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Abstract

In this paper we discuss simplifications of multi valued logical functions. The simplification is
carried out in the following way. We associate tree graphs with the disjunctive or conjunctive normal
forms of the functions. Under certain conditions some vertices of these trees can be omitted. This
cancellation will correspond to reduction of terms or variables in the original function.

After all possible simplifications a normal form, which is equivalent to the function in question,
is obtained.

1. Definitions, notations

Let k(=2) be a natural number and ¢, the set {0, 1, 2, ..., k—1}. Any function
f: et—~¢, is called a k-valued logical function of n-variables where & denotes the
Cartesian product of »n copies of g. These functions are often given by their
truth-tables and they will also be denoted by f(X") or AX)=f(X;, X5, ..., X;). The
set of k-valued logical function will be denoted by P, . Several properties valid in the
theory of ordinary two-valued logic remain true in the theory of k-valued logic as well.
But in the case k=3 certain characteristics are essentially different from those in
ordinary logic.

A major problem is the definition of negation, since it can be defined in several
ways.

Definition 1. Let A4,6{0,1,...,k—1}, i=1,2,...,n; n=2. Then the opera-
tors defined by
ANAN ... NA, = min (4;, A5, ..., A,)
and
AN AV ..V A, = max (4;, 4s, ..., 4,)
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are called the conjunction and disjunction of the variables 4;, 4,, ..., 4, respecti-
vely.

The following identities can easily be proved:

I AAB = BAA,
AV B = BV A, for every A4, B.
1I. AN(BAC) = (AAB)AC,
-AV(BVC) = (AVB)VC, for every 4,B,C.
1II. ANBVC) = (AABYW(AAC),
AV(BAC) = (AVBYA(AVC), for every A, B, C.
1v. AVA = A,
AANA = A, for every A.
V. ANK—-1)= 4

AV@ = A, for every A.

Below we give two types of negation: one for logical constants and one for logi-
cal variables.

Definition 2. Let Acg,. Then
A= (k—1)—A.

Definition 3. If X is a variable then X denotes that function the actual value of
which is the negation (in the sense of Definition 2) of the actual value of X. Let us

introduce the following unary operator
k-1, if a=X=b,
a Xb — {
0 elsewhere,
where a, b, Xcg, and a=b are fixed. It should be noticed that °X? is two-valued.
By Definition 3, the negation of °X? is
— (0, if a=X=b,
a Xb — {
k—1 elsewhere,
where a, b, Xcg, and a=b are fixed. The formulae in the theory of k-valued logic,
similarly to those of two valued logic, will be given by recursive definition.
Definition 4.

(0) The elements of &, are k-valued logical formulae;
1) Xy, X, .., X, X0, %X O xte are_k-valued logical formulae;
(2) If Fis a k-valued logical formula, then F is a k-valued formula;

(3) If Fand G are k-valued logical formulae, then FVG, FAG are k-valued logical
formulae;
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(4) Every k-valued logical formula can be obtained by a repeated appllcatlon of
©0)—03).

In what follows the letters f;, g, ... will denote functions and the capital letters F, G, ...
will denote formulae. By a function of n-variables we mean a k-valued logical func-
tion of n-variables (k=3).

Value assignement. The ordered n-tuple (X3, Xs, ..., X;|4;, ..., X,)is called a value
assignement of the i-th variable. If every variable has value simultaneously, then the
ordered n-tuple (X"|A")=(X1|4,, X2|Au, ey X5|4,) 1s simply called a value assigne-
ment.

Let f(X") be a function. Then

f(X|A") = f(X,|4:, Xal4s, ..., X,|A)

denotes the fact that X; is replaced by 4;, where A4;cg, i=1,2,...,n. The value
JXq) 4y, XolA4,, ..., X,]4,) is called the value of f(X") under the value assignement
(Xy|4y, X,|4s, ..., X,]4,). Below the value assignement (Xi|4,;, Xa|4s, ..., X,|4,)
and the value f(Xi|4,, X,|4s, ..., X,|4,) will be denoted simply by (4;, 43, ..., 4,)
and f(4,, 4, ..., A,), respectively. One can define value assignements for formulae
as well.

Definition 5. Let f, g€ P,. If the value of g does not exceed that of f (in any
position of the truth-table), then we say that g implies £ and write g—f.

Definition 6. Formulae F and G are said to be equivalent if the corresponding
functions f and g are equal. In this case we write F=G.
An easy computation gives

Lemma 1. Let f(X")=f(X,, X,, ..., X,), n=2. Then for every i=1,2, ..,

f(X13X2"" iy = n)— v [f(Xla Af; laX‘.h 1+13--'3Xn)/\j‘1/;j]'

Remark. Below the conjunctlon will be denoted by - (sometimes it will be omit-
ted) or, in the case of several variables, by II, and the disjunction will be denoted by
+ or X. The following lemma can easily be verified.

Lemma 2. Let f(X")=f(Xy, X, ..., X,), n=2. Then the relation
X, X, X)) = 3 XX X" f(as, ag, .5 ay)

(a,,ay,...,a,)

holds, where Z is taken over all the possible ordered n-tuples, and a,€¢,7=1,2,...,n

Definition 7. By a superposition of the k-valued logical functions f(X7, X5, ...

s Xiy s Xp) and g(Xy, Xz, .., X)) wemeanthefuncnonf(Xl, X5 . 8(X1, X, .

s X, X ) which is obtalned by substituting the function g for the i-th argu-
ment X; of r

Definition 8. The set of functions {f},fs,...,f;} is called a basis-set for P,
if every elements of P, can be expressed by X; (/=1,2, ...,n) and the functions
fisJes -.» [, applying superpositions finitely many times. It is customary to say that
the clements of a basis set form a functionally complete function system.
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" By virtue of Lemma 2 we get that the system {0, 1, ..., k—1,°X° X .
., F71X =1 min (X;, X;), max (X;, X,)} is complete in P,.

Definition 9. The expression
( > ’J“’Xf' X3t .. "X fay, as, ..., a,)
@450y, ..., 0

is called the full disjunctive normal form F, (X, X, ..., X,) of the function f.

Since a;€g, i=1, 2, ..., n, the number of all different n-tuples (ay, as, ..., a,),
is k", Denoting the value f(a{?, a{?, ..., a\?), concerning the j-th n-tuple (in a fixed
ordering) (a(, a{), ..., a¥?) by a; and the corresponding conjunction

a,(j) X{"U) a,(i) Xg"*(j) el X,‘,"'(j)

by E? the full disjunctive normal form belonging to f(X") can be written in the form

k=1

Fy(X™ = go o, El.

E™ is called a min term of n- varnables We w111 require some further formulae which
can easily be verified.
axt if, a=d=c=0b,
Cayeqpdyb 14X if, d=a=c=b, ')
cHlyd-1t f g=c<d=b,a,b,cd Xcg,.
0 if, asc<d=b,

syc.dxb =Jdyc if g=d=c=b, )
9X* if, a=d=b=c,a,b,cd, Xcg,.

axyb — Oya—14 b+1yk-1 (3)
where
Oxal=0 if g=0, PHX*1=0 if b=k—1, a, b, X€¢,
Oxk-1 — [ 1. 4)
sxbpaxb = k—1, a,b, X€¢,. )
PR ¢ ¢ G I B G WL ¢ CNERIL.) G A3 (6.2)
PRI G ) LIS R 5 6L D o8 (6.b)
where

X,a,bcg, i=1,2,...,n

Formulae (6a) and (6b) are the de Morgan’s identities in the theory of multi-
valued logic.
The full conjunctive normal form can be defined in a similar manner.
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Definition 10. By the full conjunctive normal form of a k-valued function
J(X") we mean the formula
Kn—1

Fox) = IT 5+ B,

where E" can be obtained from E} by the de Morgan’s identities and denotes the so
called max terms. Using the usual rules of the theory of two-valued logic the full
normal forms can immediately be found from the truth-table. Every conjunction
term and disjunction term of the full conjunctive and disjunctive normal forms con-

tains the expression Gxh G xd: | 9XPn of the variables X;, Xz, ..., X,.
The full disjunctive and conjunctive normal forms can be written in the following
ways

' k=1
FyX") = F+F+...+F_, = Z F;.
i=1

and

k—1
F\(X) = F F..F., = [ F},
Jj=

where F; (Fj) is the sub-formula consisting only of min terms (max terms) which
determine the #-th (j-th) value of the function.

Definition 11. Let F be a disjunctive normal form of f€P,, and let G be a con-
junction term of F. We say that G is an implicant of fif G—f. G is called prime impli-
cant if, for every G’ obtained by omitting any variable of G, G’-+f holds.

Remark. The above defined min and max operations are mutually distributive
(see identity IIT). Using this fact and the duality of the two operations we can treat
the disjunction terms in a conjunctive normal form in the same way as we treat the
conjunction terms in a disjunctive normal form. A normal form is called irredundant
if the following properties hold:

(1) each of its terms is a primimplicant, and

(2) no expression obtained by omitting any term in the normal form implies the

original function.
A normal form is called redundant if it is not irredundant.

2. Representation of formulae of functions.

The tree-construction procedure

We will work with a fixed order of our variables, which will be denoted by S. We
agree that if we write f(X")=f(X;, Xs, ..., X,) then S=(X3, X;, ..., X,). The simpli-
fication procedure we are going to discuss depends on S, therefore to some of the
objects in the procedure we will affix S. By successive evaluation we mean successi-
ve evalution determined by S(i.e. we change first the first varlable for logical valu—
es then the second one etc.) .
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Let f(X") and S=(X;, X,, ..., X,;) be given, and let
S = f(Xy, Koy s X)) = fon

JO, X5, ... X)) =fi,

f(L, X, ... X)) = f,e

f(ls X2’ LR ] Xn) =.f1,i+1

f(k_l9 X2a --'9Xn) =.f1,k
10,0, X,, ..., X)) = fos

SO k-L X5, .., X,) = fou
f(la Oa X3, -~-’Xn) =.f2,k+1

f(k—]9 k_la X3, "':Xn) =.f2,k3

f~1Lk=1, . k=1,X) = fo_y -z
flk~1,k=1, .., k=1,0) = f, ,

Jk=1L, k-1, k=1L, k=) =f ;»
Using the resulfs of Lemma 1, the following arrangement can be given (Fig. 1).

The functions fy1, /1,15 ---» fo,i are called level-functions. Every function f, ;
(0=m=<n, 1=j=k™) determines k new functions on the (m+ 1)-th level in the follow-
ing way:

fm+1,jk—(i—(k—l))("" X_p ) =fm,j("" i, )

So there are k™ +1 level-functions on the (m+1)-th level. The ‘X}s (:=0,1,...,k—1,
Jj=1,2, ..., n) appearing at the edges of the tree above indicate that the variable X;
is replaced by the constant /.- The functions f, ;, being on the #-th level, are logical
values. '~

This way we can associate a k-ary tree with every function f(X").

The tree which has just been obtained will be denoted by &g (notice that the
constructionn depends on the fixed order S of the variables). Since &g contains all
the possible level functions, @ will be called complete.
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Notion of endpoint and path

By endpoints we mean the “leaves” of the tree (the vertices on the lowest, n-th
level). Any sequence of edges joining the root with some endpoint will be called a
path. Some more notations:

Let &g be a tree belonging to f(X"), and let S=(X;, X, ..., X,) be fixed. Sup-
pose that the edge denoted by °X7,, connects the level functions f; ; and f,, ;.

Below f; ; ‘and f;,,; will be called the start-point and the endpoint of the edge
2Xg, ,, respectively. Obviously there is a one-to one correspondence between the eva-
luations of a function f(X”") and the paths of the corresponding tree @5. If we know
the tree @ corresponding to a function f(X") then it is easy to determine the Fy (X")
full disjunctive and F, (X") full conjunctive normal forms of f(X"). To obtain Fy (X")
we have to take the conjunction of the variables /X7 along paths together with the
logical value of the endpoint of the path and take the disjunction of all these expres-
sions for every possible paths. If we interchange here ““disjunction” and “‘conjunc-
tion’ and “variable” for “negation of variabie™ we obtain F (X7).

This method shows that the tree @ is a representation of the formulae Fy
and F,. It can also be seen that @y is equivalent to the truth-table of the function,
the difference between them is that @g can be obtained by successive evaluation
while the truth-table is given by simultaneous evaluation.

Theorem 1. Let f(X"€P,, S=(X;, X,, ..., X,). Then the tree-construction
procedure associates a uniquely determined k-ary tree to f.

Proof. The level function f,.4 jk—G-@—1y has fewer variables than f, ;.
Since fy,; contains a finite number of variables, the procedure must necessarily stop
after the construction of a finite number of levels, which gives the existence of the
tree. The unicity can be obtained from the equivalence of simultaneous and successive
evaluations.

Definition 12. Any function f with domain D(f)Ce} is called a partially defined
function. Those places where fis not defined will be marked by () in the truth-table
and at the “leafs” of the tree.

In the process of simplification we can assign any value to these places, which,
in certain cases, yields a simpler representation.

3. The simplification procedure

Let f(X")EP,; and let S be fixed. In order to construct an irredundant equivalent
of f(X") first we construct the tree &5 and choose that subtrees & (¢=0, 1, ..., k—1)
of &g which consists of those paths of @g that have ¢ at their end.

Definition 13. Those points of &, (t1=0,1,...,k—1) from which exactly &
edges start will be called complete branching points, and the k edges starting from
such a point will be called a complete edge-system. A complete branching point of a
subtree is called m-multiple complete branching point if the subtree has altogether
m total branching points with the same complete edge-system as the given point
(more precisely the variables attached to the complete edge systems must be the same).
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Let p be an arbitrary path of &5 (¢=0, 1, ..., k—1) and let » be the number of
its edges.
Let
%%y if °X,(,)’, belongs to p,

ny
Ay* o IX,,lj if lX,,lj belongs to p,
ny : N : -
k=lyk-tof "'IX,’,‘J—1 belongs to p, (l=n;_y<n;=n, 2=j=m)
and ’ '
{(*X0, *Xn, .., " Xp } = X = X{p, n;, m}
some edges of p. B
Those edges of p (if there is any) which do not belong to X will be called connect-
ing sequences of X (relative to p) and will be denoted = {x,, %;, ..., %s}.
Let &% be given, and let p be a path of &%. A subtree &g of P! will be called
maximally simplifiable subtree of order m (below briefly MSST) if

(1) &¢ contains p, o
(2) there exists such an edge set X=X {p,n;, m} (1=n;_y<n;=n, 2=j=m)
of p taken in the fixed order determined by S that the edges marked by
*X,... G=0,1,...,m—1) belong to k*-multiple total edge systems of g,
and if p’ is any other path of &g then the connecting sequences of X=X {p,
nj,m}y and X'=X'{p’,n;, m} relative to p and p’ are the same (more
precisely, are marked in order with the same variables “X¥).
(3) There exist no subtree @3 of P that has properties (1) and (2) and which
_has more than m total branching points.

The structure of an MSST of order m is shown on Fig. 2.

Remark. x; is the sequence of edges between *X*_, and *X in the order deter-
mined by S. If n;=n;_,+1 then »; is empty. If m=0 then &g=p. It is obvious
that if a tree ®% and its path p are given then there exists at least one MSST contain-
ing p.

Theorem 2. Let f(XMeP,, &% (t1=0,1, ..., k—1) a tree belonging to a fixed S,
p a path of &% and I an MSST of p. Let the n-term conjunction of variables along the
paths of M be: py, ps, ..., pr (1=I=n), and the (variables at the) connecting se-
quence x;, ®a, ..., ®,. Lhen _

kl
2 pi= I«
Ji=1 i=1
holds.

Proof. It contains k* paths, so there are k% k2, ..., k™~ total branchings on the
different levels. In other words the formula F, corresponding to &% does not depend
on the variables appearing in the total branchings because it takes the value ¢ inde-
pendently of these variables, so they can be omitted.

This theorem shows that every I yields one term. The term which is obtained by
the method above is called the simplified formula of M. The disjunction of such sim-
plifications of MSST’s is the simplified formula of the function.
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4 Irredundant covermgs

Definition 14. A set of MSST-s of a tree @5 (=0, l , k—1) is called a co-
vering if each path of the tree belongs to-at least one of the MSST-s of the set.

A covering is called irredundant if any MSST in it contains at least one path
belonging only to this MSST. Co . .

Theorem 3. Let ¢% represent the disjunctive normal form of an f(X")eP,,
(t=0,1,..,k-1), together with .one of its irredundant coverings. Let 'F, denote
the d1s1unct10n of simplified formulae obtained fromthe elements of the set of- MSST—s
giving the irredundant covering in question. Then: F, is irredundant.

Proof Suppose that Fy is redundant Then there exist two cases.

(1) some disjunction term of F, can be omitted;

(2) at least oné variable can be omitted from some conjunctlon term of Fy,

First suppose that a term F® of Fv can be omitted. Since every MSST gives only.
one conJuncnon term, omitting this is equivalent to omlttmg the MSST from the
covering, but taking into account the irredundancy, this is impossible.

Secondly we note that, if an F® can be replaced by an F'¥) obtained from F®
by omitting some variables, then the MSST giving F contains the MSST which
gave FO, but. this contradict the definition of MSST. oL .

Remark. Theorem 3 is formulated for full disjunctive normal forms, but because
of the principle-of duality it is true for full conjunctive normal forms as well.

S. Simpliﬁahle paths; simpli_ﬁeation algorithm

Definition 15. Let 9§ (=0, 1, ...,k—1) be given, and take a path D of 455‘
— pis called smgular if the MSST coincides with p. .
— p is called simply covered if p is covered by.one and only one MSST

— p is multiply covered if it is covered by at least two MSST-s.

Theorem 4, Let f(X")EP,; be given by either its disjunctive or conjunctive full
normal forms. If fis given by its full disjunctive normal form F, and some max term
E" is simultaneously represented by formulae Fy_,., F,_,,,“, . F,_,,,+,, .then

min (E—m& E—m+1’ Fl—m+t) = ITl—m _ (l)

If f is given by the full conjunctive normal form F, and some max term E7 is
simultaneously represented by formulae F,_,,, Fi_p415 .-y Fi—pm+;, then

max(lrl—ma.l;‘l-l-lm+la"'.s E—m+i = L-m+i- (2)

The statement can easily be proved taking into account the definitions of the
min and max operators.

Formula (1) means that the s1mphﬁcatlon procedure of a function f (or tree &g
which is representing the function and is written from the disjunctive normal form)
value (for example in case & ={0; 1, ..., k—1} with @%1). After the first step of the

3 Acta Cybernetica VII/4
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simplification the endpoints'marked-with-(k — 1) can be considered of (#)-value, that
is. undeﬁned in the tree 453 Let us mtroduce the followmg notatlons
o e

(ll) ¢k—l. ¢k (i-1), *U@—l (,> 2)
where I=k- - and (*) is wntten on the places Jj=<i. By virtue of Theorem 4, there
are subtrees which may give more favourable conditions for sxmphﬁctlon

On the other hand relation (2) shows in case of tree of functions given by full
conjunctive normal form that simplification has to be started with the simplification
of that subtree determined by the path with smallest logical value and we have to
apply the method above. Below the procedure will be shown only for functions given
by their full dlSjunctnve normal forms. The case of full conjunctive normal forms can
be treated in.a similar way.

Now we can glve the s:mplnﬁcatnon procedure

6. Simplification algoritlirn for representations of irredundant formulae

(1) Let-i=1. Mark the paths with endpoint t=k—1 in the tree &g (that is we
start from the subtree %-1). If in the tree &g originally there are endpoints marked
with (%), then we begin with &% U &%,

We choose a path and an MSST containing it. We take a record of the simplified
formulae corresponding to this MSST and mark the paths in it.

(2) We choose an unmarked path and determine an MSST covering it, prefe-
rably with unmarked endpoints (this will speed. up the algorithm). This way such an
MSST is chosen which is necessary for an irredundant covering. The simplified -
formuld belonging to the MSST we have just obtained will be taken record of and
the so far unmarked paths of the MSST will be marked. -

, Repeat step 3.until we can find unmarked paths in %"

~ If there is no unmarked path, then let i=;+1. If z<k then cons:der the sub—_
tree %1% and carry out the above steps (1), (2), (3). If i=k the algorithm is over.
| Fmally the simplified formula of the function f(X") can be determined as fol-
lows: - . :

Let
S Fg;l,F:‘.;‘,.. F§.l‘

EA

Fy®, FRg?, . F" w2

: 1 1
5,1y Fs2’ .Fe F

!lk 1’

denote the sxmphﬁed formulae obtamed from the -subtrees ﬁfl,' @572,,'*,- L, PR
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(92) (sz) (vz) (€7} (ze) (17) (oz} (1) (81)

£ 3d

(L) (o) (s1) (wyden) {2y 1y (o0 (6) (8 (&) (&) (9 (v () (2 0 (0)

(Z°K'X) we

3+
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respectively. ‘Then the formula:
(k—=1) - (FE'+ Fig'+ A FED+(k=2) -« (FiT+ Fiz?+ .+ FEgD) + ...
A2 (FE +Fi g+ .+ FE )+ - (F+ Flo+ . +FL )

corresponds to an irredundant covering of @s.
All these can be summarised in the following theorem.

Theorem 5. Every tree &g has at leastbone.irrec.h.n_ldant covering.

7. Some demonstrative examplég

1. Consider the function .

XY, 2Z) = 1X(1, 4,7, 10, 11, 13, 14, 19, 22, 25)+22(6, 15, 16, 17, 24)

given by its full disjuntive normal form (here we use the conventional notation of
binary logic; only the numbers in brackets should be considered as numbers in the
number system with base k instead of 2). We will simplify the fuaction f*(X, Y, Z).
Let S=(X, Y, Z) be the order of évaluation. Fig. 3 gives the complete tree of f3

With k=2 pick the tree 2 and let us analyse it (Fig. 4).

2 2 2 2
(6) (15)(16) (t7) (2%)

ing-. 4
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(15)(16) (17)

Fig. 6

Let us mvestlgate the paths of this tree movmg from the left to the right

1. There is no singular path.

2. Simply covered paths: (6), (16), (17). The MSST belonging to (6) is (6—15—
24) (Fig. 5). The next path is (16) and the corresponding MSST is (15—16—17)
(Fig. 6).

The simplified formulae
: 2y2,070

IXI 2Y2

3. There is no more unmarked path. v

We write (%) instead of 2 and consider &} * with k=1. (Fig. 7)

1. There is no singular path.
2. Simply covered paths are:
(1) and the corresponding MSST is (1—4—7—10—13—16—19—22—25)
(Fig. 8), (11) and the MSST is (11—14—17) (Fig. 9).
The simplified formulae are:
. lzl

1y1,272
The simplified irredundant formula is:

2(1X1 2Y2+2Yé OZO)+ i (IZI+IX1 2Z2)'
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(25)

(22)

(19)

L16)

" Fig. 8

(i0) (13)

(¢

“)
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N
[X3

(an T (17)

Fig. 9 ~

L. Consider the following function ‘
X, y) = 12(3,4, 6, T)+22(1, 5, 13)+3Z(9, 10, 11, 14)

and let S= (X Y). Simplify this function.
1. Smgular paths are: (9), (10), (11), (14) and the formulae belongmg to these are:

2X2 lyl, 2X2 2Y2’ 2X2 3Y3’ 3X3 2Y2.
2. There is no more unmarked path.
We write (;ae) instead of 3 and let. k=2.

1. There is no singular path. :
2. Simply covered path is: (1) and the MSST is (1—5——9—13) (Fig. 13)
3. There is no more unmarked path.

The simplified formula is 'Y*. :
We write instead of 2 and 3 now (*) and let k 1.

1. Singular path is: (3) and the correspondmg formula is: 0X03y3
2. Simply covered path is (4) and the MSST is (4—5—6—7) (Fig. 15).

The snmpllﬁed formula is: 1x1
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3. The simplified function is:
(2X2 IYl + 2X2 2Y2 + 2X2 3Y3 + 3X3 2Y2) + 21Yl + l (OXO 3Y3 IXI)

Rema:k The irredundant formula we have just obtamed can be transformed
by virtue of indentities treated above.
For example:

3 (2X2 (IYI + 3Y3) + 2Y2(2X2 3X3)) + 21Y1 + 1 (OXO 3Y3 + IXI) —
=3 (ZX" 1Y8 + 2X3 BYZ) +21Y1 + 1 (OXO 3Y3 le)

III. Let f3(X, Y, Z) be glven by its truth-table (Fig. 16) Simplify this function
Let S=(X,Y,2Z) - &5(X, Y, Z) is sketched in Fig. 17 For the endpoints marked
with k=2 and * we have:

1. There is no singular path.

2. Simply covered paths are:

(i) (13) and the corresponding MSST is (4—13——-22) (marked with +) (Fig. 17).

The simplified formula is: 1Y11Z?;

(i) (21), the MSST is (21—22—23) (marked with 0) and the simplified formula

is2X21y1,

(iii) (24), the MSST is (18—21—24) (marked with “="") and the simplified

formula is 2X29Z°.

3. There is no more unmarked path thh endpoint 2. Consider now the subtree
with endpoints k=1, 2=x% and *

1. There is no singular'path.

2. Simply covered paths are:
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(0), the MSST is (0—3—6—9—12—15—18-—21—24) (marked with £1) and the
simplified formula is: °Z°; (10), the MSST is (9—10—11) (marked with e), the
formula is 1X*°Y°; (16) MSST: (15—16—17) (marked with X), the formula is:
le 2Y2‘ ’

3. . There is no more unmarked path with endpoint 1. '

The simplified formula of the function is:
2(1Y1 121+2X2 1Y1+2X2 OZO)+ l (GZO_}_IXI 0Y0+1X1 2Y2) —

=207 121+ 221y 42X20Z0) 4 | (0Z041X1 1Y2),
IV. Let

X, Y)=12(58,9, 11)+22(2, 6, 10)+32(13, 14)+ x Z(1, 12, 15)

and S=(X, Y). Simplify this function

For the paths with endpoints k=3 and =:
1. There is no singular path,
2. Simply covered paths are: ,
(13) MSST: (12—13—14—15) (marked with @) (Fig. 18) the simplified
formula: 3X3. )
3. There is no more path with endpoint k=3.
For the paths with endpoints k=2, 3=% and *:
1. There is no singular path.
2. Simply covered paths are:
(2) MSST: (2—6—10—14) (marked with +) the simplified formula is 2Y2.
3. There is no more unmarked path with endpoint k=2.
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For the paths with endpoints k=1, 2=%,3=%, and =*.

1. There exists no singular path.
2. Simply covered paths:

(5) MSST: (1—5—9—13) (marked with D) the formula: 'Y?;
(8) MSST: (8—9—10—11) (marked with X) and the formula: 2X 2

3. There is no unmarked path with endpoint k=1.

The simpliﬁed formula is:

PKO422Y 24 1 (BX2H1YY),

400 A. Varga
x|y |lz|r|lx| v | z| 0| x Y z | g
o | o o 1 1 | o 0 1 2 0 0 .
ol o 1| o |1 0 1 1 2 0 1 0
o | o | 2| = 1 | o 2 . 2 0 2 )
o | 1| o] 1 1 i 0 1 2 1 0 2
o | 1 1 3 1 1 2 2 1 1 2
o 1| 2] 01 1 2 0 2 1 2 2
o | 2| 0| 1 1} o2 0 1 2 2 0 2
o | 2110 1] 2 1 1 2 2 1 0
o | 2 2| |1 2 2 1 2 2 2 0

Fig. 16
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