
Giving mathematical semantics of nondeterministic
and parallel programming structures

by means of attribute grammars

By R. ALVAREZ GIL
• . . tt . u ' •

1. Introduction •

A formal definition of the semantics of the programming languages is a prere-
quisite for the verification of specific implementations. The definition pf the; semap-*
tics of a programming language can be formulated in different ways. Knuth [8] has
introduced attribute grammars for this purpose; Scott and Strachey{l€] has develo-
ped a mathematical method.^ , . . ••: , v

Many papers has been published about the relation between attribute grammars
and mathematical semantics. Mayoh [9 J h a s shown that for any attribute grammar it
is possible to find an equivalent mathematical semantics. The reverse affirmation is
true only with several restrictions [3].

In this paper after the introduction of the used notations and the concept of
attribute grammar we give an example to show how it is possible to describe the
mathematical semantics of programming languages with the help of attribute gram-
mars in section 3. . • ; |

In section 4 we describe the nondeterministic structures introduced by Dijkstra
[2] and give-their mathematical semantics by means of attribute grammars. For this
purpose it is sufficient to employ the notion of the possible states used in the descrip+
tion of the semantics of sequential programs, but many-valued functions are necessary
to give the semantics of statements and programs. In section 5 we have to extend the
notion of the possible states, too, to give the mathematical semantics of a parallel
programming language allowing communication of sequential processes through
Hoare's monitors. ' ;

414 R. A. Gil

2. Attribute grammars

In this section we will follow in general the notations used in [7].
An attribute grammar is defined by a 4-tupel

AG = (CFG, A, SR, SC)

where CFG=(N, T, P, S) is a reduced context-free grammar (N is the set of non-
terminal symbols, T is the set of terminal symbols, P is the set of productions or
syntactical rules and S is the start symbol), A is a finite set of attributes, SR is the set
of semantic rules and SC is the set of semantic conditions.

A production p€P is denoted by p:X0::—X1X2...Xn , where np^0, X0£N
and X£NUT for all / (1 =§/==«„).

For each X£N there is a subset A(X) of A. The set of attributes A is partitioned
into two disjoint subsets As and AT, the set of synthesized attributes and the set of
inherited attributes: A=AsUAr and AsClA,=0. Thus A(X) is partitioned into
two disjoint subsets AS(X) and At(X), so that AS(X)Q As, Al(X)^Al and
A(X)=AS(X)UA,(X).

If p:X0::=X1Xi...X„p€P is a production, X£N occurs in p and a£A(X),
then X-a denotes the attribute occurrence of a in p associated to X. The set Ap

"p
of attribute occurrences of a production p is defined by Ap= Q Ap(XI), where

Ap(Xd={Xra:a£A(Xd} if Xt£N, and A,(X^=9 if X£T. Theset OAp of out*
put attribute occurrences of a production p is defined by

OAp = {Xra£Ap: (f = 0 and a£As(Xd) or

(i > 0 and X£N and a£A,(Xi))},

and the set IAP of input attribute occurrences of a production p is defined by

IAP = {Xra£Ap: (i = 0 and a^A,^)) or

(i > 0 and X£N and a £/l s (*,))} = Ap\OAp.

For each p€P there is a subset SRP of SR and a subset SCP of SC, the set of
the production semantic rules and the set of the production semantic conditions, so
that

SR= (J SRP and SC = U SCP.
P I P P € P

For each production p£P, for each attribute occurrence X-, • ag OAp there is
one and only one semantic rule /£ SRp which determines the value of X-, - a, and each
semantic rule fcSRp determines the value of some output attribute occurrence
Xra£OAp.

Let s be a sentence of L(CFG) derived by

S xYy -¡j* xuXvy-j* xuwuy s

A node Kx represents the symbol X in the derivation tree ts corresponding to that deri-
vation and it is called an instance of X. For each attribute occurrence X-a an attri-

Giving mathematical semantics of nondeterministic and parallel programming 415'
structures by means of attribute grammars

bute instance Kx • a is associated to Kx. The values of the inherited attribute instan-
ces associated to Kx are defined by rules in SFg, and the values of the synthesized
attribute instances associated to Kx are defined by rules in SFr.

(K Y

i (/ l \
u Kx v 1 ' I w

A derivation tree augmented with the attribute instances is called an attributed
derivation tree. An attribute evaluations strategy is an algorithm to calculate the
value of each attribute instance. The single natural condition for the application of a
semantic rule / £ SR is that the value of the attribute instances which appear as ar-
guments of / were calculated previously. This condition generates a dependence
relation on the attribute instances of the attributed derivation tree.

An attribute grammar is well defined if and only if for each attributed deriva-
tion tree the graph belonging to the generated dependence relation is noncircular.
A well defined attribute grammar is also called noncircular. The problem of the deci-
sion of attribute grammars noncircularity is NP-complete [5], but subclasses of the
class of noncircular attribute grammars have been introduced in which we can decide
in polynomial time whether an attribute grammar belongs to the subclass. Such
subclasses are for example the LR [1], the ASE [6] and the OAG [7] attribute gram-
mars.

3. Giving mathematical semantics by means of attribute grammars

As usual in the mathematical semantics we consider a program as a function on
the set of the possible states

sP = {{Oi, k),..., (v„, t„)}-. i^r;,..., iner;„}

where vx, ...,v„ are all the variables which appear in the program, T'0i=TV(U {unva-
lued, undefined}. Te. is the set from which the variable vt takes its values. The variable
Vi in a state is unvalued if it has no value and is undefined, if its name is not valid in
that state. Later in section 5 we have to extend and consequently redefine the notion
of the possible states.

The semantics of the statements and a program p too are functions fp: SP-*S„.
In this section we define such functions for the programs of a very simple sequential
language. For this purpose we need the following attributes:
Synthesized attributes:

name — to give a unique identifier for each variable of the program
T— to give the type of each variable and arithmetical expression
V — to give the set of declared variables and their types
S — to give the set of the possible states
g — a function g: S—T' to give the value of an arithmetical expression in a

given state, where T' is the type of the arithmetical expression

4i6 R. A. Gil

h — a function h: S—ftrue, false} to give the value of a logical expression in
a given state

/ — a function / : S— S to give the semantics of the statements and the pro-
grams of the language.

Inherited attributes:
V — to give the variables valid in the environment and their types
S' — to transmit towards the levels of the tree the set of the possible states

Nonterminal symbols and their attributes:
program.has V, S,f
declarations-statement has F , / .
declaration list has F
declaration has F
variable_iist has F .
variable has name
type has T
statement list has F, / , V', S'
statement has F,/ , V, S'
expression has g, T, V, S'
bool expression has h, V, S'

Syntactical rules and their semantic rules and semantic conditions:
(In a production X0::=X1X2...X„p (npsO) we will omit the semantic rules of the
form X0- a=Xr a if there is no Xs (1 and /Vy) which has the
synthesized attribute a, and we will omit the semantic rules of the form Xt • a=
=X0-a (1

i) program::=begin declaration statement; statement list end
program. V— declaration statement . F U statement list. F
program. S ={{(v, Q\(v, T)6program. V}: tv£TU{unvalued,

undefined}}
program ./(¿)=statement list ./(declaration statement f(s))
statement list. F ' =declaration statement. F
statement list. S'—program. S

ii) declaration statement ::=var declaration list
declaration statement . / (j)={(«, j(u)): there is not (w1? 7\)6

decIaration_list. F for which
«!=i;}U{(«, unvalued): there is («l5 7\)6
declaration list. F for which vx=v)

iii) declaration—list!::= declaration; declaration list2
declaration listj. • F = declaration. FUdeclaration list2. V
condition: if (vlt 7\)6declaration.Fand

(v2, declaration list2. F then
iv) declaration list ::= declaration
v) declaration: := variable_Jist of type

declaration. V={(v, type. T): (v, 0)6variable list. V}
vi) variable Iistx ::= variable, variable_list2

variable list!. V— variable_list2. FU {(variable. name, 0)}
condition: if («?, 0)6variable list2. F then:variable.

n a m e ^ «

Giving mathematical semantics of nondeterministic and parallel programming
structures by means of attribute grammars

417'

vii) variable list: := Variable
variable list. V= {(variable. name, 0)}

;viii) statement—listi::=statement; statemenfc_list2
statement listx. V— statement. VUstatement_list2. V
statement listx .f(s)=statement list2 ./(statement./(¿))
condition: if (vt, Ii)€statement. V and (v2, T2)£

statement list2. V then v^v'i
ix) statement—list ::= statement
x) statement : := variable :=expression

statement. F = 0
statement .f(s)={(v, v ^ variable. name} U

{ (variable. name, expression. g(s))}
condition: there is (v, 7V) € statement. V for which

v=variable.name and Tx=expression.T
xi) statement ::=if bool expression then statement2 else

statement3 fi
statementx. V= statements. FUstatement3. V

statement2./(j), if bool expression.
A(j)=true

statement3./(j), if bool—expression.
h(s)=false

xii) statement: :=while bool-expression do statement^ od

statement! ./(statement2./(s)),

statementj ./(i') =

statement!./(s) ==•
if bool expression. h(s)=
true

s, if bool expression -h(s)=false

xiii) statement ::=begin statement—list end
. xiv).statement::=begin declaration statement; statement list end

statement. V= declaration statement. FUstatement list. V
statement./(s)={ (v, statement—list ./(declaration statement.

As))(v)):
there is not (c ls 7i)6declaration statement. V
for which ^i=«}U{(v, undefined): there is
(vlt Ti)£ declaration statement. V for which
Vi=v}

statement—list. V=statement. V U declaration—statement. V
condition: if (vly 7\) £ declaration statement. V and (v2, T2)d

statement—list. V then v^v^'
It is easy to show that the attribute grammar given above is well defined (non-

circular), but we do not deal with this in our paper.

418 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations

4 Semantics of nondeterministic structures

The syntax of the nondeterministic programming structures introduced by Dijk-
stra can be given by a context-free grammar as follows:

i) statement ::=alternative—construct
ii) statement::=repetitive construct

iii) altemative_construct::=if guarded_command set fi
iv) repetitive_construct::=do guarded command set od
v) guarded command set: :=guarded command • guarded_commancL_jset
vi) guarded command set: :=guarded command

vii) guarded command: :=guard ^guarded list
viii) guard ::=bool_expression

ix) guarded list::=statement list

From the context-free grammar given above it is clear that Dijkstra introduced
two new statements: the alternative construct and the repetitive construct, based on
the concept of guarded commands. The semantics of these statements was given by
Dijkstra in [2] with the following words: "The alternative construct is written by
enclosing a guarded command set by the special bracket pair if ...fi. If in the initial
state none of the guards is true, the program will abort; otherwise an arbitrary
guarded list with a true guard will be selected for execution. The repetitive construct
is written down by enclosing a guarded command set by the special bracket pair
do...od. Here a state in which none of the guards is true will not lead to abortion but
to proper termination; the complementary rule, however, it will only terminate in
a state in which none of the guards is true: when initially or upon completed exe-
cution of a selected guarded list one or more guards are true, a new selection of a
guarded list with a true guard will take place, and so on. When the repetitive construct
has terminated properly, we know that all its guards are false".

In the case of nondeterministic structures to give the semantics of the alternative
construct and the semantics of the repetitive construct it is necessary to use functions
f: Sp -»2sp which can be obtained as synthesized attributes. It is clear that for non-
deterministic statements it is not sufficient to use functions of the type f: SP-*SP
because the state valid at the beginning of the execution of a nondeterministic state-
ment do not determine a unique state valid at the termination of the statement, that
is more than one state can be the real state when the program finished the execution of
the nondeterministic statement.

Now we give an attribute grammar to obtain as synthesized attribute the func-
tions which give the semantics of the nondeterministic statements:

Synthesized attributes:
f — to give the function / : Sp-*2sP which describes the semantics
h — a function h: Sp—{true, false} to give the value of a logical expression in

a given state

Inherited attributes:

Nonterminals and their attributes:
statement has /

Giving mathematical semantics of nondeterministic and parallel programming 419'
structures by means of attribute grammars

alternative^_construct has /
repetitive_construct has /
guarded_command set has /
guarded command has /
guarded list has / v,
statement list has /
guard has h
bool_expression has h

Syntactical rules and their semantic rules:
i) statement ::=alternative construct

statement./= alternative construct./
ii) statement ::=repetitive construct

statement . / = repetitive construct./
iii) alternative_construct::=if guarded command_set fi

alternative_construct . /=guarded_command_set . /
iv) repetitive construct ::=do guarded command set od

U repetitive_construct./(jO

repetitive
construct .f(s)~

guarded command
__set./(j)
if guarded command
_set./(.v)?i0
s, if guarded_command se t . / (j)=0

v) guarded command seti: :=guarded command • guarded command
_set2
guarded command setx -f(s)=guarded command ,f(s) U

guarded—command set2./(s)
vi) guarded command set: :=guarded command

guarded command se t . /= guarded command./
vii) guarded_command: :=guard —guarded list

guarded list./O), if
guarded_command./(i)= guard, ft (j)= t rue

[0, if guard.h(s)=false
viii) guard::=bool expression

guard. h=booh^expression. h
ix) guarded list ::= statement list ,

guarded list . /= statement list./

Note: it is easy to see that the program aborts in an alternative construct if and
only if the alternative construct is executed in such a state s for which the funct ion/
associated with the synthesized attribute to the alternative construct takes the empty
set 0 as its value. Furthermore this occurs if and only if all the guards in the guarded
command set of the alternative construct are false.

5 Acta Cybemetica Vn/4

420 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations

_ 5. Mathematical semantics of.parallel programs and monitors

We will deal with parallel programs which have the following structure:
begin

(definition of the monitors);
process!: process var i^,

. (statements of the process,)

end of processx
and

. (description of the process2, ..., processm_1)
and
process,»: process var •vg,....,vm ;

. (statements of the process J

end of process^
end

The processes communicate with each other through Hoare's monitors [4]. A
monitor is a collection of local data and procedures and has the following structure:
monitor_lname: monitor

begin
(declaration of data local to the monitor)

procedure proc_name (...formal parameters ...);
begin

. (procedure body)

end;
(declaration of other procedures local to the monitor);

(initialization of local data of the monitor)
end
To call a procedure of the monitor, it is necessary to give the name of the moni-

tor and the name of the desired procedure:
monitor_name.proc_name (... actual parameters ...)

The procedures of a monitor are common to all existing processes, any process
can at any time attempt to call such a procedure. However, it is essential that only
one process at a time can be executing a procedure body, and any subsequent call
must be iield up until the previous call has been completed or has been held up. A pro-
cess in executipn.cah be.held up by a wait statement and can. be resumed by a signal
statement. The structures of these statements are:

cond variable.wait; cond_variable.signal
The cond variable is a new type of variable, a condition variable, which is sui-

table to differentiate the reason for waiting. In practice, a condition variable is an
initially empty queue of processes which are waiting on the condition.

Giving mathematical semantics of nondeterministic and parallel programming 421'
structures by means of attribute grammars

A signal operation is followed immediately by resumption of a waiting process,
without the possibility of an intervening procedure call from a third process. Wait
operation is followed immediately by resumption of a process delayed by a signal
instruction. New procedure can be executed only if there are not processes delayed
by signal. •"•'•;

: Now, after this short and necessary introduction, we will define the set of the
possible program states by

SP = {{(fl, t\), ..., O, .. .,(v?, C), -, (Cm> (1, qi), (m, qm)} :

A,..., t f r t»£T and qi, ...,qm{ (J (Z ' X M C f)

where T — is the type of the variables (for simplicity all the variables have the same
type),

M is the set of declared monitors,
Z] is the set of the possible states of the monitor j,

MCJ is the set of the possible monitor calls relative to the monitor j.
For each monitor j we define a function gji MCJ->~2ZJ which is obtained as a

synthesized attribute and is the function which gives the semantics of the monitory.
The gj is a many-valued function because in the general case, for the termination of
a monitor call the execution of other monitor calls are necessary which can not be
predetermined, and furthermore the calculation of gj have to be started from all pos-
sible states of thé monitor j in which the call might occur. To each process / we asso-
ciate a function / j : Sp-+ 2sp which is also obtained as a synthesized attribute.

Let e : j 'jk(v')£MCs be a monitor call in the process /", where j is the called
monitor,^ is the called procedure and v the actual parameter. We associate to this
monitor call statement a function fe: Sp-*2S

P which is defined by
fe(s)=S'QSp and. s'tS' .if and only if:

a) s'(v)=s(v) f o r v (v9ivr)
b) s'(p)=s(p) for all p (l^p^m, p^i)
c) s'(v')=z'j (p a r a m e t e r of jk)
d) s'(i)=s{i)oz'j (call)
e) z'jdgjie) -

where Zj- (parameter of jk) gives the value of the parameter of the procedure jk at the
state z'j of the monitor j, and z] (call) gives the execution sequence of monitor calls
which leads to z'} and the monitor states in which the monitor calls were executed.
Because of this it is clear that in the elements of Z> there is a pair of the form (call, x),
where x£(ZJxMCJ)*.

It is necessary to introduce the pairs (/', q,) for 1 ^i^m in the set of possible
program states because it is possible to decide whether a program state is really a
possible program state only by the comparision of the sequences qt (l ë / ' â /n) .
Only when the sequences qt are in correspondence with each other the program state
is really a possible program state. The condition for this correspondence is that it is
possible to find a sequence a1a2...a„Ç.{ [J (ZjXMC1))* for which the following

iiM

sentences are true:

s*

422 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations

i) if a,tZJxMCJ (1 Si'Sn), then a£qj . : .
ii) if b appears in qt (l^/ '^/w), then b appears in a1a2...an

iii) if b precedes c in qt, then b. precedes c in a^...an
iv) if b precedes c immediately in q„ and b and c belong to the same monitor call

of the process /; then b precedes c in a^z.••(!„, and if b precedes d and d
precedes c in a^... an then the monitor called in d is different from the moni-
tor called in b or c.

v) if b is the first i n a ^ - - - a „ which belongs to (ZJ X MCJ), then the first compo-
nent of b is the initial state of the monitory.

We do not give the attribute grammar for monitors and parallel processes be-
cause it is very long and can be constructed from the principles given in this section
and the method described in the preceding sections.

6, Conclusions

In our opinion the attribute grammars are a powerful tool to give the mathe-
matical semantics of programming languages in the case of nondeterministic program-
ming structures or in the case of parallel processes communicating through Hoare's
monitors too.

Attribute grammars give a mechanizable method to obtain for any program of
the language the function described by the program; and consequently an attribute
evaluation strategy can be viewed as a "compiler" which translates the program
into a mathematical function.

Acknowledgement

The author wants to thank Dr. Árpád Makay for valuable discussions and sug-
gestions.

Abstract

This papsr describes attribute grammars for the description of the mathematical semantics of
programming languages. It concentrates on the nondeterministic programming structures introduced
by Dijkstra and parallel programming structures in which sequential processes communicate through
Hoare's monitors.

DEPT. OF COMPUTER SCIENCES
A. JÓZSEF UNIVERSITY
ARADI VÉRTANÜK TERE 1
SZEGED, HUNGARY
№-6720

Giving mathematical semantics of nondeterministic and parallel programming 423'
structures by means of attribute grammars

References

[1] BOCHMAN, G. V . , Semantic evaluation form Left to Right. CACM 19, 2, (February, 1976),
55—62.

[2] DUKSTRA, E. W., Guarded Commands, Nondeterminancy and Formal Derivation of Programs.
CACM 18, 8, (August, 1975), 453—457.

[3] GANZINGER, H . , Transforming denotational semantics into practical attribute grammars. In
Lecture Notes in Computer Sciences 94, 1980, 1—69.

[4] HOARE, C. A. R., Monitors: An Operating Systems Structuring Concept. CACM 17,10, (Octo-
ber, 1974), 549—557.

[5] JAZAYERI, M . , OGDEN, W . F . and ROUNDS, W . C . , The intrinsically exponential complexity of
the circularity problem for attribute grammars. C A C M 18, 12, (December, 1975) , 6 9 7 — 7 2 1 .

[6] JAZAYERI, M. and WALTER, K . G., Alternating Semantic Evaluator. InProc. of ACM 1975 Ann.
Conf., 230—234.

[7] KASTENS, U . , Ordered Attributed Grammars. Acta Informática 15, 1980 , 2 2 9 — 2 5 6 .
[8] KNUTH, D . E., Semantics of context-free languages. Math. Systems Theory 2 , 1968 , 1 2 7 — 1 4 5 .
[9] MAYOH, B . H . , Attribute grammars and mathematical semantics. SIAM J C O M P U T . 10 , 3 ,

(August, 1981) , 5 0 3 — 5 1 8 .
[10] SCOTT, D. and STRACHEY, C., Towards a mathematical semantics for computer languages. Tech.

Mon. PRG-6, Oxford U. Comp. Lab., 1971.

(Received Sept. 13, 1985.)

