An Erdos—-Ko—-Rado type theorem II
"By K. ENGEL and H.-D. O. F."GRONAU" -

1. Introduction and results

Let R denote the interval [1, r] of the first r positive integers. Let k be an integer

with 0=k=r. The set of all k-element subsets of R will be denoted by { k) Theaim
of this paper is to present the

Theorem 1. : Let p=4 ‘and v=4 be integers. If F_E_[;:)',

r—-l'~'< n—1 ) .
o 5 + =_1f§ m (r—1, )

" and ' F satz.sﬁes '

EleXZD nX #Q for all Xl,Xz,...,XI‘EF, | (2)
X,UX,U,..UX, = R for all X,,X,, ..., X,€F, -
then
; r—2
A= [k_l].

ST _...._ -This ‘is best possible. The families F, y={X€[§):‘ x€X, ye{X},
; where x and y are different fixed elements of R, are maximal.

This theorem was proved for =6 and v=6 and for some partlal cases of k if
u=4,5 or v=4,5 in Gronau [2]. Our proof here-uses the same method but in a
refined version. '

Condition (1) is natural. For all other &’s one of the conditions (2) or (3) is satis-
fied automatically, and the problem reduces to the generalized Erdds—Ko—Rado
theorem by Frankl [1]. For another simple proof, see Gronau [3}.

4'
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Theorem 2. (generalized Erd3s—Ko-—Rado theorem)
Let pu=2 be an integer. If Fg[j:), O0=k= #;l r, and F sa-
tisfies (2), then

|F| = (;:1 ]

Turning to the complements we obtain a dual version.

Theorem 2°, Let v=2 be an integer. If FC (II:), —E—ékér, and F satisfies (3),
then

|F| = (rzl).

2. Some reductions -

Let pu,v=4, kand F& (I]:) be given such that (1), (2) and (3) hold. If
N X9 or U X=R then |F| g(,’c'j
‘ X¢F XEF . _
follows by Theorem 2 or 2" immediately. Since the described families F,, , have cardi-

nality (;c__%] and satisfy (2) as well as (3), the proof of Theorem 1 will be comple-
ted by proving ‘

Theorem 3. Let u=4 and v=4 be integers. If FC (I;] and F satisfies (2) and
() as well as () X=0 and |J) X=R, then
X€F

XEF
r—2

Observe that here is no restriction on k. Therefore, it is sufficient to prove Theorem 3

only for p=v=4. Furthermore, we may restrict ourselves to k=L in the proof

2
since k> -% follows by duality. We make use of some Tesults from 21
Proposition 1. ([2, Lemma 1]).
AXGNX = 3,

XNXNXe| =2 for all X, Xy, XsEF.
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Proposntlonz We may suppose that for-all XcF it holds: If- NIX j€X and
(. .. 1 i<j,-then. (X-— {_]})U{l}éF

The last proposmon isa consequence of Lemma 4 in [2], by the Erdé’s—Ko-Rado
exchange operation. ..

Flnally we prove. Theorem 3 for small k, similarly to [2], by a short argument.

I.emma 1 Theorem 3 is true for k=7+§

Proof By Theorem 6 in [2], |F|<(k 3] Hence,

\F] (k 3] ‘ rr— 1)k 1 (k—2)
k——l) (k ] k+3)(r—k+2)(f—k+1)(r—
r(r_l)(%;,-?)(—‘i—”?) 16 r r—1t r+2r-2

= = 5% <10
(i,+.§.](i,+_‘_](;"_,_i](3 ,__3_‘) 7T 2 222
4 72T T2 2T 7)o 3773

'3, An upper bound for [F|

“Suppose that Fsatisfies the suppositions of Theorem 3, and — ; + ; <k= 2 ( We

decompose F into Fy, Fz, and F3 accordmg to
{XEF {1,2} & X}
= {XGF 1€X, 24X},

= {X€F: 14X).

i) Let F1 {x: XU{l 2}€F,, {Q, Z)OX-‘-Q} Then Fj is a family of (k—2)-

element subsets of the (r 2)-element set {3, 4, ..., r} satisfying (3) for v=4. Since
3

k— 2>( 4 2] 2_

, we may apply Theorem 2’ and obtain

, r—3
1Rl = 151 = (£ 23)- @
In order to estimate | F,| and lFal we use the description of the families by walks in
- the plane. We associate thh every X¢€ k] a certain walk We start from (0, 0).
If we are after / moves at point (g, b) then we turn to (@, b+1) or (a+1, b) depending

on whether i+ 1€X or 1+1<{X So every set of ﬁ) is associated with a walk
from (0, 0) to (r—k, k) and vice versa.
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. . Let F; and F; denote the set of walks associated with. F; and. F;,: tespectively.
By the definition of F, and F;, every walk: of. F; starts with. (0 0—©0, D—(1,1)
whereas every walk of F’ starts w1th , 0)—(1 O)

i O R N R
i) Every walk of F; meets the lme y=2 +2 since otherwxse, by‘Proposmoh 2;
F, would:contain the'set ' X;=1, 3,4, 6, 7,9, 10, :..}. Forthé sanie‘réison;: Fwould
contain X,={1,2,4,5,7, 8 10, ...} and X,,—{l 2,3,5,6,8, 9 -} But IXl
NXNXsl={{1}|=1, contradxctmg Proposition 1.... - voa
If a walk meets the line y=2x+2 the first time at (1 21+2) l>l then this
walk passes through (7, 2/ —1), too. Hence the number of these walks is not greater

than ) EAIRTH B T
3i—' r—31—
- 1—1 k 21—2

since [ _1 ] is the total number of walks from (1, 1) to (1, 20~ l) whereas [ k— 2, 2)
NG

is the total number of walks from (l, 2i+2)to (r‘ k, k) } Consequently, using [O)

we obtam
T 31—-3 r—31-— L
VFol = Fi| = ; (,_l [k s ) 's)
i) Every walk of Fj meets-the line . y=3x+1: This follows by the same argu-

ments as in the precedmg case recallmg (2) Thus,

S &,;.:,., S o 1T WRPT e T
' lh IJ 4i —4, (l—é}r—l) bR engen

lFsl—lFal— Z; r—l E—3i1
By (4). (5), and (6) we obtain :

a5 2‘311) R ). o

o .
4. Some lemmas :
In order to estimate (7) we need the followmg lemmas.
"Lemma 2 For any natural numbers n and i wzth n>2 e T
T R R n("l'l) T B S I S T SIS DR |
' ' i+1 n" ’

LeatoLToL L T (n‘) = '("—l)"’l P R TR S LT 1S S

i
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Proof
n(i+1)
i+1 ) (G ((n=1i)!  (nG+1) = nitj -
(ni) T EEDH((=-DEFD) M) L i1 (n=1i+j T
i .
. e — na",: 3
- IJ —1 ooy 8
Lemma 3. For integers r, k, i sat’is'fying kéé and i= | 'we have
3l AN AN .
). k—2i—4 - 5;4 s il ’ g
(r=3i=2) © -2 o
k= 21L ; o
K 3:— k-4
b) _"—W:E if l:—s—.
k=3i—1) . ¢ y
Proof. Since, for positive a‘and ﬁ, o ﬁ{[ +B] and ké—z-, we have

r—=3i . .
D) [k—2i_—‘4J,~_ (r=3i=51(k=2i=2)!(r—k—i)! -

[r—3i—2) S T2 k=i~ D32
k—2i-2)

. . . roo.. r—3i—
(k—2i—2)(k —2i—3)(r—k—1i) <—~§_~2§_2-(», ) )

(r—3i-D(—3i-3)(r—3i—8) ~ +—3i—4 (F-3i—3F

<lr —4i—4 i

7—31—'58'

l—l) k=3i—-)(r—k—i—D'(r—4i—1)! ~
k 3i—1

(r 41-—] T - - h
b) \k-3i—4 (r—4i—-S5)1(k=3i— ) (r—k—-i)!

 (k=3i=1)(k=3i—3)(k~3i=2)(r—k—i) _
B (r—4i—3)(r—4i,-.-4)(r-—4i—1)(r.r4i=-2) =

r—4i-2
v 7—31—[ —2——-31—3 (—)

r—4i-3 r—4i—41 (r—4i-2F é T

Llﬁ_—.@#Z r—6g—6 - ! . for N I O
T16r—4i-3r—4i-4T 167" T T

e
e
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Immediate induction consequences of our lemmas are

()= (") [grm] ™ it 12,
=) () == ®

i—1 1 y! r—=5Y . C k-1
(k 3:-1]£(T€) (k—4 if l§’=[ 3 ] (10)

Finally, by (8), with n=3 and 4 we have

-, 0.60.68 (9,

and

l+\l+\

Liseren-

3. 15 84 - 495 3003 1

= g+ 3+ e e 2 = 2481, {an
| 32
-and
L)L G, ('2)
= (4i— - 1
LA 2 12y
2 ;—1)(16) 16 162 (2

(s)
i-5
-220 1820 1
16‘ [2( ) (16) ] l+16 256 4096+65536 16 = 1.482.

-5

5. Proof of Theorem 3

Now we are able to prove the Theorem 3. Starting with (7) and using (9), (10),
(11), and (12) we get

|F|%(;:;)+{, 2. ,'_1)( ) ) 4;'——14](16) }(k 4)=

r-3 r—>5 r—3 r—=5
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Furthermore, recalling k= 2

r—3] (1—5
|F) k-2 4 k-4 __k——l_’_4 (k— l)(k —-2)(k—3)

(;—2} ( }+ (Z—_-Zl T r=2 -2)(r-3)(r—9

(2 )52 (5 ) WL O=90-6

= =

r—2 r-2)(r—-3)(r—4) 8 (r—3)(r—4)
This complete’s the proof. 0O
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