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Abstract 

Attribute grammars have been constructed for describing the static semantics of programming 
languages and have been shown useful in a wide variety of automatic compiler generations. This 
paper presents a new application of attribute grammars to specify hierarchical and functional pro-
grams. An algorithm to evaluate attribute grammars is demonstrated. Several attributes can be evalu-
ated in parallel too. A simple model for generating PASCAL like programs is given. A new meta-
language PLASTIC is introduced as an adequate tool for specifying hierarchical and functional 
programs. A simple PLASTIC program is presented to help attain the new programming metho-
dology. 

1. Introduction 

Over the last decade there has developed an acute awareness of the need to 
introduce abstraction and mathematical rigour into the programming process. This 
increased formality allows for the automatic manipulation of software, increasing 
productivity, and, even more importantly, the managebility of complex systems. 
Along those lines, attribute grammars (AG) of Knuth [6] constitute a formal mecha-
nism for specifying translations between languages [2, 8, 11]. By automatically gene-
rating the inverse translators we would be able to translate any program written for 
one processor into the command language of any other processor [13]. There are some 
methods for incremental evaluation of AG to produce so called incremental compi-
lers [3]. An essential question is how to verify the correctness of the AG specification. 
In contrast with the attribute evaluation problem, this has not been studied well 
and only a few results have beep reported up to now [1, 5]. 

Although several efforts have been made to obtain efficient evaluators, the 
first good algorithm for attribute evaluation has been proposed by T. Katayama [4]. 
Principally this algorithm accepts absolutely noncircular AG although extension to 
general noncircular AG is straightforward. In the model nonterminal symbols are 
considered to be functions which map their inherited attributes to their synthesized 
attributes and associate procedures to realize these .functions with the nonterminal 
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symbols. The entire AG is then transformed into a set of mutually recursive proce-
dures. When applied to an AG whose attribute evaluation process can be performed 
in a single pass from left-to-right, the algorithm can generate an evaluator which can 
be combined with the top-down parsers to result in the so-called recursive-descendent 
compilers if the underlying CF grammars are LL(fc). However data dependency 
sometimes allows several attributes be evaluated parallel supposing that we have 
associated one procedure for each synthesized attribute. 

As it is widely recognized, hierarchical specification techniques are the most 
promising methods in constructing complex and large softwares in well structured 
way, and in fact they are the most successfully used ones in practice as it is represented 
for example by SYCOMAP [10]. In these methodologies softwares are hierarchically 
decomposed into modules and they are successively refined until concrete and machine 
executable programs are obtained from their abstract specifications cf. CDL2. 
Although they are extremely natural and useful the current states seems to be that 
automatic program generation from the specifications and their verification are pre-
vented due to the lack of strict formalization. 

The hierarchical and functional programming methodology presented in this 
paper is based on attribute grammars. Applying the results of [4], we obtain a new 
program specification technique which stands mechanical program generation. 
In our approach we consider a program specification as an AG where program modu-
les are represented by nonterminal symbols of the grammar, module decompositions 
correspond to production rules, input and output data of the modules correspond to 
attributes of the nonterminal symbols and computations done in the modules are 
specified by the semantic rules. Our methodology has the following three desirable 
properties. It allows hierarchical descriptions of complex functional programs in a 
very natural way. We have means to mechanically generate efficient procedural type 
programs from the descriptions and verification of their correctness can also be per-
formed hierarchically. 

In this paper we give our formalism and then the metalanguage PLASTIC is 
stated. Before presenting the program generation algorithm a simple example is 
shown. The PLASTIC system, implemented in PASCAL is now under development. 
The PLASTIC compiler is specified in HLP/PASCAL metalanguage [12]. 

2. Formal description 

Essence of our approach is to use a mechanism based on the Khuth's attribute 
grammar [6] to describe programs. Therefore a hierarchical and functional program 
(or simply HFP) is a 6-tuple 

(.M,m0,A,D,V,F) 
where 

(1) M is a set of modules. We assume that M contains the special modul called a 
null module which is used to terminate decomposition. The null modul is denoted 
by null symbol. 

(2) m0£M .is an initial module. 
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(3) A is a set of input and output attributes of modules. With any modul except the 
null module, there is associated a set of input and output data called attributes 
and the set of attributes of X£M is denoted by A[X]. A[X] is a disjoint union of 
the set IN[Z] of input attributes and the set OUT [A"] of output attributes. They 
are called inherited and synthesized attributes, respectively, in the AG termi-
nology. 

(4) DcMxM* is a finite set of module decompositions. An element d£D is called 
a decomposition and is denoted by 

d: X0 - X1X2...X„ cond Cd 

for X0, ...,X„£M. We say that the module X0 can be decomposed into modules 
Xly X2, ..., Xn if a decomposition condition Cd is satisfied. Cd specifies the condi-
tion in terms of input attributes of X0. When a is an attribute of Xk, that is, 
a£A[Xk], Xk • a is called an attribute occurrence of the decomposition d. It is 
called an input occurrence (by an alternative denotation Xk\a) if £z6lN[Xt] 
and an output occurrence (Xk\a) if a£OUT[ArJ. 

(5) V is a set of value domains of attributes. 
(6) Fis a set of attribute mappings for describing functional equalities among attribu-

tes. Let d be a decomposition X^X^X^^.X^D. For each output occurrence 
v=Xf>\a with ad OUT [X0] and input occurrence v—Xk\a with a£ IN [Xk], l^k^n, 
there exists a function/^ „ to compute the value of v from the values of other attri-
bute occurrences vt, ..., vm in d. The set Ddv—{vl5 ..., vm} is called dependency 
set o f f d v . If we denote the value domain of v by domain (v),fdv is a mapping 
domain (v^X...Xdomain (vm)— domain (v). 

That is, in every decomposition functions are specified to compute the values of out-
puts for main module and inputs to submodules. 

Let us define a decomposition tree which shows the result of all decompositions 
applied to the initial module m0. It corresponds the derivation tree of CF grammars 
and is defined recursively by the following 
(1) the null module is a decomposition tree, and 
(2) if 7\, ..., T„ are decomposition trees with the root module X±, ..., X„, respecti-

vely, and X0->-X1...Xa cond C is a decomposition, then the tree 

r„] 

which consists of the root X0 and the subtrees Tls ..., T„ is a decomposition tree. 
A computation tree T is a decomposition tree whose nodes are labelled by attri-

bute values in such a way that for any module X0 in T and the decomposition 
d\ X0—X1...X„ cond Cd applied at the module the following conditions are satisfied 

(i) the decomposition condition Cd is true, 

(ii) for any output occurrence v of X0 or input occurrence v of Xk l^k^n, 
the following functional equality holds 

v =fdlV(v1,..., v j where DdtL, = K , ..., vm}. 

It should be noted that a computation tree represents a particular execution of 
an HFP corresponding to the particular values of input data fed to the initial module. 
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3. The PLASTIC metalanguage 

PLASTIC is a new metalanguage designed to support the use of abstractions in 
program construction. Work in programming methodology has led to the realization 
that three kinds of abstractions — procedural, control, and especially data abstrac-
tions — are useful in the programming process. Among these, only the procedural 
abstraction is supported well by conventional languages, through the procedure or 
subroutine. ALPHARD [9] and CLU [7] provide, in addition to procedures, novel 
linguistic mechanisms that support the use of data and control abstractions. In con-
tradiction to these languages the PLASTIC system is altogether based on a few 
results of AG. In the module specifications, control abstraction is realized by the 
semantic functions and decomposition conditions. Data types can be refined successi-
vely as the decomposition proceeds. 

A PLASTIC program consists of five parts. We first define some global data 
types for the procedures and functions. The auxiliary functions and procedures that 
are used in decomposition rules are declared in procedure declarations. The allowed 
primitive functions and procedures form a subset of those of PASCAL, since both the 
procedure type and the parameter types are restricted to allowed input-output attri-
bute types. The interpretation of procedures and functions is the same as in PASCAL. 
Comments are indicated by the character %, whose appearance outside a proper 
string means that the rest of the line is interpreted as a comment and is skipped by 
the system. The strings belonging to the token class IDENTIFIER begin with a letter 
which is followed by letters or digits or underscores. 

Before the module specifications the name of the initial module is given. The 
values of the input attributes of the initial module are assigned by read operations. 
The main part of a PLASTIC program is the module specification. We associate a set 
of input and output data with each module X. Computations done in the module X0 is 
specified decompositionwise by giving a set of functional equalities which hold among 
attributes of X0 and its submodules Xx, ..., X„, and thus they are reduced to the com-
putations done in submodules. Repeating the module decomposition process until 
terminal modules are reached completes the program design. If there are recursive 
modules or if there are modules whose decompositions are not unique there may 
occur numbers of trees each of which corresponds to a specific computation. We have 
attached declarations for data types of attributes to decompositions. They are refined 
successively as the decomposition proceeds. Different decompositions for a module 
are separated to versions. The input attribute occurrence can be denoted by J while the 
output occurrence by t. In the attribute occurrences the name of the module to be 
decomposed must not be specified. 

Simple copy rules of the form " X - a : = Y - b " can often be left unwritten by apply-
ing the so-called elimination principle, if so desired. It is applicable in two situations. 
First, if a is an output attribute, then A'must be the left-hand side of the decomposition 
and Y must be the only module on the right-hand side of the decomposition having 
an occurrence of attribute a. Alternatively, if a is an input attribute, then Y must be 
the left-hand side of the decomposition and X can be any of the modules on the 
right-hand side of the decomposition. In both cases the nonexistence of a rule for 
X- a is an indication to the PLASTIC system to include the copy rule in the decom-
position. In the module and submodule specification the input and output attributes 
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are separated by semicolon. The keywords "description", "specification", "mo-
dule", "submodule", "version", "condition", etc. can be abbreviated to "descr", 
"spec", "mod", "submod", "vers", "cond" etc. We assumed that a PLASTIC prog-
ram is deterministic, that is, decomposition conditions of distinct decompositions 
with the same left-hand side module do not become true simultaneously for any value 
of its input attributes. 

In the last part of a PLASTIC description the user can prescribe the implemen-
tation commands. As we shall see data dependency sometimes allows several attribu-
tes to be evaluated simultaneously. In our system these attributes are evaluated in a 
single procedure call, because this reduces overheads due to procedure activations 
and increases chances of parallel execution. The keyword "parallel" stands for these 
output attributes which have to be evaluated simultaneously if it is possible. The 
default option for attribute evaluation is sequential. One of the major goals of PLAS-
TIC is to provide a mechanism to support the use of good programming methodology. 
To meet this goal, we must provide more than just the language mechanism for the 
generator: we must also provide a way to specify their effects. A natural means of 
doing this for implementation is to specify how to realize the evaluation of an attri-
bute. There are three different kinds of realization. The default option is procedural. 
In this case for each module Zand output attributes a single procedure will be genera-
ted. The keyword "macro" stands for those output attributes which are evaluated by 
executing a macro call. If there are same precompiled procedures for so caljed null 
modules, they can be activated by a call "statement". 

The problem of data abstraction and its detailed discussion is beyond the scope 
of this paper except giving a comment that every hierarchical specification metho-
dology should be equipped with a hierarchical data abstraction mechanism and in 
the case of PLASTIC the algebraic abstraction would be most appropriate. 

Figure 1 shows a PLASTIC solution of binary conversion. Suppose we have a 
file containing record of binary characters. In order to verify the conversional algo-
rithm we have to compute the value of binary number b=b1b2...b„ in two ways. 
Design a program that reads the character file and compute the binary numbers vail 
and val2. The initial modul is START. We have attached declarations for data types 
of attributes to decompositions. We have assumed the existence of several functions 
on primitive data types, which are denoted by bold-face type letters. Their meaning will 
be selfexplanatory from their names. The common declarations for types, symbols 
and rule are written in the head of module descriptions. Copy-rules should not be 
specified, because they are generated automatically by the system. 
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4. Translation of PLASTIC program 

Besides its static description, one of the outstanding features of PLASTIC speci-
fication technique is that we have means to translate mechanically the specification 
into machine executable forms. This is called attribute evaluation in the attribute 
grammar theory. 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

%%%% PLASTIC description for computing the value of binary %%%% 

%%%% number 6 = b\b2...bn in two ways given by %%%% 

%%%% vail (6162.,.6n).= M * 2 f ( » - 1) + vail (bl...bn) %%%% 

%%%% val2 (6162... Zw) = 2 # val2 (bl...bn—l) + bn %%%% 

% % % % val 1 0 = val2 Q = 0 % % % % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

begin description bin conv 
common data types 
vail, val2, pos: integer; neg: boolean; 
procedures 
procedure read (var input: file of elem); ...; 
function last (input: file of elem); elem; ...; 
function remain (input: file of elem): boolean; ...; 

initial module is start 
specifications 
%%1%% 
module start (|input; tvall, tval2); 
types input: file of elem; 
submodule sign ((elem; tneg); 

list ((input, (pos; tvall, |val2); 
version: 1 
rule start=sign list; 
do input< =read (input); 

list |pos:=0; 
vail :=if signtneg then -listtvall else listfvall; 
val2:=if signtneg then -listtval2 else listtval2; 
sign|elem:=head (input); 
list|input:=tail (input); 

cond not empty (input); 
version: 2 
rule start = ; do vail :=0; val2:=0; 
cond always; 
end start; 
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%%2%% 
module signQelem; tneg); 
types elem: character; 
rule sign = ; ;,. 
version: 1 
doneg:=true; 
cond elem = "—"; 
version: 2 
do neg:=false; cond e l e m = " + " ; end sign; 
%%3%% 
module list (jinput, jpos; tvall, tval2); 
submodule list, digit (jinput, Jpos; vail, tval2); 
version: 1 
rule list=digit; 
do % digit jpos:=pos; copy-rule 
% digit|input:=input; copy-rule 
% vail :=digittvall; copy-rule 
% val2:=digittval2; copy-rule 
% copy-rule will be generated without specification 
cond empty (remain (input)); 
version: 2 
rule list=list digit; 
do digit}input:=last(input); 

list|input :=remain(input); 
list|pos : = p o s + l ; 
vail " :=listtvall+digittvall; 
val2 :=2*listtval2+digittval2; 

cond always; 
end list; 
%%4%%' 
module digit (Jelem, pos; tvall, val2); 
types elem: character; 
rule digit = ; 
version: 1 
do vail :=0; val2:=0; 
cond elem="0"; 
version: 2 
do vail :=2**pos; val2:-1 ; 
cond elem="1"; 
end digit; 
implementation 
vail, val2: parallel; 
% : statement; 
sign, digit: macro; 
start, list : procedure; 
end description bin_conv. 

Figure 1 
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4.1. Notations 

Let d: X0-~XíXi...X„ be a decomposition. A dependency graph DG d /or the de-
composition d, which gives dependency relationship among attribute occurrences 
of d, is defined by 

D G d = ( D V d , D E i ) 

where the node set DVd is the set of all attribute occurrences of d and the edge set 
DEd is the set dependency pairs for d. Formally 

DVd = {Xk.a\k = 0, . . . , n and «€¿№1} 

DEd = {(Vl, ' o j l ^ D i , J . 

When a computation tree J is given a dependency graph DGX for the computation 
tree T is defined to represent dependencies among attributes of nodes in T. DGX 
is obtained by merging together DGd 's according to the decompositions in T. 

Let T be a computation tree with root node X£M. DGT determines an IO 
graph IO[X, T] of A'with respect to T. It gives an I/O relationship among attributes 
of X, which is realized by the decomposition tree T. That is 

IO[* ,T] ={A[X],Em) 

when an edge (/', J) is in JE ,
I0cIN[Ar]xOUT[Ar] iff there is in DGT a path connecting 

the attribute occurrences X\i and Afa of the root T. 
For general PLASTIC programs there may be finitely many IO graphs for 

X£M and we denote the set of these IO graphs by IO(X), that is 

IO(Ji0= {IO [X, T] | T is a computation tree}. 
Let IO(.JQ = {K)i, ...,ION} where Ek). A superposed IO graph 
IO[AT] is defined by 

lO[X] = (A[X],E), £=\JEk k = l 
to represent possible IO relationship. 

In order to define a set of attributes to be evaluated in parallel, let us'introduce 
an 01 graph the dual concept of IO graph, which specifies how the values of inherited 
attributes are effected by other attributes. .SIOMSS* 

Let T be a computation tree which contains X£M asJ one bf its leaf n'ódes. 
An OI graph OI[X, J ] of X with respect to T is given by 

OI[*, T] = (A[X], E0l[T]), Eol[T] c= A[X]XIN [AT] 

where (a, i)£E0i[T\ iff there is in DGT a path from va to vt, where v„ and vi are 
nodes for attributes a and i of the leaf node X. A superposed OI graph is defined in a 
similar way as IO [Jf]. 

We further define a dependency graph DG [A^ of the modulé A' as the union of IO 
graph and OI graph, that is 

D G M = ( ¿ t n ; £ I O U £ o i ) . 
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For an absolutely noncircular PLASTIC description D a set O c O U T p f ] of 
output attributes is said evaluable in parallel iff no sx, s2dO are connected in 
D G [ * ] -

An augmented dependency DG£ for the decomposition if is 

DGi = (DVJ, DEJ) 

where DVJ=DVd , the set of attribute occurrences in d, and e^DEJ iff e€DEd 
or e=(Xk'i, Xk-s) for some (/, i )6 lO[ZJ and k—\,...,n. DGd represents a 
relationship among attribute occurrences in d which is realized partly by attribute 
mappings and partly by computation trees. 

A PLASTIC description is said to be absolutely noncircular [2] iff DGJ does not 
contain cycles for any d£D. For an output attribute s of a module X of a PLASTIC 
program, its input set in [J, X] is defined to be a set of input attributes which are 
required to evaluate s, that is 

in [s, X] = {i |(i, s) is an edge of IO [A']}. 

We extend the function in [j, X] to allow such O as its first argument 

i n [ 0 , * J = U i n [ s , n «to 

4.2. Translation algorithm 

Let X be a module of an absolutely noncircular PLASTIC description 
P=(M, m0, A, D, V, F) and s an output attribute of X. We associate with each pair 
X, s a procedure 

where ...,vm are parameters corresponding to the input attributes in / = in [j, X] 
and v is a parameter for j . It should be noted that input and output parame-
ters are separated by semicolon. This procedure is intended to evaluate the output att-
ribute when supplied the. values of input attributes in /. 

When given the value of the inherited attribute /0 of the initial module m0 we 
begin to evaluate the output attribute i0 of m0 by executing the procedure call state-
ment 

SO 

where u0 and v0 are variables corresponding to /„ and J0, respectively. 
Now we are ready to describe how to construct the procedure Rx,s(vi> •••> vm> v)-

The first thing the procedure RXt s must do in its body is to know the decomposition d 
which is applicable to the module X and perform a sequence HdfS of statements to 
Compute the value of attribute occurrences in d, therefore RX s is constructed in the 
following form, 

procedure ...,vm; v) 
if Cdl then H i l tS else 
if Cdl then H^>s else 

end 
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where dx, d2, ... are decompositions (versions) with left side module X. We have 
assumed that the PLASTIC description is deterministic, that is decomposition condi-
tions of disctinct decompositions with the same left side module do not become simul-
taneously true for any value of its input attributes. 

The sequence Hdts is obtained in the following steps. 
(1) Make the augmented dependency graph DGJ . 
(2) Remove from DGJ nodes and edges which are not located on any path leading 

.to for / = in [i, A^].. Denote the resulting graph by 

' DGÎM = {V, E). 
(3) To each attribute occurrence x£ V'— V— {A'0j/|/ÇlN[Ar

0]} assign a statement 
st[x] for evaluating X as follows. 
Case 1. If x=Xk\i for some /ÇIN[-Vt] and k=\,...,n or x=X„is( = v) 
for the attributes J-ÇOUTfA,)], then st [JC] is the assignment statement 

* : = /d,x(zl> zr) 

where :fdx is the attribute mapping for the attribute occurrence x and 
Dd,x={zi,...,zr}. 
Case 2. If x=Xk\t for some / Ç O U T ^ ] and k=\, ..., /?, then st[x] is the 
procedure call statement 
c a l l ^ . i w j , ..., wk; x) 

where wx..,wk — {Xk\i|in[/, A^]}. 

(4) Let xx, ...,xN be elements in V which are listed according to the topological 
ordering determined by E, i.e., if (xa, xb)£E then a<b. Then Hj s becomes as 
follows. 

st [ x j ; st [xN] 

Note that statements in Hds satisfy thé single assignment rule. It is easy to see 
that the.ordering xx, ..., xN ensures values of attribute occurrences are determined 
consistently if the PLASTIC description is absolutely noncircular. 

We first construct the procedure Rmo, ^ by the algorithm we have stated. Body of 
i?mo, So may contain calls for other procedures Rx;s's and they âre constructed in the 
same way. Repeat this process until no more new procedures appear. 

In the case of parallel evaluation we assign a single procedure 

uy, ..., u„) 

to each set O which is évaluable in parallel instead of assigning n procedures, where 
M15 ..., un are parameters corresponding to output attributes in O and vx, ..., vm are 
those for attributes in in [0, X]. 

Construction of Rx,0 parallels to that of RXtS except a few points. As in the case 
of RXtS, the procedure Rx,o has the following form, 

procedure R ^ . o K , «!, . . . , m„) 
if Cdl then Hiu0(vlt ..., vm\ w1; ..., «„) else 
if Cd, then Hdl<0(vi, ..., vm; ux, ..., u„) else 

end 
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For a decomposition X0-»X1X2...Xn and 0€S[Xo] which is évaluable in 
parallel, construction of statement sequence Hi 0 proceeds in the following steps. 
(1) Make DGJ. 
(2) Make DG t [0]=(V , E) by removing from DGJ nodes and edges which are not 

located on any path leading to X0\s for s€ O. 
(3) For each k=l, ...,n decompose the set 

such that each Okj is evaluable in parallel. When the decomposition is not unique, 
we should choose a maximal decomposition, that is, one where the number v 
becomes minimum, to attain high efficiency of evaluation. 

(4) Let DG'd[0]=(V, E') be a graph obtained from DG%[0] by grouping elements 
of each OkJ into a single node vkJ£ V. Formally 

(5) To each element x in V0= V — {X0 • /|/6lN[Jro]} assign a statement stf*] as fol-
lows. 

Case 1. If X— Xk\i for some and k=\, ..., n, or X=X0\s then 
st[jc] is the assignment statement 

OUT* [Xk] = OUT [Xk] n {t \Xk • 16 V} 

into a set of mutually disjoint subsets 

Okl j Oki > • • • J Okr 

V = {g[v)\v£V} 

E' = {(«[«], g[t>])|(«, 

where g is a function defined by 

{vkJ if v = Xk- s for some s, k and j such that s£0, 
v otherwise. 

where 
* : — fd,x(zl> •••> zr) 

A i = izi, •••, zr}-

Case 2. If X—vkj then st[x] is the procedure call statement 

calIjRjrfc>Oiy(wi, xlt ...,xc) 
where 

( 0 { W l , ...,wh}= { l ^ i l K i n l O y , * - » ] } 

and 

(2) {Xl,...,xc) = {Xk\t\t£Ok]}. 

(6) Same as 4. for H i t , in the sequential case. 

6 Acta Cybernetics vn/4 
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Translation of the entire attribute grammar into the corresponding program is 
similar to the one given in this section; Let 0 be a set of output attributes of the initial 
modul. We start from constructing the procedure R s 0 and then proceed to procedu1 

res which are called in it. - ; 
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