
K_1 based on our algorithm does not depend on the order of Bl, ...,Bm. 

Now we assume that the elementary step being counted is the comparison of two 
attribute names. Consequently, if we assume that subsets of Q are represented as sor-
ted lists of attribute names, then a Boolean operation on two subsets of Q requires 
at most |i2| elementary steps. 

Let K0 = {O}. According to the construction of our algorithm we have Kq= 
^ i ^ U l Z j , ..., X, }, where l^q^m—l. Denote lq the number of elements of Kq. 
It is clear that for constructing Kq+1 the worst-case time of algorithm is 0(n2(lq— 
-tq)tq) if tq<lq and 0(n2tq) if 1q = tq- Consequently, the total time spent by the 
algorithm in the worst cases is 

It is obvious that, if Fq—Q, then lq=tq. 
It can be seen that when there are only a few minimal keys (that is m is small) 

our algorithm is very effective, it does not requires exponential time in In cases 
for which lq^lm (Vq: l S g S m - l ) it is obvious that our algorithm requires a 
number of elementary operations which is not greater than 0(n2|Z||Ar_1|2). Thus, 
in these cases our algorithm finds К i n polynomial time in |i2|, and 

After Theorem 2.12 we shall give an example to show that our algorithm requires 
exponential time in | Q \. On the other hand Kq in each step of our algorithm is obviously 
a Sperner-system. It is known ([4]) that the size of arbitrary Sperner-system over Q 

can not be greater than ([„/2])' w ^ e r e ([и/2]) asymptotically equal to 

Ш-1 
o(n2 2 ',«,)» w h e r e I = n -

4 = 1 
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2" + l/2 
. Consequently, the worst-case time of our algorithm can not be more than 

( n - n f 2 

exponential in the number of attributes. 
Let K~1={A1, ..., A,} be a set of antikeys. Let R={h0, hx, ..., h,} be a rela-

tion over Î2 given as follows: for all aÇQ, h(a)=0 

f o r ; ( 1 i s I), / I , (a ) = { . 
0 if a£A„ 

if a Ç Q \ A r 

If we consider R as a matrix, then R represents K (see [5]). Thus, based on our algo-
rithm, for an arbitrarily given Sperner-system K, we can construct a matrix which 
represents K. 

Example 2.3. Let Q = {1, 2, 3, 4, 5, 6} and K= {(2, 3, 4), (1, 4)}. According to 
the above algorithm we have ^ = { ( 1 , 3,4, 5, 6), (1, 2, 4, 5, 6)} U F1, where Fx= 
= {(1,2,3,5,6)}, and A, = {(3, 4, 5, 6), (2, 4, 5, 6), (1,2, 3, 5, 6)}. It is obvious 
that K~X=K2. 

We consider the following matrix: 
The attributes: 

1 2 3 4 5 6 
'0 0 0 0 0 0' 

M = 1 1 0 0 0 0 
2 0 2 0 0 0 

LO 0 0 3 0 0. 
It is clear that M represents K. 

Now we describe the "reverse" algorithm: for given Sperner-system considered 
as the set of antikeys we construct its origin. The following definitions are necessary 
for us. 

Let F be a closure operation over Q. Set 

Z(F) = {A g Q: F(A) = A) 

and T(JF) = {A a Q: A£Z(F) a n d AczB=> F(B) = Q. 

The elements of Z(F) are called closed sets. It is clear that T(F) is the family of 
maximal closed sets (except Q). Now we prove the following lemma. 

Lemma 2.4. Let .Fbe a closure operation over Q, and KF the set of minimal keys 
of F. Then KF

1=T(F). 

Proof. Let A be an arbitrary antikey and suppose that AcF(A). Hence 
F(F(A))—F(A)=Q. Consequently, A is a key. This contradicts \/B^KF\ B%A. 
If there is an A' such that Ac: A' and / f eZ(F) \{ i2} , then A' is a key. This con-
tradicts A'<zQ. 

On the other hand, if A is a maximal closed set and there is a 2? (B£KF) such 
that BQA, then F(A)=Q, which conflicts with the fact that AczQ. If AaD(DQ 
Q Q), then it can be seen that F(D)= Q (because A is the maximal closed set). Con-
sequently, A is an antikey. The lemma is proved. 
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Now we construct an algorithm for finding a minimal key. 
Let i f be a Sperner-system and Q<{H. We take a B (B£H) and an a£Q\B. 

We suppose that B={bx, ...,bm}. Let G={B,£H: a$Bt} and T0=B\J{a). define 

_ (Tq\{bq+1) if V ^ i i X G : Tq\{bq+1} i B„ 
TQ+1 I TQ otherwise. 

Theorem 2.5. If His a set of antikeys, then {ro, 7\, ..., rm} are the keys and 
Tm is a minimal key. 

Proof. By Remark 2.1 there exists a closure F such that H=Kp1: We prove 
the theorem by the induction. It is clear that T0 is a key. If Tq and —Tq, then 
it is obvious that Tq+1 is a key. If Tq+1=Tq\{bq+1} and F{Tq+1)^Q then, by 
Lemma 2.4, there is a B£H such that F(Tq+1)QBt. Hence Tq+1QB„ which 
conflicts with the fact MB£H: Tq+1<£Bt. Consequently, Tq+1 is a key. 

Now suppose that A is a proper subset of Tm. If a$A, then, clearly, F(A)^Q. 
If at: A, then there exists a bqeB such that bq£ Tm\A (1 ^q). By the given algorithm 
there exists a B£H\G such that T^^bjQB,. We obtain rm \{fc9}g 
g r f . 1 { 6 l } g j ( by TmQTq (O^q^m-l). Hence F(A)^Q. Consequently, Tm 
is a minimal key. The theorem is proved. 

Remark 2.6. Theorem 2.5 is also true if r 0
= {^ i s is a n arbitrary key. 

At this time define 
= (Tq\{bq+1} if VBtH: Tq\{bq+1} ^ B,, 

q+1~\Tq otherwise. 

— It is clear that the worst-case time of the algorithm is 0(«2 • where 
n=|i2|, \H\ is the number of elements of H. 

— It is best to choose B such that |B | is minimal. 
— If there is a B such that \/B£H\{B}: B,C\B=® and a£ | J B, 

BtiH\{B) 
then a\Jb is a minimal key (\/b£B). 

— If (£2\ (J B,)^0, then a£Q\ (J B, is a minimal key. 
Bt<LH B,£H 

— Let Y= U S, If B \ V ^ 0 , then it is best to choose T0= 
B f ff 

= ( J e n r ) U { a } U { 4 where b£B\Y. 

Remark 2.7. Let H be a Sperner-system (Q$H) and AcQ. We can give an 
algorithm (which is analogous to the above one) to decide whether A is a key or not. 
If A is a key, then this algorithm finds an A' such that A'Q A and A' is a minimal key. 

Remark 2.8. In the paper [5] the equality sets of the relation are defined as 
follows: Let R={A l5 ..., HM} be a relation over Q. For I^J, we denote by EIS 
the set {a€i2: hi(a)=hJ(a)}, where l S / S m , l ^ ' s m . Now we define M = 
= {ETJ : 3EPQ such that EI} c:EPi}. Practically, it is possible that there are some ETJ 

which are equal to each other. We choose one EU from M. According to Lemma 2.4 
it can be seen that M is the set of antikeys of KFR (we consider R as a matrix). 
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Example 2.9. Let (2= {1, 2, 3, 4, 5, 6} and R be the following relation: 

Ó I 0 0 1 0 
1 0 1 0 0 1 
2 0 0 1 2 2 
0 1 2 2 0 3 
3 2 1 0 3 0 

It can be seen that M = {(1, 2), (3, 4, 5), (4, 6)}, where £ U = { 1 , 2}, £ 1 5={4, 6} 
and ¿r25= {3, 4, 5}. By Theorem 2.5 and Remark 2.6, it is clear that {1, 3}, {1, 4}, 
{1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6} are the minimal keys. We use the algorithm 
(Theorem 2.5) with J 0 = {3, 4, 6} and T0= {4, 5, 6}, then it can be seen that {3, 6} 
and {5, 6} are minimal keys. Thus, based on this algorithm for an arbitrarily given 
relation R we can find a minimal key of R. 

Let K be ah arbitrary Sperner-system. The following theorem has been proved 
in [21. 

Theorem 2.10. 

( ^ j ^ l A r - M s S W - l . 

- Denote by the family of all ^-element subsets of Q. Let Fk(n)=max {S(/Q: 

Theorem 2.11. ([6]) 

Fk(n)^f2(\k_/J 

We define the function f2k-1- N—N for 2k—\ s « by 
(2k— \Yiek-» 

if « = 0 (mod(2fc-l)) , 

[n/(2*-2)] 

(i 
— iMw/<2fc—i)]—i (2k-U 

l f e - l j X [ fc-1 
+P\ J if n = p ( m o d ( 2 f c - l ) ) 

and 

_ \\lnl(2k-1)] 

(t-.'I ] > < ( f e - l ) i f " = p (mod ( 2 f c - l > ) 
and k ^ p ^2k-2, 

and the function /2(i_2 for 2k—2^ n by 

/ ¡ a - a O ) = < 

[ f e _ j J if « = 0 (mod(2fc—2)), 

= < U - l J x ( fc-1 J l f n = P ( m o d ( 2 f c - 2 ) ) 
and 1 S p S fc — 1, 

f2k-2Y n '< 2 t - 2 ) 1 i f ) , , 
t it — I J x U - l J l f " = P ( m o d ( 2 f c - 2 ) ) 

and k ^ p s 2 k - 3 , 
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where N denotes the set of natural numbers. Let us take a partition Q—Xx U... 

...UXmUW, where aw = J and \Xi\ = 2k-l (1 g f e r a ) . 

Let 

K = {B: \B\ = k,BQ Xt, V/} if \IV\ = 0. 

K = {B: |B | = k,B g Xt (1 ^ i s i m - 1 ) a n d B g XmUW} if 

K= {B\ = k, B g Xi (1 s? / si m) and B g W} if 2k-2. 

It is clear that 

K'1 = {A: \AC]Xi\ = Jk —1»Vi> .if \ fV \=0 . 

K~L = {A: \AnXi\ = fe-1 (1 S i S m - 1 ) a n d \A(~)(Xm{JW)\ = / c - 1 } 

if 1 ^ \W\ ^ k—1. 

K-1 = {A: 1/4 0*11 = (1 S / S m) and \ADW\ = k-1} 

if k^\W\^2k-2. 

It can be seen that fik_1(n)=\K~1\. If we take, a partition: Q=X1U... UA^U W; 

where m~\2k—2] anc^ l^il =2k~2, in an analogous way we 

K={B: \B\ = k,BQXi,\fi} if \W\ = 0. 

K= {B-. | 5 | = k,B g Xi (1 ss / m - 1 ) a n d 5 g XmUW} if 

K={B: | S | = k,BQX; (1 s i s m ) and BQW} if k^\W\s2k-3. 

It is clear that 
/ a - a ( " ) = and / a _ g ( n ) = J 

\lnl( 2fc—2)] 

Theorem 2.12. Let £2= {1, ...,«}. 
If « = 0 (mod(2A:-2)(2A:-l)), then f2 k-i(n)^f2 k-2(n)- For a fixed A:, 

llim /2<fe"-1 - - -

Proof. If k=2, then it is easy to prove that V«: /3(n)S/2(n). If « = 6 or 
n^8 , then /3(n)>/»(«). Let 

^ _ I fc—l J _ ( ~ T ~ J 

U - l J U - l J 
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It is known that n\ = fhin ^jj"xea" / ( 1 2 n ) , where O<0„<1. So 

" ~ 2 f c J p 
2"/ (a- i ) . ( c | ( e | 

I ]/7t(fc — 1) J I ]/n(k-2) ) 

For this E we obtain, that 

l n £ = ¿ T ( l n i 1 - 4 ) + 2 F I 2 ( i l n («<*" 1 » " 2 4 ( F r T ) ) ] 
and by 

I t . \l 

we have 
n 

¿ 2 (T1"<*<*" ^ " M f i b l ) ) " ¿ I ) ' 2k—1 

It can be seen that if k=3, then 

and, for every 

Hence 

2 ^ (T1" ^ " 1 - 2 4 ^ 1 ) ) - ¿ T > 

Consequently, if n = 0 (mod (2k—2)(2k — l)), then /•¡,k-i(n)^'fik_2(n). Now let n 
be an arbitrary natural number. It can be seen that, for a fixed k, there exists a number 

0 such that 
(2k-\+p\ ( p \ 

— L - k - i i - m V-1* < m 

U - i J U - u 
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Hence In E—°°. Consequently, F-*«>. Thus, 
B-̂ eo ' Tl-*•<&> 

fik-ljn) 
ftk-M °°' 

n-t- 00 

(It is easy to see that k=2 is also true.) The theorem is proved. 
As a consequence of Theorem 2.12 and Theorem 2.10 we have 

Corollary 2.13 
FM S i2fik.1(n). 

Example 2.14. In Theorem 2.12 let k=2. Then we have n-\r=\K\^n + 2 
and 3(B/4)</^(n), where n=\Q\., i.e. 3(n/4)<|AT_1|. Thus, we always can construct 
an example, in which the number of K (minimal keys) is not greater than n+2, but 
the size of (antikeys) is exponential in the number of attributes. 

§ 3. Some special Sperner-systems 

In this section we investigate connections between the minimal keys and antikeys 
for some special Sperner-systems. 

The notion of saturated Sperner-system is defined in [7], as follows : 
A Sperner-system K over Q is saturated if for any AQQ, ATU {A} is not a 

Sperner-system. 
An important result in [7] has been proved; if K is a saturated Sperner-system 

then K=KF uniquely determines F, where F is a closure operation. 
Now we investigate some special Sperner-systems which are strictly connected 

with saturated Sperner-systems. 

We consider the following example. 

Example 3.1. Let Q = {1, 2, 3, 4, 5, 6} and N= {(1, 2), (3, 4), (5, 6)} be a 
Sperner-system. It can be seen that iV - 1 ={(l , 3, 5), (1, 3, 6), (1,4, 5), (1,4, 6), 
(2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4, 6)}. Let K^NUN'1. It is clear that K is saturated. 
We use the algorithm which finds a set of antikeys. Then K_1= {(1, 3), (1, 4), (1, 5), 
(1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}. 

By the fact that K~iU{ 1, 2} is a Sperner-system it is obvious that K-1 is not 
saturated. Thus, we have 

Corollary 3.2. There is a K so that K is saturated and K-1 is not saturated. 
Now we define the following notion. 

Definition 3.3. Let K be a Sperner-system over Q. We say that K is embedded, 
if for every AÇ.K there is a BÇ.H such that AczB, where H~1=K. We have 

Theorem 3.4. Let K be a Sperner-system over Q. K is saturated if and only if 
K~l is embedded. 
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Proof. Let A' be a saturated Sperner-system. According to the definition of AT-1 

it is clear that K~ l is embedded. Assume that K i s an embedded Sperner-system, 
but Kis not saturated. Consequently, for K there exists an AczQ such that K(J{A} 
is a Sperner-system. It can be seen that, for every C£K, we have C c Q (because of 
Q$K). Hence we can construct B such that AQB, K\J {/?} is a Sperner-system and, 
for every B'(B<^B'), there is a C£K with CQB'. It can be seen that B^K'1. 
This contradicts the fact that K~1 is embedded. The proof is complete. 

Now we define an. inclusive Sperner-system. 

Definition 3.5. Let K be a Sperner-system over £2. We say that K is inclusive, 
if for every A£K, there exists a BdK-1 such that BczA. We have 

Theorem 3.6. K is an inclusive Sperner-system if and only if K~x is a saturated 
one. 

Proof. Now, assume that K is an inclusive Sperner-system but A"-1 is not 
saturated. By the definition of K~\ there is a ¿ e C ^ - 1 ) - 1 such that A:_1L!{£} 
is a Sperner-system. By Remark 2.1, for AT there is a closure operation F such that 
K=KP. If F(B)czQ, then by Lemma 2.4 there exists an A^K^1 with F(B)<^A 
(the set of antikeys is family of the maximal closed sets), which conflicts with the 
fact that AT-1U {.B} is a Sperner-system. Consequently, B is a key. If we use the 
algorithm which finds a minimal key in Theorem 2.5, then it can be seen that there 
exists a B'(B'<gB) such that B'£K, and it is clear that K~l\J{B'} is a Sperner-
system. This contradicts the definition of K. Thus, AT-1 is saturated. 

On the other hand by the definition of K~x and by the assumption that K"1 

is saturated it is clear that K is an inclusive Sperner-system. The theorem is proved. 
Now, we have the following corollary by Theorem 3.4 and Theorem 3.6. 

Corollary 3.7. Let K be a Sperner-system over Q. Denote H a Sperner-system, 
for which H~1 = K. The following facts are equivalent: 

(1) AT is saturated, 
(2) K - 1 is embedded, 
(3) H is inclusive. 

Proposition 3.8. There exists a Sperner-system K such that 
(1) AT is saturated, but K~1 is not saturated. 
(2) K is saturated, but H is not saturated. 
(3) K is embedded, but is not embedded. 
(4) K is embedded, but H is not embedded. 
(5) K is inclusive, but is not inclusive. 
(6) K is inclusive, but H is not inclusive, 

where H denotes a Sperner-system for which H~1=K. 

Proof. From Example 3.1 we have (1). By Theorem 3.4, (AT-1)-1 is not embedded 
in this example. Hence we have (3). By Theorem 3.6, in Example 3.1 H is inclusive, 
where H~1=K. Now, we suppose that, if AT is inclusive, then the set of antikeys of K 
is also inclusive. Consequently, in Example 3.1, H is inclusive, and AT is an inclusive 
Sperner-system. From Theorem 3.6, K~l is saturated. This constradicts the fact that 
AT-1 in Example 3.1 is not a saturated Sperner-system. Hence we have (5). (2) can be 
proved as follows: Let AT be a Sperner-system. Let K1=K and, for define 
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JC by the equality (Kn)~1=Kn~1. We know that the number of the Sperner-systems 
over Q is finite (at most 22'"'). On the other hand, AT and K~x are determined uniquely 
by each other. Consequently, there exists a number m ( 2 ^ m s 2 2 ' a l ) such that 
Km=K and Km~1=K~1. If we suppose that K is saturated, then H is also saturated, 
where H~~l=K. This means that for every p with Kp is also saturated. 
This contradicts Corollary 3.2. Thus, there is a Sperner-system A" such that A" is satu-
rated, but H is not saturated. By similar arguments we have also (4) and (6). The 
proposition is proved. 
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