Minimal keys and. antikeys

By V. D. Tax

§ 1. Introduction

The relational model, defined by E. F. Codd [3] is one of the most investigated
data base models of the last years. Many papers have appeared concerning combina-
torial characterization of functional dependencies, systems of minimal keys and anti-
keys. A set of minimal keys and a set of antikeys form Sperner-systems. Sperner-sys-
tems and sets of minimal keys are equivalent in the sense that for an arbitrary Sperner-
system S a family of functional dependencies F can be constructed so that the mini-
mal keys of F are exactly the elements of S (cf. [41).

In the present paper we propose some combinational algorithms to determine
antikeys and minimal keys. In the second part of the paper, we are going to study
connections between minimal keys and antikeys for special Sperner-systems.

We start with some necessary definitions.

Definition 1.1, Let Q be a finite set, and denote P(L) its power set. The mapping
F: P(Q)—~P(Q) is called a closure operation over  if, for every A, BSQ,

(1) AS F(A) (extensivity),

(2) ASB implies F(4)C F(B) (monotonity),

(3) F(A)=F (F(4)) (idempotency). o

In few cases Q is represented by the set {1, ..., n} or by the set of columns of an
mXn matrix M. If we use the second representatlon, a special closure operation Fy
can be defined over the set of the columns of M:

The i-th column of M belongs to Fy(4) if and only if for any two rows of M
which are identical on A4 they are equal on the i-th column, too. .

It is easy to see, that Fy(4) is a closure operation. It is known (see [1]) that any
closure operatlon F over a finite set Q2 can be represented by an appropriate matrix
M, that is we can choose M and represent Q by the set of the columns of M so that F
comcrdes with Fy.

Definition 1.2. Let Fbe a c105ure operatlon over €, and AE Q We say that
— A is a key of F, if F(A)=2. :
~— A is a minimal key of F,if Ais a key of F and for any BS 4, F(B)= Q
implies B=4A, i.e. no proper subset of 4is a key of F..
- Let us 'denote by K the set of all minimal keys of F.1t is clear ‘that KF forms a
Sperner-system. - e
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If K is a Sperner-system over @, let us define S(K) as S(K)=min {m: K=Kp,,:
M is an mXn matrix representation of Q}. For a Sperner-system K, we can define
the set of antikeys, denoted by K~1, as follows:

K'={4CQ: (BcK)=>(BE A) and (4cC)=(3BEK)(BS C)}.

It is easy to see that K ~Lis the set of subsets of @, which does not contain the elements
of K and which is maximal for this property. They are the maximal non-keys. Clearly,
K~ is also a Sperner-system.

In this paper we assume that’ Sperner-systems playing the role of the set of mini-
mal keys (antikeys) are not empty (do not contain the full set Q).

§ 2. Connection between minimal keys and antikeys

The following important result was proved in {1, [5]:

Remark 21. If K is an arbitrary Sperner-system, then there exists a closure
operation F, for which K=K and a closure operation F’, for which K=Kz
. Let us given an arbitrary Sperner-system K={B, ..., B,} over Q. We are
now going to construct the set of antikeys K 1. Let us follow the algorithm described
below:’
"~ Let Ky={@\({a}: a€B,}. Tt is casy to see that K;= {BI}'I.
Let us suppose that we have constructed K,= {Bl, s By}t for g<m. We
assume that X;, ..., X, are the elements of K, contamrng 1 So K,=FU{x,, ..
X,), where F {AEK B, E 4} For all i i=1,...,p), we construct the
antlkeys of {B,+1} on X; in the analogous way as Kl, Wthh are the maximal subsets
of X; not containing B, .,. We denote them by 4i, ..., 4L (i=1, ..., p).
¢ K

1= FU{dl: A€F,=>Aj¢ A, 1si=p 1=t=1)

We have to prove, that K .;={B,, ..., B;4+,}~*. For this using the inductive
hypothesis K,={B,, ..., B,}"* we show that
©oa)if AEK 1 then A is the subset of Q not containing B, (t=1, ...,q9+1)
and being maxrmal for this property, 1e. A¢{B,, ..., Bq+1} 1

b) every AC Q not containing the elements B, (1=1, ..., q+ 1) and being maxi-
mal for this property is an element of K ;. Frrst we prove the validity of (a). Let
" A€K,,,. If ACF, then A does not contain the elements B, (t1=1, ...,q) and 4is
maximal for this property and at the same time Bq“gA. Consequently, Ais a
maximal subset of € not containing B, (=1, ..., ¢+1).

"~ Let A€K . \F,. Itis clear that there is an 4} (1=i=p and 1=¢=1;) such
that A=A4}. Our construction shows that B,gA' for all I (I=1,..., q+1). Because
Alis-an antlkey of {B,1} for X; we obtain Aj=X\{b} for some bEB,,,. It is
obv1ous that B “_A U {b}. If ac O\ X; then, by the inductive hypothesrs for
AlU{a, b}= XU{a} there exists B, (s=1,...,q) such that B,C A4!U{a, b}. X,
does not contain B,,...,B, by X, €K, Hence acB,. If B,\{a}CA‘ then
B,C 4iU{a}. For every B (l =s=q) with B XU{a} and B, 4! we have
beB,. Hence B\ {a, b}C A‘ Consequently, there exists an 4,€F, such that
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Aic 4,. This contradicts A€K,,,\F,. So there is a B; (1=s=gq) such that
B.C AiU{a}. :

Next we turn to the proof of (b). Suppose that A is the maximal subset of Q not
containing B, (1=t=q+1). By the inductive hypothesis, there isa Y€K, such that
ACY.

The first case: If B,,, & Y then Y does not contain By, ..., B,,,. Because 4 is
the maximal subset of 2 not containing B, (1=t=¢g+1) we obtain 4=Y. B, EY
implies A€ F,. Consequently, we have A€K,,,.

The second case: If B,,,SY then Y=LX; holds for some /in {l, ..., p} and
ACS 4} holds for some ¢in {1, ..., 7;}. If there exists an A4,€ F, such that 4iC4,,
then we also have AC 4,. By the definition of F, it is clear that 4, does not contain
B, ..., B,,,. This contradicts the definition of 4. Hence Aj€K,.,. It is easy to see
that A} does not contain B,, ..., B,,;. By the definition of 4 we obtain A=4;,
ie. Kyp1={By, ..., By}

By the above proof it is clear that K,={B,, ..., B,}~*. Thus we have

Theorem 2.2. K, =K.

Because K and K ~! are uniquely detérmined by each other, the determination of
K~ based on our algorithm does not depend on the order of By, ..., B,,.

Now we assume that the elementary step being counted is the comparison of two
attribute names. Consequently, if we assume that subsets of © are represented as sor-
ted lists of attribute names, then a Boolean operation on two subsets of £ requires
at most |Q| elementary steps.

Let K,={Q}. According to the construction of our algorithm we have K =
=F,U{X;, ..., X, }, where 1=g=m—1. Denote /, the number of elements of K,.
It is clear that for constructing K, ., the worst-case time of algorithm is O(nz(lq—
—t)t,) if t,<l, and O(n?t) if I,=t,. Consequently, the total time spent by the
algorithm in the worst cases is

m—1
o(n® 3 tyu,), where |Q]=n,
q=1

{lq—tq if 1> 1,

MEL i =1,

q

It is obvious that, if F,=0, then /,=¢,.

It can be seen that when there are only a few minimal keys (that is m is small)
our algorithm is very effective, it does not requires exponential time in |Q|. In cases
for which /,=1, (Vgq: 1=¢g=m—1) it is obvious that our algorithm requires a
number of elementary operations which is not greater than O(n*K||K~'}). Thus,
in these cases our algorithm finds K~ in polynomial time in |2}, |K| and |K~Y|.

After Theorem 2.12 we shall give an example to show that our algorithm requires
exponential time in |Q|. On the other hand K, in each step of ouralgorithm is obviously
a Sperner-system. It is known ([4]) that the size of arbitrary Sperner-system over Q

can not be greater than " , where n=]Q|. "l is asymptotically equal to
[n/2] (n/2] P _
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n+1/2

(7[ . n)1/2 *
exponential in the number of attributes.

Let K~'={4,, ..., A} be a set of antikeys. Let R={h,, h,, ..., h;} be a rela-
tion over 2 given as follows: for all acQ, h(a)=0

Consequently, the worst-case time of our algorithm can not be more than

if a€Ad;,

0
fori(l=i=1, ha) {i if acO\U,.
If we consider R as a matrlx, then R represents K (see [5]). Thus, based on our algo-
rithm, for an arbitrarily given Sperner-system K, we can construct a matrix whlch
represents K.

Example 2.3. Let Q={1,2, 3,4, 5,6} and K={(2, 3, 4), (1, 4)}. According to
the above algorithm we have K,={(l, 3,4, 5, 6), (1, 2,4, 5, 6)}UF,, where F,=
={(1,2,3,5,6)}, and K,={(3,4,5,6),(2,4,56),(1,2,3,56)}. It is obvious
that K'=K,.

We consider the following matrix:

The attributes:

123456
000000
M=]110000
202000
0600300

It is clear that M represents K.

Now we describe the “reverse” algorlthm for given Sperner-system considered
as the set of antikeys we construct its origin. The following definitions are necessary
for us. ,

Let F be a closure operation over Q. Set

Z(F) = {4 S Q: F(4) = 4}
and T(F)={AC Q: ACZ(F) and AcB= F(B)=Q

The elements of Z(F) are called closed sets. It is clear that T'(F) is the family of
maximal closed sets (except ). Now we prove the following lemma.

Lemma 2.4. Let F be a closure operation over £, and K; the sét of minimal keys
of F. Then Kgl=T(F). .

Proof Let 4 be an arbitrary antlkey and suppose that Ac F(A). Hence
F(F(4))=F(4)=Q. Consequently, A is a key. This contradicts VBcK;: BE 4.
If there is an 4’ such that Ac A’ and A'€Z(F)\{Q}, then A’ is a key. This con-
tradicts A'C Q.

On the other hand, if 4 is a maximal closed set and there i$ a B (B€Kg) such
that BC 4, then F(A)=Q, which conflicts with the fact that ACQ. If AcD(DS
€ Q), then it can be seen that F(D)=Q (because 4 is the maxxmal closed set). Con-
sequently, A is an antikey. The lemma is proved.
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Now we construct an algorithm for finding a minimal key. :
Let H be a Sperner-system and Q¢ H. We take a B (BEH) and an ae Q\B
We suppose that B={by, ..., b,}. Let G={B,€H: a¢B} and To=BU {a}. define

~ {Tq\{bq“} if VBEHN\G: T\{b,+1} € B;

“\T, otherwise.

- Theorem 2.5. If His a set of antikeys, then {T,, Tl, ..., Ty} are the keys and
T,, is a minimal key i

Proof. By Remark 2.1 there exists a closure F such that H= Kp We prove
the theorem by the induction. It is clear that T is a key. If T, and T,,,=T,, then
it is obvious that T,,, is akey. If T, =T, \{bq,,l} and F( +1)¢Q then, by
Lemma 2.4, there is a B,6H such that F(7,,,)SB,. Hence T 4+1SB,, which
conflicts with the fact VBEH: T,,,EB,. Consequently, T,:, is a key.

Now suppose that 4 is a proper subset of T,,,. If aq 4, then, clearly, F(4)> Q.
If a€ A, then there exists a b,€ B such that b€ T,\ A (1=q). By the given algorithm
there exists a B,HN\G such that 1\{b VS B,. ‘We obtain AST,\{b,}CS
ET,..{b}CB, by T,&T, (0<q<m 1). Hence F(A)#Q Consequently, 7,
is a minimal key The theorem is proved.

Remark 2.6. Theorem 2.5 is also true if To={b,, ..., b,,} is an arbitrary»key.
At this time define !

_ {Tq\{bq+1} if VBeH: Tq\{bq+1} < B;,
+1

T, 1= .
T, othérwise.

q

— It is clear that the worst-case time of the algorithm is O(n2- |H]|), where
n=|Q|, |H| is the number of elements of H. .

— It is best to choose B such that [B]| is minimal.

— If there is a B such that VB<H\({B}: BOB § and a¢ U B,

B c H\{B}
then aUb is a minimal key (VbEB).
— If (&\ U B)#@, then acQ\ |J B, isa minimal key.'
B.cH
— Let Y— U B, (B,#B). If B\Y#0, then it is best to choose T,=

=(BN Y)U{a}U{b} where beB\ Y.

Remark 2.7. Let H be a Sperner-system (2¢ H) and AcC Q. We can give an
algorlthm (which is analogous to the above one) to decide whether 4 i is a key or not.
If Ais a key, then this algorithm finds an A" such that 4’ 4 and Ais a minimal key.

Remark 2.8. In the paper [5] the equality sets of the relanon are defined as
follows: Let R={h,, ..., h,} be a relation over Q. For i#j, we'denote by E;
the set {acQ: h(a)=h;(a)}, where I=i=m, 1=j=m. Now we define M=
= {E, ;;: JE,, such that E;;CE,). Practically, it is possible that there are some E;;
which are equal to each other We choose one E, from M. According to Lemma 2.4
it can be seen that M is the set of antikeys of KFR (we consider R as a matrix).
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Example29 Let Q2={1,2,3,4,5,6} and R be the following relation:

01001 0]
101001
2001 2 2
012203
321030

It can be seen that M={(1,2), (3,4, 5), 4, 6)}, where E,,={1,2}, E;=1{4, 6}
and E,;={3, 4, 5}. By Theorem 2.5 and Remark 2.6, it is clear that {1, 3}, {1, 4},
{1, 5}, {1, 6}, {2 3}, {2, 4}, {2, 5}, {2, 6} are the minimal keys. We use the algorithm
“(Theorem 2.5) with To={3,4, 6} and T,={4, 5, 6}, then it can be seen that {3, 6}
and {5, 6} are minimal keys. Thus, based on this algorithm for an arbitrarily given
relation R we can find a minimal key of R.

" Let K be an arbitrary Sperner-system. The following theorem has been proved
in 21

=i

Theorem 2.10.
(S(zK)) =K Y= S(K)-1.
.Denote by [g) the family of all k-element subsets of Q.-Let F,(n)=max {S(K):
QY .
k(7); 1@1=n}
Theorem 2.11. ([6])
F(n) = ﬂ

We define the function fy,_,: N—~N for 2k—1=n by

— 1\n/(2k—1) .
BT i amo (ot

(2k 2]1/2 [n/(2k—2)]

2 — 1\E-DI-1 (o) ] .
k—1 X( k_i*-p) if n=p (mod(2k—1))

f%—l(n)z{( and 1=p=k-1,

2 — [\in/@k—D)] )
(k——l) X(kfll if n=p (mod (2k-1))

and k=p=2k—2,

and the function f,,_, for 2k—2=n by
nf(2k—2)
(2:' _ 12 ) if n=0 (mod(2k-2)),

2k —2\kE=D1-1 Dk 2 .
[ ) x( k_f”’] if n=p (mod(2k—2) -

oo Nk

f?k—%(n)—< A [ and 1=p=k-1,
2k — 2\ln/(2k~2)] .
[k—l] _ X(kfl) if n=p (mod(2k-2))

and k =p=2k-3,
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where N denotes the set of natural numbers. Let us take a partmon Q=X U..
LUX,UW, where m—[2k 1] and |X;|=2k—1 (I1=i=m).

Let
K= {B: |Bl=k,BE X;,vi} if W|=

={B:|Bj=k,BSX;(l=i=m—-1)and BC X,,UW} if 1=s\W|=k-
K={B:|Bl=kBSX,(1=i=m)and BEW) if k=|W|=2k-2

It is clear that
K1={4:|ANX}| = k-1Vvi} if W|=0.

K'={4: [ANX)| =k—-1 (1 =i=m—-1) and [ANX,,UW)| = k—-1} -
if 1

[IA

Wwi=k-—1.
K1={4:{ANX]=k—-1 (1 =i=m) and [ANW| =k—-1}
' if k=W|=2%k-2.
It can be seen that f5,_,(n)=|K~|. If we take.a partition: Q=X,U...UX,UW;
where m:[an—__z and |[X;|=2k—2, in an analogous way we
K={B: |B|=k BCS X,Vi} if W|=0.
K={B:|Bl=k,BS X, (I=i=m—1) and BS X,UW} if | =|W|=k-
K={B:|Bl=k,BCX;(1=i=m)and BCW} if k=|W|=2k-3.
It is clear that '
2 — 2YInf(2k—2)]
fueatd = 1K and fuat= ()

Theorem 2.12. Let Q={1, ..., n}.
If n=0 (mod (2k—2)(2k—1)), then fy,_i(n)>fe—2(n). For a fixed k,
f(n) ‘

(n, =
2k L2

Proof. If k=2, then it is easy to prove that Va: fy(n)=f,(n). If n=6 or
n=8, then fy(n)>f:(n). Let

(Zk_ 1]n/(zk—1) (Zk_ 1)nl(2k~l)
F .

flim

nesco

k—1. k

= VG D - (2k —2\iICk—DEk—1) *
(=) (=)
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It is known that n!=}2nn (%] X where 0<6,<1. So

(Zk— I]n/(u-l) (l 1 ]nl(Zk—l)
k T2k
F= A 9/ (12(2k —2)) | nf(2k —2)(2k—1) = el/(@1(k—1)) \nf(2k—2)(2k—1) =E.
Yr(k—1) [ Vr(k—2) ]

For this E we obtain, that

n L 1 (1 1
T=hE=57 [l“ (I_E'E)+2k—2 [71“ (”(k“l))'m(k—l)]]
and by

I s Ry 1
I — =
‘“ll k)| = k=1

we have

n 1 1 1 1
T=5%1 [2k—2 (7]“("(k_l))_24(k—1)]'2k—1}'
It can be seen that if k=3, then

Lo(1 1 1
2k—2[7]n(n(k—l))_24(k—l)]—2k—1 >0

and, for every k=4, .

1 1
—2—11'] (ﬂ(k—l))—m = 1.
Hence
1

1 i 1
2k—2 (7'“ ("(k‘l))"u(k— I)J_2k—l >0

Consequently, if » =0 (mod 2k—2)(2k—1)), then f5, _,(n)>fo_2(n). Now let n
be an arbitrary natural number. It can be seen that, for a fixed k&, there exists a number
M=0 such that

()
k—1 ' k—1
2k — 1 \1+GiEk—1) <M, 2k —1\pieE—D M,
k—l] ' k—l] ’
) )

adnd <M and k-l =M.

2k —2\1+i(2k—2)) 2k —2)pl(2k~2)
1) (=)
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Hence In E—~~. Consequently, F—c. Thus,

n—oco’ n—+co

fuar®)
)

n-roco

(It is easy to see that k=2 is also true.) The theorem is proved.
As a consequence of Theorem 2.12 and Theorem 2.10 we have

Corollary 2.13
Fi(n) = V2fya(n)-

Example 2.14. In Theorem 2.12 let k=2. Then we have n—1=|K|=n+2
and 3"/ <f,(n), where n=|[Q|., i.e. 3*M<|K~1|. Thus, we always can construct
an example, in which the number of K (minimal keys) is not greater than n+2, but
the size of K ! (antikeys) is exponential in the number of attributes.

§ 3. Some special Sperner-systems

In this section we investigate connections between the minimal keys and antikeys
for some special Sperner-systems.
" The notion of saturated Sperner-system is defined in [7], as follows:

A Sperner-system K over  is saturated if for any 4SQ, KU{4} is not a
Sperner-system.

An important result in [7] has been proved; if X is a saturated Sperner-system
then K=Ky uniquely determines F, where F is a closure operation.

Now we investigate some special Sperner-systems which are strictly connected
with saturated Sperner-systems.

We consider the following example.

Example 3.1. Let 2={1,2,3,4,5,6} and N={(1,2),(3,4),(56)} be a
Sperner-system. It can be seen that N'={(l, 3, 5), (], 3, 6), (1, 4, 5), (1, 4, 6),
(2,3,5),(2,3,6),(2,4,5),(2,4,6)}. Let K=NUN1 Itis clear that X is saturated.
We use the algorithm which finds a set of antikeys. Then K—*={(1, 3), (1, 4), (1, 5),
(1, 6), 2, 3), 2,4, 2, 5, 2, 6), 3, 5, (3, 6), 4, 5), (4, 6)}.

By the fact that K~ 1U{1, 2} is a Sperner-system it is obvious that K1 is not
saturated. Thus, we have

~ Corollary 3.2. There is a K so that K is saturated and K ™! is not saturated.
Now we define the following notion.

Definition 3.3. Let K be a Sperner-system over . We say that K is embedded,
if for every A€K there is a B€EH such that ACB, where H '=K. We have

Theorem 3.4. Let Kbea Sperner-system over Q. K is saturated if and only if
K1 is embedded. .
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Proof. Let K be a saturated Sperner-system. According to the definition of X1
it is clear that K ! is embedded. Assume that KX ~! is an embedded Sperner-system,
but Kis not saturated. Consequently, for X there exists an A< Q such that KU {4}
is a Sperner-system. It can be seen that, for every C€K, we have Cc Q (because of
Q¢ K). Hence we can construct B such that AC B, KU {B} is a Sperner-system and,
for every B’(BCB’), thereis a CeK with CSB’. It can be seen that B€K L.
This contradicts the fact that K1 is embedded. The proof is complete.

Now we define an. inclusive Sperner-system.

Definition 3.5. Let K be a Sperner-system over Q. We say that K is inclusive,
if for every A€K, there exists a B€K ! such that BC A. We have

Theorem 3.6. K is an inclusive Sperner-system if and only if K= is a saturated
one. :

Proof. Now, assume that K is an inclusive Sperner-system but K~! is not
saturated. By the definition of K7, there is a Be{K™")™' such that K~'U{B}
isa Sperner-system By Remark 2.1, for X there is a closure operation F such that
K=K;. If F(B)cQ, then by Lemma 2.4 there exists an A€K ! with F(B)S A4
(the set of antikeys is family of the maximal closed sets), which conflicts with the
fact that K~'U{B} is a Sperner-system. Consequently, B is a key. If we use the
algorithm which finds a minimal key in Theorem 2.5, then it can be seen that there
exists a B’(B’< B) such that B’€K, and it is clear that K~U{B’} is a Sperner-
system. This contradicts the definition of K. Thus, K ! is saturated.

On the other hand by the definition of K~ and by the assumption that K-
is saturated it is clear that K is an inclusive Sperner-system. The theorem is proved.
Now, we have the following corollary by Theorem 3.4 and Theorem 3.6.

Corollary 3.7. Let K be a Sperner-system over Q. Denote H a Sperner-system,
for which H =K. The following facts are equivalent:

(1) K is saturated,

(2) K1 is embedded,

(3) H is inclusive.

Proposition 3.8. There exists a Sperner-system K such that
(1) K is saturated, but X! is not saturated.
(2) K is saturated, but H is not saturated.
(3) X is embedded, but X! is not embedded.
(4) K is embedded, but H is not embedded.
(5) K is inclusive, but K~' is not inclusive.
(6) KX is inclusive, but H is not inclusive,
where H denotes a Sperner-system for which H~!=K.

-Proof. From Example 3.1 we have (1). By Theorem 3.4, (K )~ is not embedded
in this example. Hence we have (3). By Theorem 3.6, in Example 3.1 H is inclusive,
where H~1=K. Now, we suppose that, if K is inclusive, then the set of antikeys of K
is also inclusive. Consequently, in Example 3.1, H is inclusive, and K is an inclusive
Sperner-system. From Theorem 3.6, K 1 is saturated. This constradicts the fact that
K~in Example 3.1 is not a saturated Sperner-system. Hence we have (5). (2) can be
proved as follows: Let K be a Sperner-system. Let K'=K and, for n=2, define



Minimal keys and antikeys n

K™ by the equality (K")"*=K"-. We know that the number of the Sperner-systems
over Q is finite (at most 22'®"). On the other hand, K and K ~* are determined uniquely
by each other. Consequently, there exists a number m (2=m=22'""") such that
K™"=K and K™"~'=K"'. If we suppose that K is saturated, then H is also saturated,
where H~!=K. This means that for every p with 2=p<m, KP is also saturated.
This contradicts Corollary 3.2. Thus, there is a Sperner-system K such that X is satu-
rated, but H is not saturated. By similar arguments we have also (4) and (6). The
proposition is proved.
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