An Erdős—Ko—Rado type theorem II

By K. ENGEL and H.-D. O. F. GRONAU

1. Introduction and results

Let R denote the interval [1, r] of the first r positive integers. Let k be an integer with $0 \le k \le r$. The set of all k-element subsets of R will be denoted by $\binom{R}{k}$. The aim of this paper is to present the

Theorem 1. Let $\mu \ge 4$ and $v \ge 4$ be integers. If $F \subseteq \binom{R}{k}$,

$$\frac{r-1}{\nu} + 1 \le k \le \frac{\mu - 1}{\mu} (r - 1), \tag{1}$$

and F satisfies

$$X_1 \cap X_2 \cap \dots \cap X_u \neq \emptyset \quad \text{for all} \quad X_1, X_2, \dots, X_u \in F, \tag{2}$$

as well as

$$X_1 \cup X_2 \cup \dots \cup X_v \neq R \quad \text{for all} \quad X_1, X_2, \dots, X_v \in F,$$
 (3)

then

$$|F| \le {r-2 \choose k-1}.$$

This is best possible. The families $F_{x,y} = \left\{ X \in \binom{R}{k} : x \in X, y \notin X \right\}$, where x and y are different fixed elements of R, are maximal.

This theorem was proved, for $\mu \ge 6$ and $\nu \ge 6$ and for some partial cases of k if $\mu=4,5$ or $\nu=4,5$, in *Gronau* [2]. Our proof here uses the same method but in a refined version.

Condition (1) is natural. For all other k's one of the conditions (2) or (3) is satisfied automatically, and the problem reduces to the generalized *Erdős—Ko—Rado* theorem by *Frankl* [1]. For another simple proof, see *Gronau* [3].

Theorem 2. (generalized Erdős—Ko—Rado theorem)

Let $\mu \ge 2$ be an integer. If $F \subseteq \binom{R}{k}$, $0 \le k \le \frac{\mu - 1}{\mu} r$, and F satisfies (2), then

$$|F| \le \binom{r-1}{k-1}.$$

Turning to the complements we obtain a dual version.

Theorem 2'. Let $v \ge 2$ be an integer. If $F \subseteq {R \choose k}$, $\frac{r}{v} \le k \le r$, and F satisfies (3), then

$$|F| \leq {r-1 \choose k}$$
.

2. Some reductions

Let $\mu, \nu \ge 4$, k and $F \subseteq {R \choose k}$ be given such that (1), (2) and (3) hold. If

$$\bigcap_{X \in F} X \neq \emptyset \quad \text{or} \quad \bigcup_{X \in F} X \neq R \quad \text{then} \quad |F| \leq \binom{r-2}{k-1}$$

follows by Theorem 2 or 2' immediately. Since the described families $F_{x,y}$ have cardinality $\binom{r-2}{k-1}$ and satisfy (2) as well as (3), the proof of Theorem 1 will be completed by proving

Theorem 3. Let $\mu \ge 4$ and $v \ge 4$ be integers. If $F \subseteq {R \choose k}$ and F satisfies (2) and (3) as well as $\bigcap_{X \in F} X = \emptyset$ and $\bigcup_{X \in F} X = R$, then

$$|F| < \binom{r-2}{k-1}.$$

Observe that here is no restriction on k. Therefore, it is sufficient to prove Theorem 3 only for $\mu=\nu=4$. Furthermore, we may restrict ourselves to $k \le \frac{r}{2}$ in the proof since $k > \frac{r}{2}$ follows by duality. We make use of some results from [2].

Proposition 1. ([2, Lemma 1]).

$$|X_1 \cap X_2| \ge 3$$
,
 $|X_1 \cap X_2 \cap X_3| \ge 2$ for all $X_1, X_2, X_3 \in F$.

Proposition 2. We may suppose that for all $X \in F$ it holds: If $i \notin X$, $j \in X$ and i < j, then $(X - \{j\}) \cup \{i\} \in F$.

The last proposition is a consequence of Lemma 4 in [2], by the Erdős—Ko—Rado exchange operation.

Finally we prove Theorem 3 for small k, similarly to [2], by a short argument.

Lemma 1. Theorem 3 is true for $k \le \frac{r}{4} + \frac{3}{2}$.

Proof. By Theorem 6 in [2], $|F| \le {r \choose k-3}$. Hence,

$$\frac{|F|}{\binom{r-2}{k-1}} \le \frac{\binom{r}{k-3}}{\binom{r-2}{k-1}} = \frac{r(r-1)(k-1)(k-2)}{(r-k+3)(r-k+2)(r-k+1)(r-k)} \le$$

$$\leq \frac{r(r-1)\left(\frac{r}{4} + \frac{1}{2}\right)\left(\frac{r}{4} - \frac{1}{2}\right)}{\left(\frac{3}{4}r + \frac{3}{2}\right)\left(\frac{3}{4}r - \frac{1}{2}\right)\left(\frac{3}{4}r - \frac{3}{2}\right)} = \frac{16}{27} \frac{r}{r + \frac{2}{3}} \frac{r-1}{r-\frac{2}{3}} \frac{r+2}{r+2} \frac{r-2}{r-2} < 1. \ \Box$$

3. An upper bound for |F|

Suppose that F satisfies the suppositions of Theorem 3, and $\frac{r}{4} + \frac{3}{2} < k \le \frac{r}{2}$. We decompose F into F_1 , F_2 , and F_3 according to

$$F_1 = \{X \in F: \{1, 2\} \subseteq X\},\$$

 $F_2 = \{X \in F: 1 \in X, 2 \notin X\},\$
 $F_3 = \{X \in F: 1 \notin X\}.$

i) Let $F_1' = \{X: X \cup \{1, 2\} \in F_1, \{1, 2\} \cap X = \emptyset\}$. Then F_1' is a family of (k-2)-element subsets of the (r-2)-element set $\{3, 4, ..., r\}$ satisfying (3) for v=4. Since $k-2 > \left(\frac{r}{4} + \frac{3}{2}\right) - 2 = \frac{r-2}{4}$, we may apply Theorem 2' and obtain

$$|F_1| = |F_1'| \le {r-3 \choose k-2}.$$
 (4)

In order to estimate $|F_2|$ and $|F_3|$ we use the description of the families by walks in the plane. We associate with every $X \in \binom{R}{k}$ a certain walk. We start from (0,0). If we are after i moves at point (a,b) then we turn to (a,b+1) or (a+1,b) depending on whether $i+1 \in X$ or $i+1 \in X$. So every set of $\binom{R}{k}$ is associated with a walk from (0,0) to (r-k,k) and vice versa.

Let F_2' and F_3' denote the set of walks associated with F_2 and F_3 , respectively. By the definition of F_2 and F_3 , every walk of F_2' starts with (0,0)—(0,1)—(1,1) whereas every walk of F_3' starts with (0,0)—(1,0).

ii) Every walk of F_2' meets the line y=2x+2, since otherwise, by Proposition 2. F_2 would contain the set $X_1 = \{1, 3, 4, 6, 7, 9, 10, \ldots\}$. For the same reason, F would contain $X_2 = \{1, 2, 4, 5, 7, 8, 10, ...\}$ and $X_3 = \{1, 2, 3, 5, 6, 8, 9, ...\}$. But $|X_1 \cap X_2 \cap X_3| = |\{1\}| = 1$, contradicting Proposition 1...

If a walk meets the line y=2x+2 the first time at (i, 2i+2), $i \ge 1$, then this walk passes through (i, 2i-1), too. Hence the number of these walks is not greater than

$$\binom{3i-3}{i-1}\binom{r-3i-2}{k-2i-2}$$

 $\binom{3i-3}{i-1} \binom{r-3i-2}{k-2i-2}$ since $\binom{3i-3}{i-1}$ is the total number of walks from (1, 1) to (i, 2i-1), whereas $\binom{r-3i-2}{k-2i-2}$

is the total number of walks from (i, 2i+2) to (r-k, k). Consequently, using $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$, we obtain

$$|F_2| = |F_2'| \le \sum_{i=1}^{\left\lfloor \frac{k-2}{2} \right\rfloor} {3i-3 \choose i-1} {r-3i-2 \choose k-2i-2}$$
 (5)

iii) Every walk of F_3 meets the line y=3x+1. This follows by the same arguments as in the preceding case recalling (2). Thus,

$$|F_3| = |F_3'| \le \sum_{i=1}^{\lfloor \frac{k-1}{3} \rfloor} \binom{4i-4}{i-1} \binom{r-4i-1}{k-3i-1}.$$
 (6)

By (4), (5), and (6) we obtain

$$|F| \le {r-3 \choose k-2} + \sum_{i=1}^{\left\lfloor \frac{k-2}{2} \right\rfloor} {3i-3 \choose i-1} {r-3i-2 \choose k-2i-2} + \sum_{i=1}^{\left\lfloor \frac{k-1}{3} \right\rfloor} {4i-4 \choose i-1} {r-4i-1 \choose k-3i-1}, \tag{7}$$

take as as the more that $p_{ij} = m$ and $\frac{d}{dp_{ij}} = 2 \cdot \sqrt{p_{ij}} \cdot p_{ij}$. S

4. Some lemmas

In order to estimate (7) we need the following lemmas.

Lemma 2. For any natural numbers
$$n$$
 and i with $n \ge 2$, we calculate the state of $n \ge 2$, where $n \ge 2$ is the state of $n \ge 2$.

$$\frac{\binom{n(i+1)}{i+1}}{\binom{ni}{i}} \le \frac{n^n}{(n-1)^{n+1}}, \quad \text{the state of } n \ge 2$$

25.

Proof

$$\frac{\binom{n(i+1)}{i+1}}{\binom{ni}{i}} = \frac{\binom{n(i+1)!!}{(i+1)!!}\binom{(n-1)i!!}{(n-1)(i+1)!!} = \frac{\binom{n(i+1)}{i+1}}{i+1} \prod_{j=1}^{n+1} \frac{ni+j}{(n-1)i+j} \le n \prod_{j=1}^{n-1} \frac{n}{n-1} = \frac{n^n}{(n-1)^{n-1}}.$$

Lemma 3. For integers r, k, i satisfying $k \le \frac{r}{2}$ and $i \ge 1$ we have

a)
$$\frac{\binom{r-3i-5}{k-2i-4}}{\binom{r-3i-2}{k-2i-2}} \le \frac{1}{8}$$
 if $i \le \frac{k-4}{2}$.

$$b) \frac{\binom{r-3i-2}{k-2i-2}}{\binom{r-4i-5}{k-3i-1}} \le \frac{1}{16} \text{ if } i \le \frac{k-4}{3}.$$

Proof. Since, for positive α and β , $\alpha \cdot \beta = \left(\frac{\alpha + \beta}{2}\right)^2$, and $k \leq \frac{r}{2}$, we have

a)
$$\frac{\binom{r-3i-5}{k-2i-4}}{\binom{r-3i-2}{k-2i-2}} = \frac{(r-3i-5)!(k-2i-2)!(r-k-i)!}{(k-2i-4)!(r-k-i-1)!(r-3i-2)!} = \frac{r-3i-5}{(k-2i-4)!(r-k-i-1)!(r-3i-2)!}$$

$$=\frac{(k-2i-2)(k-2i-3)(r-k-i)}{(r-3i-2)(r-3i-3)(r-3i-4)} \leq \frac{\frac{r}{2}-2i-2}{(r-3i-4)} \frac{\left(\frac{r-3i-3}{2}\right)^2}{(r-3i-3)^2} \leq$$

$$\leq \frac{1}{8} \frac{r - 4i - 4}{r - 3i - 4} \leq \frac{1}{8}.$$

$$\frac{1}{8} \frac{r-4i-4}{r-3i-4} \le \frac{1}{8}.$$

$$\frac{\binom{r-4i-5}{k-3i-4}}{\binom{r-4i-1}{k-3i-1}} = \frac{(r-4i-5)!(k-3i-1)!(r-k-i)!}{(k-3i-4)!(r-k-i-1)!(r-4i-1)!} = \frac{(k-3i-1)(k-3i-3)(k-3i-2)(r-k-i)}{(r-4i-3)(r-4i-4)(r-4i-1)(r-4i-2)} \le r \qquad r \qquad (r-4i-2)^{2}$$

$$\leq \frac{\frac{r}{2} - 3i - 1}{r - 4i - 3} \cdot \frac{\frac{r}{2} - 3i - 3}{r - 4i - 4} \cdot \frac{\left(\frac{r - 4i - 2}{2}\right)^2}{(r - 4i - 2)^2} \leq$$

$$\leq \frac{1}{16} \frac{r-6i-2}{r-4i-3} \frac{r-6i-6}{r-4i-4} \leq \frac{1}{16} \text{ for } i \geq 1.$$

Immediate induction consequences of our lemmas are

$$\binom{ni}{i} \leq \binom{n\gamma}{\gamma} \left[\frac{n^n}{(n-1)^{n-1}} \right]^{i-\gamma} \quad \text{if} \quad i \geq \gamma,$$

$$\binom{r-3i-2}{k-2i-2} \le \left(\frac{1}{8}\right)^{i-1} \binom{r-5}{k-4} \quad \text{if} \quad 1 \le i \le \left\lfloor \frac{k-2}{2} \right\rfloor,$$
 (9)

and

$$\binom{r-4i-1}{k-3i-1} \le \left(\frac{1}{16}\right)^{i-1} \binom{r-5}{k-4} \quad \text{if} \quad 1 \le i \le \left[\frac{k-1}{3}\right].$$
 (10)

Finally, by (8), with n=3 and 4 we have

$$\sum_{i=1}^{\infty} {3i-3 \choose i-1} \left(\frac{1}{8}\right)^{i-1} \le 1 + \frac{{3 \choose 1}}{8} + \frac{{6 \choose 2}}{8^2} + \frac{{9 \choose 3}}{8^3} + \frac{{12 \choose 4}}{8^4} + \frac{{15 \choose 5}}{8^5} \left[\sum_{i=6}^{\infty} \left(\frac{3^3}{2^2}\right)^{i-6} \left(\frac{1}{8}\right)^{i-6} \right] = 1 + \frac{3}{8} + \frac{15}{64} + \frac{84}{512} + \frac{495}{4096} + \frac{3003}{32768} \frac{1}{1 - \frac{27}{27}} < 2.481,$$
 (11)

and

$$\sum_{i=1}^{\infty} {4i-4 \choose i-1} \left(\frac{1}{16}\right)^{i-1} \le 1 + \frac{{4 \choose 1}}{16} + \frac{{8 \choose 2}}{16^2} + \frac{{12 \choose 3}}{16^3} + \tag{12}$$

$$+\frac{\binom{16}{4}}{16^4} \left[\sum_{i=5}^{\infty} \left(\frac{4^4}{3^3} \right)^{i-5} \left(\frac{1}{16} \right)^{i-5} \right] = 1 + \frac{4}{16} + \frac{28}{256} + \frac{220}{4096} + \frac{1820}{65536} \frac{1}{1 - \frac{16}{27}} < 1.482.$$

5. Proof of Theorem 3

Now we are able to prove the Theorem 3. Starting with (7) and using (9), (10), (11), and (12) we get

$$|F| \le {r-3 \choose k-2} + \left\{ \sum_{i=1}^{\infty} {3i-3 \choose i-1} \left(\frac{1}{8} \right)^{i-1} + \sum_{i=1}^{\infty} {4i-4 \choose i-1} \left(\frac{1}{16} \right)^{i-1} \right\} {r-5 \choose k-4} < {r-3 \choose k-2} + \left\{ 2.481 + 1.482 \right\} {r-5 \choose k-4} < {r-3 \choose k-2} + 4 {r-5 \choose k-4}.$$

Furthermore, recalling $k \leq \frac{r}{2}$,

$$\frac{|F|}{\binom{r-2}{k-1}} < \frac{\binom{r-3}{k-2}}{\binom{r-2}{k-1}} + 4\frac{\binom{r-5}{k-4}}{\binom{r-2}{k-1}} = \frac{k-1}{r-2} + 4\frac{(k-1)(k-2)(k-3)}{(r-2)(r-3)(r-4)} \le \frac{(r-3)(r-3)}{r-2} = \frac{(r-3)(r-3)}{r-2} + 4\frac{(r-3)(r-3)(r-4)}{(r-2)(r-3)(r-4)} \le \frac{(r-3)(r-3)}{r-2} + 4\frac{(r-3)(r-3)}{(r-2)(r-3)(r-4)} \le \frac{(r-3)(r-3)}{r-2} + 4\frac{(r-3)(r-3)}{(r-2)(r-3)(r-4)} \le \frac{(r-3)(r-3)}{r-2} + 4\frac{(r-3)(r-3)}{(r-2)(r-3)(r-4)} \le \frac{(r-3)(r-3)}{r-2} + 4\frac{(r-3)(r-3)}{(r-2)(r-3)(r-4)} \le \frac{(r-3)(r-3)}{r-2} + 4\frac{(r-3)(r-3)(r-3)}{(r-3)(r-4)} \le \frac{(r-3)(r-3)(r-3)}{r-2} + 4\frac{(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-4)} \le \frac{(r-3)(r-3)(r-3)}{r-2} + 4\frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-4)} \le \frac{(r-3)(r-3)(r-3)}{r-3} + 4\frac{(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-4)} \le \frac{(r-3)(r-3)(r-3)}{r-3} + 4\frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} + 4\frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} + 4\frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} + 4\frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} + \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} + \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)} \le \frac{(r-3)(r-3)(r-3)(r-3)}{(r-3)(r-3)(r-3)}$$

This completes the proof.

ERNST-MORITZ-ARNDT-UNIVERSITÄT SEKTION MATHEMATIK DDR-2200 GREIFSWALD FRIEDRICH-LUDWIG-JAHN-STR. 15 A

WILHELM-PIECK-UNIVERSITÄT SEKTION MATHEMATIK DDR-2500 ROSTOCK UNIVERSITÄTSPLATZ 1

References

- [1] FRANKL, P., On Sperner families satisfying an additional condition. J. Combin. Theory Ser. A v. 20, 1976, pp. 1—11.
- [2] GRONAU, H.-D. O. F., An Erdős—Ko—Rado type theorem, Finite and Infinite Sets (Proc. 6th Hung. Colloq. on Combinatorics, Eger 1981), pp. 333—342, Colloq. Math. Soc. J. Bolyai, 37, North-Holland, Amsterdam, 1985.
- [3] GRONAU, H.-D. O. F., On Sperner families in which no k sets have an empty intersection III, Combinatorica, v. 2, 1982, 25—36.

(Received March 25, 1985.)