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On compositions of root-to-frontier tree transformations

By S. VAGVOLGYI

0. Introduction

It is well known that the family of (nondeterministic) root-to-frontier tree
transformations is not closed with respect to the composition, see [2]. In this paper we
introduce the notion of k-synchronized root-to-frontier tree transducer. Transducers
of this type are capable of inducing all the relations which are compositions of k&
root-to-frontier tree transformations. Conversely, we shall show that any relation
induced by a k-synchronized tree transducer is a composition of k root-to-frontier
tree transformations. We mention that similar results are obtained by M. Dauchet
in his dissertation [1] using the theory of magmoids.

1. Preliminaires

In this chapter we shall review the basic notions and notations used in the paper
and give a reformalized notation of root-to-frontier tree transducers.

Definition 1.1. An operator domain is a set G together with a mapping v: G-+
~{0, 1,2, ...} that assigns to every g€G an arity, or rank, v(g). For any m=0,
G™ = {g€Glv(g) = m}

is the set of m-ary operators.

From now on, by an operator domain we mean a finite one, that means G is a
finite set. The letters F and G always denote operator domains.

Definition 1.2, Let Y be a set disjoint from the operator domain G. The set
T4(Y) of G-trees over Y is defined as follows:

(1) CUYSTL(Y),

() g(pss ..., P)ETG(Y) whenever m=1,
g€G™ and py, ..., pn€Te(Y), and

(3) every G-tree over Y can be obtained by applying the rules ( l) and (2) a finite
number of times.
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The set TS T;(Y) is called a G-forest over Y.

Definition 1.3. Let pcT4(Y) be a G-tree over Y. The set sub (p) of subtrees of
p is defined by the following rules:

(1) sub(p) = {p} if peG°UY,
@ sub(p) = {pU U sub(py) if

P By REGMTENGT e b
pl: . 7pm€TG(Y) .‘,Y.-

Definition 1.4. Let peT;(Y) be a tree. The root root (p) and height A(p) are
defined as follows:
(1) If peG®UY, then root (p)=p, h(p)=0.
(2} If p=g(py, ..., pw (m=0), then root (p)=g and h(p)=max (h(p,-)lt‘z
m)+1 . . ;

Deﬁmtlon 1.5. Let u¢ N x be a word over the sét of natural numbers The word
u mduces a ‘partial-function u: T (Y)—Te(Y): in the:following way:- -
(D) I u=e then u(p)=p forevery. pe To(Y), whereedenotes the empty word
(2) If u=ry, [EN; v€N* and".p€Ts(Y), then-

( ) {U(p) lf p_ g(plyj ’pm)3 g€G"' -!‘.é én a
else undeﬁned N T e

i

The elements of T;(Y) may be vrsualrzed as tree lrke dlrected ordered labelled
graphs. In this case every path from the root to a given node in the graph is determined
by a word over N. For every word .4€ N, if there exists a node r such that u is the
path from the root of p to r, then u(p) denotes the subtree (subgraph) with root r.

+* Definition-1.6. Let 'Y 'be a set disjoint from'G. We may assume- withouit' loss of
generality that N*NT;(Y)=0 and GNN*=9 holdin therest of the paper “The' sét
Ps(Y). of quasi G-trees, over Y is defined by . the followmg rule .

C Pg(Y) = {pETG(YUNMVue N* if u(p)EN* then u(p) = ul

Definition 1.7. The mapping - S: PG(Y)——ZN* ass1gns a subset S(p) of N* to
every quasr treep which i is defined by R R

P ' S(p>—{u(p)|uEN*}ﬂN*“

Itis clear that S(p)isa ﬁmte set for every p€Pg(Y). The set S(p) is also denoted
by S,. ‘Members of S, are called arguments of p. B .

Definition 1.8. Let Z be an arbitrary set and let ¢: S -7, be a. grven functlon
for a given quasi tree p€Pg(Y). Replacmg every element u of S by @(u) in thé tree
p we obtain a G-tree over YUZ, which-is denoted. by "p[S,, (p] L)

i

Example. Let G= {g,, g} be an operator domainwith v(gl)—l v(gz) 2 and
let Y={pi,»2; ya}.- ' The quasi tree p= g.,(gl(l 1),g:(21, y,)) may be vrsualrzed by
the graph on Fig. 1. _ R RTTI
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: Flgure 1 thure 2

Lct us deﬁne the mappmg Q: {11 21} { Ve y3} as: follows
| o) =y, 0Q1) = .
The quasi tree p[S,, ¢] may be visualized by the graph on,_Fig. 2.

.. Binary relations 1STp(X)X76(Y) are called tree transformations. The. com-
position 7,07, of the tree transformations (S TF(X)xTG(Y)) and 12(C TG(Y)><
XTH(Z)) is defined by _ : ,

1,072 = {(p, PI(P, r)E 1, (7, q)€12 for some’ r}

The composition 7;07;0...017; |/=3) of the tree transformations’ 14, 17,, ..., 7, is
~ defined by

" 140740...07; = (140...0T;=1)0T;.

Definition 1.9. A state set A4 is an operator domain consisting of unary opérators
only. If 4 is a state set and D is an arbitrary.set then 4D will denote the forest

AD = {a(d)|ac 4, deD}.

Moreover, if ac 4 and deD then we generally write ad for a(d). v
If Ay, ..., A;are state sets (JEN). then A;... 4, denotes the state set A; X.. XAy
which is the Cartes1an product of the sets A (1 =/=/). ‘
Elements of 4;... 4, are denoted by sequences a;...a, where a;£4;, i=1, ..., j.
For every non- negatlve integer I, {1,...,1} denotes the set {i|l=i=l}.

Definition 1.10. A root-to—frontler tree transducer (R-transducer) is a system

NA=(F, X, A4,G, Y, A, X%), where . .

(1) Fand G are operator domains. '

(2) A is an operator domain consisting of unary operators, the State set of A
"(It will be assumed that - AﬂTF(X) 0 and that AﬂTG(Y) 0)

(3) X and .Y are finite sets.

(4) A’S A4 is the set of initial states. ' :

(5) Z is a finite set of productions (rewriting rules) of the following two types:

(1) ax — q(aEAs.xEX’ qETG(Y)), - : .
(i) af —~ q[S,, ©)(gEP(Y), fEF™,: @1 S, ~ A{l,...,m}). . -
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A is said to be a deterministic R-transducer if A4’ is a singleton and there are no
distinct productions in X with the same left-hand side. -

Definition 1.11. Let UA=(F, X, A4,G,Y, A’, Z) be an R-transducer and let
P1, P T(YUN*U AT (XUN™)) be trees. We say that p, directly derives p, in U,
in symbols p,=p., if p; can be obtained from p, by
(i) replacing an occurrence of a subtree ax(€ AX) in p, by the right side g of
a production ax—q in Z, or by
(ii) replacing an occurrence of a subtree .
af (L, ... m{l, ..., m}, a}(fEF™, a: {1,. - m}=Tg(XUN®)) in p, by
q[S,, B), where af—»q[S,,(p] isin X and B is a mapping B: S,~AT(XUN?Y)
such that for each s€S, iIf @(s)=ct(c€4, 1€{1, ..., m}) then B(s) ca(t).

Each application of steps (i) and (ii) is called a direct derivation in 9.

The reflexive-transitive closure of = is denoted by =3.

Using the notation =, the transformation 74 induced by a root-to-frontier tree
transducer U=(F, X, A,G,Y,A,Z) is defined by:

ta={(p, 9)Ip€ Te(X), qcT(Y), ap=4q for some acA’}.

" The range of a mapping ¢: A—~B is denoted by rg(¢). Let Uy, Uy, ..., U,
be sets, and let ¥ be a subset of the set (Up X Uy X... X UDUUpX Uy X... XU U ..
(U X Up)UU,, where UyXU;X...XU, the Cartesian product of the sets U
(0§i§1). Then for an index j, (0=j=/) [V]; denotes the set

{ul3(ug, ..., uj, ..., )EV, 0=n=1 0=j=n)

Definition 1.12. Let » be an element of N*. The mapping w,: Te(YUN*)~
—Tg(YUN™) is defined as follows:

M w,@=p if p=y(EY) or p=f(€G),

(® w,(p)=up if peN*,

() @.(p) = f(@P); ---» @ (PD)) _
p=f(Pr,.... D), fEG!, 1 =1, p€T,(YUNY, i=1,..,1L

2. Derivation sequences

In this chapter we shall deal with the description of derivations according to
root-to-frontier tree transducers.
- Intherest. of the paper k denotes a natural number, not less than two, moreover
let A, (G 1> Yie1, 4, G, Y5, A, Eg,,) be R-transducers, 1=i=k.
Now we give a procedure P. The input of P is a derivation in the form
(Y Ca;pii =g p; (8,€A4;, pj1€TG, ,(Y;-1), pi€Tg,(Y))
for some j€{l, ..., k} and a decomposition -

Pj-x = j—l(sr,_-l,' ®j-1l (rj-IEPG,_,(Y):-l)s ‘pj;-l':l'sr,_;-_’ ch;l(y;’—l))-
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The procedure P produces two derivations denoted by (2) and (3) which are
defined by induction on the height of rj_l(e T, j_l(Y,-_IU-N *)). The derivations
(2) and (3) will have the following forms:

2 a, rJ'—l[Sr/-v (Pj—l] =>;;j Fj [S'J’ ‘IIJ] =>;‘;J rf[S’J’ q)f] =Py
(l//j: S,J g AJ g ((0,'—1), q’j: Srj - TGJ(YJ'))’

 5€S,,, Y;(s) =g, 9505 !

for each

holds,

(3) ajrj—1=>:[j rj[srjs ';j], (lpj: Srj ng Aer,-l): )
and for each s;€S,, if ¥,(s)=a;s;_; then y¥;(s)=a;p;_,(s;—)) holds.
Let h(r;—)=0.

Case 1. r;_,=f, f€Gj-,. In this case S, =0, ¢, ,=0 and r, ,[S, |,
@j—1]=f Thus a;f-p;€ 2y, where pjeTG!(YJ). Let r;=p;, thus S, =0. Let
¢;=0, ¥;=0, ¥;=0. Thus the derivation (1) takes the following forms:

(2) ajrj_l[S,j_l, (Pj—I] 3:11 r, [Srj’ 2k]] 3;:,"1[&,, (Pj]7

(3) q; Fi-1=a, "j[S.-,-, *pj}

Case 2. rj_,=y(€Y;_p. This case is the same as Case 1.

Case 3. r;_y=e(eN™). In this case @;_,(e)=r;4[S,,_,, ¢;-1]. Let r;=e,
thus S, ={e}. Let the mappings

oo Y S, AT, (Yo, ¥y S, ~4; S,
and
0;: S,

i

- T, Gj(Yj)
be defined as follows:

' 'pj(e) =a; "j—l[Sr,_,, (Pj—1]s ’;j(e) = aje, q’j(e) =Dj.
Thus
"j[Sr,, lPj] = a; rj—l[Sr,..p ‘Pj—l]a "j[Sr,: ‘71] =a;e.
Thus we have obtained the desired derivations (2) and (3), and
J;(e) = aje,y;(e) = a;p;_1(e), where S, = {e}.
We have proved the basic step of the induction. Let
Ti-1 = S, s D) =f(w1(l71), cees wl(pl))

nere (P1s -0 PEPG, (Y1), S,,_, = 1:8,,U2-5,U...UI.§,,
W,
i8S, ={islseS,}), i=1,..1D.

ry-1lSr,_» 050 = (P1[Sps ], - PiLS,, 1)),

where for each i€{l, ..., !}, and s¢S, u(s)=¢;_,(is) holds. The production app-
lied in the first step in derivation (1) must be of the form a;f—q[S,, ¢}, where
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g€Pg (Y)), feG' -for -some - I e 8, —-A {1 .., I}. Consequently derivétio'n‘(l)
can be writtenrin thc following form: - S B
aj rj—l[Sr_,_ls (pj—I] :;j q[sq’ Q] :9*11 q[s ’ T]
(e: S;—~A4;18(9;-1), 1: S~ T, (Y)),
where the mapping ¢ satisfies the following formula: for every s¢ S, if e(s) b;t
(lStSI bjcA;) then o(s)=b;p,[S,,, 1,). This implies that g(s)= b,p,( e ;1,]=>m’
=g,7(s) holds. The desired derivations will take the following forms: :
@ a;f(pll l,ull,--‘,pz[ Sy ) =w, 4[S,, 0123, 9[S,, x1=4, (S, 1),

where

#. Sq - TGJ(YJ'UAJ.TG_,'—I(Y['—I))’

T 8, —-TGJ(Y-‘.

(3) ajf(wl(p1)9 wl(pl)):ﬂj q[ g \]:> q[ i]a
where
é: Sq - AjTGj-i(Yj—IU N*), % Sq - TGj(YjUAquj_l)'

We shall define the mappings x, g, #. For each s€ S, let us consider the derivation

(4) Q(S) = bjpt [Sp,s #r] ﬁ;'Klj‘c(s)’
where .
g(s) = b;t holds.

Since h(p)<h(r;_,) we may apply the induction hypothesis to derivation (4) and
decomposition p,[S, , u]. The derivations (5) and (6) are obtained by applymg
procedure P to (4) and decomposition p,[S,, , u,]-

(5) bjpt[ De? ﬂt] =>§Ij qs[S o ns] :>Elj qs[ gs? fs] = T(S)3
(qse PG;(Yj): 'lsf Sq, g Afrg (ﬂt): és: Sq, - TG}(Yj))s
such that for every vE Su r]s(v)=>;;j€s(v) holds.

(6) b~pt=>;;qu[ "’s] (r's q. 1 p.)

and for every .v€S, if f,(v)=b;z for some b;€A; and z€S, then

- n@)=b;u(2).”
In this case =, g, % are deﬁned by

;g(s): Qs[Sq,a "s]’ é(S) = wf(b,lﬂpt),
#(s) = 0(4.[S,,, 7i])-

The derivation Q(S):>QI (8= t(s) is the same as derivation (5).
: The derivation Q(s):-~>QI x(s) is obtained from derlvatlon (6) by app]ymg the‘
mappmg ,.to each 'step of derivation (6). :
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We give:a procedure S. The input of S'is a- derlvatlon sequence - D=Dy, ':., D,
given in the followmg form B

\

Dl Qs Po = 911 P1» (PoE TGO(YO) a1€A1, Ple TGl(Yl))
Dy axpy =’s|2 Dq, (02€A2, J S TGz(YZ))a

Dy: aypi-1=5, pk(ake Ay, Pk,e T6, (YD)

and a decomposition py=ro[S,,, @ol- S produces two derivation sequences denoted
by D'o=Djs, Db, ..., Do and D’o=D}o, Di, ..., Djo.. The derivation sequences
Dro and Do will have the followmg forms:

D o W7o [Sre> @0l =5, 1S,y l//1] =a, NS, (P1] =
=p (r1€ P, (Y1), Y1t S, = A1 18 (90); 911 Sy, ~ T, (1))
and for each 5€S,, the derivation y¥,(s))=¢, @:(sy) is valid,
-~ Dy az"l[ s P =0, T2[S0,, Wal =4, 12[S,,, @2] =
= 2 (ra€ Pe, (Y2 Vi Sy~ Aut (0), @21 S, T, Gg(Yz))
and for each s,€S,, the derivation 11/2(s2) =5, a(s2) is valid,

Dr° ak "k 1 [Srk v Pr- 1] :>q1,‘ LS, oo Vil=4, 7S, 4] =
= pk(rkéka(Yk)s Vs S, —~ Ay rg ((Pk 1> Pt S, _TGk(Yk)) .

and for each s,€S,, thederivation. 1//k(sk):>9,k_<pk-(sk) is valid.
Dioi.a;ry =5, 1S5 'A% Sy~ A1S,),
D 0 a2 rl =>212 r2[ roo ‘pzl (JZ re A2Srl),

1 O

Dpe: Oy~ 1=>mk7'k[ rk,'pk](!pk »l‘akSr)

For every jec{l,. k} and 5;E8, if v; (s) blsl 1 for some b;cA4; and
§j-1€8S,,_, then 'P J( s)=b;p;_ 1(s _]j_. Applymg the procedure P to the derlvatlon
D1 and’ the decomposmon po—ro[S,o, @o] .we obtain the derivations Die, Dje.
Assume that the derivations D7 ;, D%, are constructed for an index j (2= j<k)
Then the derivations Djo, Do are obtamed by applying the procedure P to D; and
decomposmon p, 1——r _1[ rio1s Qi .}, where the decomposition -_l[S,
@j—1] of p,_1 is ngen in the derivation D}2,.
Let —(Gl 15 Yic1, A;, Gy, Y3, A, Em) (z——l ., k) be R-transducers. Let
us denote the arity function of the operator domam _G,o by v. We fix these notations

j-12
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for this chapter. Let D=D,, ..., D, be the following derivation sequence: -
Dy: a,py ?;, y 21 (PoE TGo(Yo)a 213 TG;(YL)7 01€A6)'
Dy azp, =;;, De (Pze TG,(YZ)’ as€ Aé)’

Dy apyy ::1,‘ Px (Pke TGk(Yk)’ akEA;)y
moreover, we assume that p,=g,[S,,, 7o] holds for some
-qo€ P Go(Y o) Yo: Sqo - TGO(YO)'

Applying the procedure S to the derivation sequence D and decomposition
Po=4,[S,,» ®] we obtain derivation sequences D% and D%.

Die: a, 40[ g0° Yo) =’m 4 S, 220 %] 3;, ql‘[qu Y1 = P1»
(qIGPGl(Yl) 0y S — A, 18 (¥0)s Y1 Sql - TGl(Yl))!
and for every s5,€S8,,, oa(s)=¢,7:(s) holds.
DP: ay g[S, 11l =>u, 4:[S,,, %] =, 921S,,, 72] = P2,
(9:2€ Po, (Ya), ta: Sy, —~ A218 (10, Y21 Sy, = T, (Ya))s
and for every s,¢€S,,, az(s2)=>my2(sg) holds.

Die: ax gy [qu_,, Ye-1] =>:1k Gk [Sq," o] =>;1,‘ 9k [qu’ Vel = Pk
(‘Ike PGk(Yk) o Sg > A T8 (7R Sa ~ TGk(Yk)),
and for every s,€S,,, o(s)=% v:(s) holds.
Dge: ay g, =a @1lSq» @), (@0 Sy, ~ 415,),

Dg" azq, =>g, q:[S, gs? @], (& qu - A2qu)’

Die: a, q—1 =5, 9i[Sq,> @ @i Sq ~ A Sy, ),
and for every je{l, ...k} and s;€S,, if
oc,(s) = b;s;-, forsome b;€A4;,5;-,€S,
a;(s;) = b;y5-1(s;-1)
We shall define a set Zp, . and mappings
Q(D,QD): Z(D,do) - (A UA»AIIU...'UAk s Al) Ig (’yo),

then

0(p,00)" Sax ™ Z(D,q0)
l/’(‘D.qo): qu - Ak . Al TGo(YO)

and
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in the following way: _ _
Z(quo) = {(SO’ S], cucy s-)ISo€ 4o SIESq1’ . S €qu,

l=j=k and (j=k or (1<k and there are no
J+1€S 1 al’ld b +1€AJ+1 SUCh that aj+1(SJ+1) bJ+1sJ))
and (s)= bs_1 (; EA,) for i=

For every (sg,51, .. )€Z(D a0
Q(D,qo)((sm 815 eees sj)) =b;... b1 70(s0)
iﬂ' &i(s,') = b,-si_l for i = 1, ...,j

For every €S8, 0w, g(s)=(s0> 51, ... s iff
% (s) = bisi_l(biéAi) for i=1,..k
For each 5,68, , Y (p, ¢y(50)=by...by7e(sp) iff
0(p,a0)(5) = (S05 515 -+ S1)

Q(D,qO)((SO’ Sl, - Sk)) = bk cae bl’yo(S()). ’

One can see the equality Y(p, 4= 0(p, 49° L, 40 holds.
For the derivation sequence D and a decomposition

Do = QO[ g0 Yol (quP(;o(Yo), Yo' Sgy TGo(YO))
we can determine the configuration

and

Kv,q0° (@[Ss> ¥ 0,90} Op,000s Z(D, 000> LD, a00)-

For the sake of a unified formalism, in the sequel we use the following convention:
Let G be an operator domain with arity function ¥, and let Y be a set disjoint with G.
If ueG°UY then u(l,..,v(#)) means the G-tree u over Y, moreover,
u(l, ..., v@)I{1, ..., (@)}, 9] means u for arbitrary 9.

We continue the analysis of derivation sequence D. For each s,€ S,
vo(so) can be written in the following form:

Yo(s0) = ue(L, ..., v(u) [{L, ..., v(uo)} S} |
where u,€G,UY, and 3¢: {1, ..., v(up)}~T;,(¥y). There are two cases.

1. Case Zp, 45 =9. Take the quasi tree o€ Pg (Y,) defined by ro=qo[S,,, &ol,
where the mapping &y: S,,—~ T, (Y, UNY) is determined by the following formula:
for each

Soésq,, &o(so) = a’so(uo(la ceey V(uo))) lf Yo(S0) = uo(l, caey V(uo))[{l, ooy V(“o)}s 9]

(“o€ GoUY,, 9: {L ooy V(uo)} - TGO(YO))' .
One can see Kp 49=K(p,; holds.

20 the tree

2. Case Zp, ,»#9. Using these decompositions of the trees yo(so) we obtam the
derivation sequence E=E,, ..., E, from D. For every i€{l, ..., k} the derivation E;

7 Acta Cybernetica VII/4
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is the same as D; disregarding the order of direct derivations in D;. We shall introduce
the derivation sequence E=E,;, ..., E, too.
E;: a1 5] Sgp Y01 =3, 11[Sy,s 0l =5, &[S, Bl =a,
=8 01[Sgys 111 (01€P6, (YD), &y Sy, —~ Ay g (o),
Br: Spy =~ Te,(YaU A, T, (Yo)), 11: S, — T6,(¥1))- -
E: a, 48, 90° &o) =’m AN @ Al
(Eo: Sgo— Teo(YoUN™), Brz S, —~ Tg,(Y,UANY)).
o is defined by the following formula: for each
50€S,, I 90(s0) = uo(L, ..., v(u)) [{1, ..., (1)}, S0l
for some uE€G,UY, and mapping

3q: {1 .3 "(”o)} nd TGO(YO) then {y(s0) = SO(uo(l, ey V(“o)))-

We shall define the mappings f, and ;. For every s,€S,, let us consider the sub-
derivation

(1) ai(s) =5, 7050 of D.
Let us assume that &(s,)=b,5, and
ay(s1) = byyolse) = byuo(l, ..., v(ue)) [{L, ..., v(uo)}, Sl
o D€A4s, € G UY,, 9o {1, ..., v(up)} ~ Tg, (Yo)-
Applying procedure P to derivation (1) and decomposition
v Yo(So) = uo(1, ..., v(up) [{1, -... ()}, 3]
we obtain derivations (2), (3).
@ b uy(1, s v(up)) {1, ..., v(uo)} Dl=aq, 1 [S,,, 6:1]1=4,
=g, 4 [S,,, K1 = 11(s0), where u,€ Pg (Y)),
9: S, > A, T, (Yo), 841 S, — T, (YD),
and for .each
0,€8,,, 0, (vl) =5, 91(v) holds.
(3) by uy(1, ..., v(up)) =>er, 14, [S,,, 8,1, where
80 S, ~ Ay{l, .., v(u)} and for each v€S,, if
51(01) =yl (clEAl, 1€ {l, ..., v(u)}) then &;(v;) = ¢ 94(to)-
In this case B, and B are defined by

Bu(s) = 11Su, 611 Buls) = o (4[S.,, 1),

where
So€ S,
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Let /'be an index of the transducers in-consideration such that 2=/=k.. The derlva-
tions E; and.E, are the following: . :
Ey: 01,21 (S, s Vi-a] =0, @1lSy,» al =4 01lS,, Bl =a, 4:1S;,, vl
- (@€ P, (YD, 02 Sy~ A, rg_('}’z—l),
. By: Sg TG;(}’{UAITGI_I(YI—I))’ Yi: Sg > TG,(YI))'
. Eﬁ a ql—'l[Sq,_la [P | =>;1, ql[Sq’ Bz]
(51-15 Spor = T, , (Y- UN™),
Bi: S, —~ T, (Y,UA4, N™).

€i—y is defined by the following formula: for every s,_,€S, _, if B 1(s,_l)—
=u;_4[S,,_,»> 61—1] then &_,(s_)= o, ,(u_;). We shall define the mappings B,
and B;. For every s€S,, let us consider the subderivation

(D a(s)=g7(s) of Dy
Let us assume that

&G(s) =bysi.y and  o(s) = byy,_1(si-1) = b, ut-1[su,_,, LY

where
51-1€8,, _» b€ A, wy_1€ P, (YY),

‘and the decbfnboﬁition Yi—1(Si—D) =11 [Sy,_,» $-1] of y,_1(s;—,) is the same as
in E;_,. Applying the procedure P to derivation (1) and decomposition y;_,(s,_,)=
=u_4[S,,_,> %-1] we obtain derivations (2), (3).
@) bitg_1[S,_p» Sl =% wS,,, 8]1=% wlS,,. 8] = 1.(s),
where
MIEPG;(YI s Oy Sy, > AlTG,_,(Yl—l)a 9 Su, - TG,(YI)s
and for every #,€S,, the derivation ,(v)=49,(v) is valid.
) b, ”1—1=’;1, [S,,, 8], where &;: Sy~ A1 S, _,
.and for each p€S, if
3, (v) = c;ti_1 (i€ Ay, 1,_4€S,,_)
then .
8y (v) = ;91 (ti-1)-
In this case B, and’ B, are deﬁned by
ﬁl(st) = uz [Su,a A Bl(sl) = s,_.(“x [S., 51])

7*



454 S. Vagvolgyi

Take the quasi-tree ’oEPGo(Yo) defined by ro=qo[S,,, &ol, where the mapping
Eo: Sgu—~TG,(YoUN™ as in E,. Let X S, ~Tg(Y,) be the mapping such that

Ao(sgi) = 3o (D) if yo(so) = "o(la ooy V(ub))[{l, coes V(Ug)}, S,
$0€ Sy o€ GoU Y, Jo: {1, ..., v(u)} ~ T6,(Yo)s i€ {l, ..., v(uo)}-

where

For these ry and 4, we have that g,[S,,, 7l=r0[S,,> 0] holds. We take the quasi
tree rléPGl( Y,) which is defined by r,=¢,[S,,, 61] &y —T¢, (YLUN%), for
every €8S, &(s)=w,@) if /31(51) u[S,,, 6,]. It can be seen that

S, = {s11l81€Sy,, Ei(s) = o5, (1)), HLES,,}

holds. Let us define the mappings n,: S, —4 TG.,(Yo) m: S, —~A4, S, and 4;:

S,,—~T5,(Y7) as follows: for each sleS let us consider its unique decomposition
§y=8;t;,, where 5€85,, a;(s)=5,5, for some 5,€4, and :

So€S 20° &ulsy) = wn(ul) 11€S,,1, ﬂl(sl) = “1[ ") 04},
ﬁl(sl) - So(ul [Su19 1]): 1 (51) =i [Sul’ 91]
and o, ﬁla ﬁ13 Y15 519 51, 91 as in Ela .
Let m(sit)=061(t), (sit)= (050(61(11)) a(s:2)=8,(¢t): The . derlvatlon

8,(1)=%,9,(t,) holds, which implies that the derivation n,(si7)=4A(s17) i
valid. Thus we obtain the derivations E/ and E; from E, and E,, respectively.

E{:a,rol roa)“O]:‘lll "1[ ’71]:&111’1[ r17'11]*
E1 alroz’ml’l[ r15'11]’

and for each »,€S,, if 7;(v))=c¢,9, for some c,€4,,.%,£S,,, then n(v)=¢, o(vo)
For each 2=/=k we take the quasi trees r,€Pg (Y;) which is defined by

"1—‘]1[ Sgs Gl &1t Sg, T, (Y,UNY),

$€8,,, &i(s)= ws,(“l) it Bi(s )— L] [Sun 51]
It can be seen that

for every

S, = {sit)&(s) = o, (uy), HES,;)

holds. Let us define the mappings #;: S, ~A,Tq,_,(Yi-D, #;: S,,—A4S,,_, and
2 S, =T, (Y) asfollows: for each 5€S,, let us consnder its umque decomposmon

§=sit,, where s§E€8,,¢&(s)= ws,(“l)a ’zES
Bi(s) = w[S,,, 611, Bi(s) =y [S..» ), n (51) = “t [Su,, 3,

@y, Bi> Bi» 71, 61,5, 9, as in E;, E) and &(s)=b;s,., Tor some bicA, and
Si- 1ESql . In this case 7,7, and 2, are defined by n(s;2)=98,(t), M(st)=

o, ‘(5,(t,)) 2 (s;t)=9,(t)). The derivation 6,(t,)=>g,,9,(t,) holds, which implies
that the derivation #,(s;t)=% 2 (s1) is: valid. Thus we. obtain the derivations
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E/ and E] from E, and E,, respectively.
E/: ajry [Sr,_., A1) =’:1kx, r [S.-,, ml =>;‘1. S, 4,
El,: a; ’_'1—1 ::x, 1S, ], »
and for each v€S,, if fi(v)=cv,_, for some ¢;€4;, v,_4€S,,_,, then n(s)=

=qh_1(v-1)-
. . For the sequence of root-to-frontier tree transducers %j, ..., 2, we shall define
the sets X(/) and ¥;, (0=I/=k) in the following way:

Z(0) = {uolup€ Go U Yy},
Vo =.2(0);
Z(1) = {(by, ug> w1 [S,y> @1ls 01, Wy, T)Ib1ttg — 14, [S,ys 91]€ 2y,
WEPG (Y1), @0 S, ~ AL S,,,
Wy = {(to, tl)lfl’l(ﬁ) = Gl ¢:€4,}, _
0 Sy, Wi aa() =, 1) If @i(f) = 11,
Ty: Wi~ A1 8,5 T1((fes 1) = erte if @1(1y) = 110}

It can be seen that for each #€S,, ¢, (t)=1,(0:(t)), thatis, ¢,=g,07, holds
We say that the element (by, uo, 4,[S,,, @il, 01, W1, 1) of Z(1) is generated by the
production b, uy~u,[S,,, ¢4]. -
V= {(ug, 6)|us€ Z(0), 6,€ Z(1) and the second component of o, is uy}.

Let j be an index such that 2=j=k, and assume that for each 7 (1=/<j) the
sets - Z(f) and V; are defined, and that for each "o;=(b;...bs, uy, w;[S,,, ¥il, 0;,
W, ©)(€ Z5(0)) @i=g;0t; holds. We shall define X(j) and V; as follows:

() = {(bj - b g, w;[Suy> @51 055 W ;)|
(bj—y..- by, uo,'uj_l[S,,j_l, Q-1 0j-1, Wi—1,T,-1)E€2(G —1),
bju;_1=%,u1S,,,¢;] holds, where u,€ Pg,(¥),
;1 S, ~A4;S,,
@1 Sy~ AjA;_y . A{L, ., v}
®;(t;) = cjc;_y C1Afo if e;(t;)=c;t;_; and
Qj-1(tj-r = cj_l...é,to, -
Wi={(to, ..., tim1, tle; () = ¢t 1, €€ 45, 0j-1(ti1) = (fos - s 1D} U
U{(t, ..., t;—1)EW;_,| there are no ¢; in S, and c;€4; such that
8(t)) = ¢;;_1}U |
U{te, ... EW; 4l = 1 =j=2},
g Sy, Wj;"'gj(tj) =(tg, ..., tj_ys ty) if

(1) = Cjtj—ll and  @;_(t;-1) = (o, --s 15-1)»
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10 Wi~ A;. AL, ., v(ug));
Tjlw,aw,_, = Tiaalw,nw,_, and-
if (t, ..., tj—1, 1)EW; and egft;) =¢;t;_,
then t;((fo, ---» tj—1, 1)) = ¢;Tj=2((tos s i-D))}- ' ,
We say that the element (b;... 5y, uy, %;[S,,,¢,1; @j» W;, 7;) of Z(j)is generated by
the derivation b;u;_ =g u[S, ,¢] and element :
(bj-1-.. by, up, u;_1[Su, 1 @j-1)s @5-1s W15 t;-,) of Z(-—1).
It can be seen that for each element (b;...5s, 4y, 4;[S,,, @1, ¢, W;,1;) of Z(j),
@;=e;0t; hold. ] »
V; = {(tp, 615 ...» 61, 5)| (49, 0q, ..., aj_l)EVj_lA, 6j-1
has the form (b;_;...by, g, #;_4[S, .. c_o_,-_J, Qi-1» W,-I_.l,, rj_;), o; has the

form (b;...by, to, 4;[S,, ;) 0;, W;, 1;) and o; is generated by the derivation
bju;_1=g,u;[S,,, €] and o;_,}. '
We define mappings 3x;: [Zp oli~ () for O0=isk. Let so€[Zp, 4o
which means 50€ S,,. %,(s0) is defined by '
X o #5(Sp) = 100t (Yo(s0)) = 1 if
Yo(s0) = (L, oy V(UD{L, ---» v(u)}, )0 {1, .., v(uo)} = T, (¥o))-

Let $€[Zp,qph, that is, 5€S,. Let us consider the decomposition a;(s))=

='bluo(l, s v(uo))[{l, vees (1)}, 6] (uoEG;,‘U Yo, % {1, ..., v(u,,)}—-TGo(K,)).
" “Applying the procedure P to the subderivation (1) a,(s)=>gy:(sD) of D, and
decomposition uy(1, ..., v(ue) )[{L, ..., v(up)}, 3] we obtain derivations (2) and (3).

2 b, ”o(l, cees V(uo))[{l, ey V(uo)}, ol =a, “1[Su,a 1] =’;1
=% h[S,, %] =1:1(s), where u,€Pg (¥y),
Oy Sul -4, TGO(YO)v 9i: Sy~ TG,(Y1)s
and for each
0€S,,, 6:(v) =5, 91 (v) holds.

(3 byug=q,u[S,,, 8,], where 8,: S, -4, {1, ...,v(u)} and for each v,€S,,
if 8, (s)=city (€41, TE{L .. ¥(u)}), then & (o)=c;9(fo).
ﬁl(sl);ul [Sup 51]! Bl(sl) = c@’so(ul [Sup 51]) )
for B, B, given in derivations E,, E,.

Let %,(s,) be the element of X(1) generated by the production b,uy—u[S,,, 8;].

Assume that x; is defined for every 0=i=j—1. Then the mapping »; (2=j=k)

is defined in the following way: for each s;(€[Z(p,opl;=S,,), &;(s)=b;s;_1 for
some b;€4; and 5;_1€[Zp, o));-1- Thus a;(s;)=b;7;-1(5;-1). #;_,(5;_1) has the
form (B, by» tigs t; 1[S, s @l ;1> Wj—1, j-2)E E5(i—1). Let us consi-
der the decomposition y;_,(s;_)=u;4[S,,_,»8;-1) of p;_,(s;-;) which is the
same as in E;_,. :
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Applying the procedure P to the subderivation
(1) a;(s))=g,y;(s) of D; and decomposition u;_,[S, ,,9;1] we obtain
derivations (2) and (3).

#) bjuj—l[Suj_p 9; 41 =’«u, uj[Su_,a d;] 3;, uj[Suj’ 31= Yj(sj),

where
u'EPGJ(Y') 5 Su g AJTGJ 1( -1 91. TGJ(Y)
and for every v;€S,, the derivation 8; (v )=g,9;(v;) is valid.

(3) bju; 1=, u,[S,,,S,] where §;: S,, A S,,_, and for each v,cS, if

S o) =c;t;y (€A, 1, 4€S,,.) then 8,(v)=c;8;_,(t;_p.

Let %;(s;) be the element of 2(_1) generated by derlvatlon 3) and 2;_1(8;-1)
(€x(=D).

We associate the configuration

Kp,ry = (1e[Sres Yo, rp)ls O ,1035 Z,r0)s p,ro))

with the derivation sequence D and decomposition py=ry[S,,, ).
Using the derivation sequences E; and E; we shall show the connection between
the configurations Kp, . and Kp ,

(D

(2)

(3)

@

0)*
ne=q,[S, a2 &), which was established in E;, moreover we know that for
each s5.€8,,, &(s)=w, (u), where

xk(sk) = (bk bla Uy, Uy [Suka (pk]a Q> Wka Tk)-
Z(D vy = {Goto, S1tss ooy S| (S0 815 s SDEZ(p, g0y -
for some | (I1=j=Il=k) and
s (s) = (by... by, uy, w[S,,, @11, 01, W1, 1) and (&, 4y, ..., LYEW).

For every 5,€S,, let us consider its unique decomposition §,=s#,, where
5:€Sq,.» %(51) has the form

1 (5i) = (bk - by, U, “k[su,‘, oy 0> Wi Tk)9

&5 = wsk(uk) an_d HES,,-

If @@ gy (5) = (505 81, --»8) and  @u(ty) = (o, 11, ..., ) then
O(p,r) Gr) = (Solos 1115 -5 Sk T)-

Let §.€S, Dbe arbitrary, and consider its unique decomposition §y=sy%,
where s,‘e 0> ¥ (%) has the form

#(5) = (bk woby, g, [Suk’ o, ox, Wi, Tk)a Eu(sy) = ws,‘(“k)
and #€S,, . Then if @ (f=cc...c;% and

YD, q0 ) = (1, ooy V) [{1, .., v(u0)}, 9]

(4€Go U Yy, 99: {1, .., v(up)} ~ Tg,(Yy)), then

V0, re) Sk 1) = k.. €1 (%)
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(5) From the definition of Z,; ,, it follows that for every (5, 5;, ..., §)€Zp ,
there is a vector (sq, 5y, ..., S)€Z(p, 4, for some /(=/j) such that
#(sp) = (by... by, ug, w[S,,, @), 01, Wi, 1)
and
S0 = Soly, 51 =S111,...,85; = 5; Y
hold for some (4, t;, ..., L,)EW.
I t((te,. tys -5 £)))=¢;...c1t, and
Q0,40 ((S0s 515 - 5)) = by ... byuo(1, .., v(u)) [{1, ..., v(ug)}s Sl
for some u,€G,UY, and 94: {1, ..., v(ug)}~ T, (Yo), then

- frz = 3 — ~ s+
Q(D,,o)\(bo, Oy rnves SJ)) =L 9190(;0).

3. k-synchronized R-transducers

In this chapter we shall introduce the notion of a k-synchronized R-transducer
and prove that the relations induced by this type of transducers are exactly those
relations which can be obtained by compositions of k relaticns induced by root-to-
frontier tree transducers.

Defivition 3.1. A k-synchronized R-transducer is a system
% = (GO’ G]_, eey Gk’ Yo, Yl’ ey Yk’ Ai, Y Ak’ A;, ey A’:, 25, V),

where -
(1) k=2,

@) G,, Gy, ..., Gy are operator domains,

(3) 4., ..., A, are state sets, for i=1, ..., k,

Ai...Aln Ibo(Y(]) = 0, and Ak"' AlﬂTGk(Yk) = ﬂ.

(4 A;SA4,,..., A4S 4, are the sets of initial states,
(5) Zgis a finite set of productions, which is a disjoint union

g =Zg(UZg(DU...UZg(k),

V=V,UVU...UV,, where V,=2X4(0), and for i=1, .., k,

V.S Zo(0) X Zo(1) X... X Zg(i) and [V]=Zg().

2g.0)= {uoluy€ G, U Yy} and the members o; of the production sets Zg(J)
(j=1) have the form:-

;= (bj... by, ug, u;[S,,, 01, 0, W;, 1;), where
biEAi for i:],...,j, lloEGoUYo,
“,EPGJ(YJ'), (pl S"j ind Aj.-.Al{l, “eey V(uo)},
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. W; is a finite subset of (N*)2U...U(N*)/*1, where (N*)!=N* and for
" each I=1, (N*)H1=(N*)'XN*
QI: Sllj - Wj, Tj: i - (Al' A2A1U UA2A1UA1)[W_,]0,
and the following requirements are satisfied:
=]
1) W= {(to, WIHES,,> p1(t)=c1ty for some ¢ €4},
ii) for every #,€S, if o,(t)=cty then g,(t)=(1, 1),

iii) @,=g,01,,
iv) ¥i={(up, 0)le€G,UY,y, and the second component of a;(€Z5(1))

1S Up}.
b) j=1 if (4,041, ...,0;_1,0,)€V; and o;., has the form (b;_;1...by, 14,
J—I[Su, 13¢] 1],91 —1 W—-—ls J 1) then (UQ, Gy, - 361 I)EV and
there is a mapping ¢;: S, —»A[ —1]j-1 such that 1)—1v) hold:

]) VK = 1(to, ey tj—1> tj)lel(tJ) = C-tj_l, C‘EAJ', fJES“ 2 tj_lES,,j_l,

0j-1(tj—1) = (tos v’ tj—y1, 1)U
U{(to, ..., )WLl = 1= j-2}U
U{(to> -.-> t;-1)€W;_,| there are no #;,£S,, and c;€4;
such that ¢;(t))=c;t;-4}.
i} For o
T, TjIW,nW,_, = Tj—ﬂW,nWj_, and
if (fos oos tjmus 1)EW;, €;(t) = ct;-4 (c;€A4;, t;—1€[W;_1];-1) and
Tjo1((fos s tj=1)) = €jor.o.Caty then T;((fo, ...r tj=1, 1)) = ¢j ... C1lq.
iii) For each £;,€S, if
g;(t) = c;tj_1(c;€A;, t; 1€[W;_4];-1) and
0j—1(tj—1) = (to, ..., t;—1) then @;(t) = (to, ..., tj-1, £)).

iv) @; = g;o1;
(One can see ‘that for each ¢ €8, &(t)=c;t;y (c;€4;, j—lE Sy, iff
Qj(t_]) (t09 cvey _1—1’ ) and Tj ((to, LaRe] tJ 1s ])) C Clto

In the rest of the paper we shali denote the arity functlon of G, by v.

. Definition 3.2. Let B be a k-synchronized R-transducer as in Definition 3.1.

A configuration of B is a system (q[S,, V], ©, Z, Q), where q€P (Y, ¥: S -

~A... A TGO(YO) O: S,~Z; for each 58S, @(Sk) (505 ..vs S—1, S) for some
So5 - ask IEN

Z is a finite subset of (NFRU.LUWHEUN™ L such that the followmg two

conditions hold:

i) for j=0,...,k and arbitrary s;,5;€[Z]; if s;=5;5;, then s5;=§; and

Sj=e,
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it) for each 5,€S, ©(sy) is the only element of Z which has the form (505 -o-»
s Sk—155%) for some Sgs +-es Sg_1€EN*.
Q: Z——(A,‘A,‘ 1 AUA . 4 U.UAY T (Y) is a mapping such that ¢=
=0of holds, that is, the dlagram in Figure 3 is commutative.

Ak K — 1...A.IUA ...ATU...UAAl)TG (Y

——a( k-1 . o)
\A

Figure 3

A conﬁguratlon (q[Sq, Y], ©, Z, Q) is said to be a starting configuration, if ¢
is the quasi tree e€N* (empty word) and Y(e)€4;... 4T (Y,), moreover
Z={(e, ..., 9}. :

——(

k times

Definition 3.3. Let K,=(q'[S,,¥',0%2Z%, QY and K,=(q%[Sp, ¥, 62,
Z%, Q?) be configurations of a k-synchromzed R-transducer B= (Go, Gy, ..., Gy,
Yo, Yi, .., Yy, Ay oo Ay, A1, .5 Af, Zg, V). Tt is said that there is a transition
from K, to K,inB which is denoted by K;=4K, if there are mappings x;: [Z'];—
—+Zy(j) for j=0,1, ..., k such that the following requirements hold:

(1) For each (s, %, ...,s)€Z (1=j=k) if

QY((So» S15 > 8)) = b; ... by ug(1, ..., v(ue))[{1, ..., v(up)}, 8] for some
u€GUYy, b;...b1€A4;... 4, and 84: {1, ..., v(up)} ~ T¢,(Yy) then

%0(S) = ug, 3;(sp) = (bi coo by, g, ui[Su.-9 @i, 0i, Wi, Ti)

forsomeu;, g;, W;andt, (i=1,2, ..., j), and (%0(50)> #1 (51, - ,x,( $))EV;.

() ¢*=q*[Sp, &] for the mapping ¢: Sp~Tg, (Y,UNY) which is defined by
the followmg formula: for every
sk6 ql s é(sk) - ws;‘(uk) if xk(sk) (bk bl’ Uy, Uy [Suk’ q’k]a Ok Wka Tk)

€)] Zz—{(soto,sltl,. 5t (S0, $1, -..r SHEZ* for some I, (1=j=I=k) and

%1(51) (b b].’ Up, ul[Sup (pl]’ Ql: Wl’ Tl) and (th Lyy cos J)E Wl}

(4) For each s,‘—S = consider its unique decomposition §.=s,f,, where
€S8, %.(s5) has the form (5= (by... by, tg, w [S,. . Oil, 0ks Wis Th)s
Esd=o s, and #€S, . If "0 (s)=(s, 51, ....,5) and ()=
_(th tla .. tk) then @2(8,‘) (SOtOs sltl’ . 9sktk)

(5) Let 5€S, be arbitrary and consider its unique decomposition sk—sktk,
where 5,€S,, %,(sy) has the form x,(s)= (by... b1, to, 4 [S,,., @:); x> Wi,
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%), &(s)=0, ) and 4€S, . If o (t)=c...city and
T Y(s) = uo(l’ cees V(uo))[{l: ---, V(“o)}, 3]
(uOEGoUYo, o1 {1, ..., v(ug)} ~ TGO(YO))9 L
then Y3(S)=cy...c;96(t)-. '
(6) For every (5p,5, ..., s)EZ2 there is a vector (so,sl,..,s,)EZ1 for
some [ (lsj=l=k) such that "z(st) (By... b1, ug, wIS,,, @1, 01, Wi, ),

and S,=Soly; 5 =811y, ..., 5;=5;t; hold for some (4,1, ..., ,)EW,
If- Tl((to, tl’ veny tj))=Cj...clto aﬂd :

QY ((Sos 515 --» D) = by e byttg(1,ooes VU [{L, .. v(te)}> 9]
for some u€G,UY, and 9,: {1; coes V(ig)} > T, (¥Y) then
Qz((50, 815 -e0s 5])) =Cj... 0 8y (2y). '

Notice, that given configuration K, and mappings »;, for i=0, ..., k satlsfymg con-
dition (1), uniquely determine configuration K.

The reflexive and transitive closure of relation =4 between conﬁguratlons is
denoted by =g.

Definition 3.4. Take a k-synchronized R-transdicer

% = (Go, Gl’ aeny Gk’ YO’ Yl’ Jeey Yk’ A17 cany Ak’ A;, vevy A;,Zg, V).
Then the relation

75 = {(p; DIp€ T(}o(Yo), q€Tg, (Y)),
Ko = (el{e}, Yo: e bpl, ©°, Z° ) =% (g, 0, 0, 0)
for some starting configuration Ky}

is called the transformation induced by B.
Configurations of the form (g, 8, @, ), where g€ T, (Y)), are said to be final.

Theorem 3.5. Let 2,=(Gi_,, Yi_y, 4;, G, Y3, A}, Zy) (G=1, ...,k k=2) be
R-transducers. Then there is a k-synchronized R-transducer B such that
Tp=Tg,0...OTqy, -

Proof We construct a k-synchronized R-transducer B as follows:
= (GO’ Gl’ vy Gka YO, Yl’ veey Yk’ Al’ .. Ak’ Als seey Ak’, 223, V),

where 22},(0)= 2(0), ..., Zg(k)= Z(k) for the sets- (i), which are defined in the
previous chapter. V=V,UWKU ...UV¥V,, where the sets ¥,,¥;, ..., ¥, are defined in
the previous chapter. We may assume without loss of generality that
A4, NTe (Y)=9 and that, for i=1,..,k, 4;...4,NT; (Yy)=0. Thus B sa-
tlsﬁes requlrement (3) of Definition 3.1.
First we shall prove the inclusion

Tg,0...0Tg, & Ta.
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Assume that (py, p)€7q,07q,0...07g,. Then there are initial states
@€ AL, ..., ;< A; and there is a derivation sequence D: a,py=g D1, 2D1=>5,Pa, ---
ces QPr—1=>5 Pr» Where p€Tg (Y) for i=0, .., k. '
. Take an arbitrary decomposition py=qo[S,,, 7] of the tree p,, where
9o€ P, (Yo) and y: Sp—~Tg,(Yy). We have constructed a configuration

Kip, 4 = (9S> Y 0,00) O 0,000 Zi0, 100> A, 000)

for D and g, in Chapter 2.

" One can sce that K(p ,, is a configuration of the k-synchronized R-transducer B.
Let rg=go[Sp, &) for the mapping &y: S, —~Tg,(YoUN*) which is defined by
Eo(so) =, (uo(1, ..., v(1g))) for each s,€S,,, where

:')’o(so) = “‘o('l’ cers "(uo))l[{la ooy V(“o)}, 3o},
(UOEG()UYo, 90: {l, ey v(uo)} g TGQ(YO))‘
Kip,ry Is again a configuration of B.

It follows from the definition of the relation =4 that

Kip,q0 = Kin,ry O Kp,39y=5 K(p,ry)
holds. )
Let p°, p, ..., p'€ P; (Y) be quasi trees for I=/(p)+1 such that for every {

(0 =i= l)a Po= p'[Spia yl] «('Y': Spi - TGo(YO))a
where
1) p’=e, y°(e)=p,, and
ii) pPti=piS,, &*1] for the mapping &*': S,—T;,(Y,UN*) such that
for every s'€S,

ER(N) = wg(up(l, ..., v(up)),
¥(s) = up(1, ..., v(u))[{L; ..., v(up)}, 99]

for some w,€G,UY, and 9y: {1, ..., v(up)}>Tg,(Yo). In this case every
§'*1¢ S .1 has a unique decomposition s'*1=s'r,

$'€8,0, ¥ () = up(1, ..., v(ug) [{1, .., v (1)}, o)

where

for some
€ GoUYy, 9g: {1, ..., v(up)} ~ Te,(¥o) and re{l, ..., v(ug))-
Then y'*+1(s+)=9,(). ‘
We know that Kp, =K, pi+1y of Kp, ,5=aK(p, s+ holds for /=0, ..., I—1.
It has remained to prove that K(p, ,0) is a starting configuration and Kp, ,n is a final
configuration of B. The first part of the statement trivially holds. Since p'=p, and
po€ T, (Yy), S, must be the empty set, thus Kip, =(ps, 9, 9, §). We have proved

that (po, P)€Tg- ) )
We shall prove the reverse inclusion:

Tg & Ta, OTgp,©.- OTqy, -
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Let K,=uK;=4...=5K, be a sequence of transitions in B, where n=1, K,=
= (e[{e}, ¥°), @°, Z°, Q) is a starting configuration and . K;=(¢‘[Sy, ¥, &', Z}, Q')
for i=1,...,n. Assume that ¥°(e)=aq,...a,p. Let p% p', ..., p':be the sequence of
quasi trees constructed in the first part of the proof, where p'=p..Tt can be seen that
n=I. Then there is a derivation sequence D=D, ..., Dy,

D;:a,p :;;, D: [Spl,? ml, (plEPGl(Yl)a.’h:'Spl - 4, Sp")’
D,: a,py :’;;2 y 23 [Sp._., 2], (PzEPGg(Ys)’ N2 S,, = A Sm),

Dy: ak!’k—1=>§kxk Px [Spk3 il (pkEPG,;(YIIc)’..rlA;': Spk - -AI; Sp,,._,).‘

such that the following equalities hold:

) p=4q"

i) Yp, =V

i) Z"=Zp, -

v) O"=0p ),

V) 2= Q0 S
where the sets Zp, ), Op, ,my and the mappings
Y,y Spe— (Ao As AU ... UA, 4,UA4) S,
Qoo Ziopy = (Ag . Ay AU Udg AU ) rg (37)

are defined as follows:

(l) Z(D,pn) = {(SO, s’]_, ..V., Sj)ls‘)EASp", SleSPL’ .‘.-., ;sjESp_,-’ 1 éj § k, o
and (j=k or (j<k and there are no sj'-ﬂe qu;x and
bj1€4;.1  such that  17;,:(5;4)=b;115)) and n(s)=
:bisi—l (blEA,) for i=], ...,j}. ) ,

(2) For every (so,51, - S)EZp pm (1=/=K), Qp, (50> 515 -r5))=
=bj...b1'y"(S0) iff r[i(s,-)=b,-s,-_1(b,~€A,-) for i=1, ,_] X
(3) For every s,€5,., Op, pmy(5:)=(505 $15 ---» i) iff

r’l.(si) = bisi—l(bieAi) fOl‘ i= 1, saesy k‘
® Yo, = Ow, 020, - ' ‘

We proceed by induction on n. Let n=1. In this case P=u(l, ...,,v,(uo)):
uy=root (p). From the definition of the transition in B it follows that there are map-
pings s;: {e}—+Zg() (#=0,1,...,k) such that sxy(e)=u,,

xl(é) = (al » Ugs Uy [Su-p ¢1], €1» Wl) Tl)a ;
and so on,

A () ='-(ak oo @y, U, Uy [Suk9 o)y 0, Wi »Tk)'
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and (xo(€), #,(e), ..., %, (€))€V;, and configuration K, and mappings x; (i=0, ..., k)
determine the conﬁguratlon K,.

Accordmg to the construction of the transducer B and the definition of the
transition in B, there is a derivation sequence D=0D,, ..., D;,

Dy: a, “o(] " V(“o)):g, u, [S, up» 901],

Di: a;u;y =>q;,u [Sun ”i]
for some

i Sy~ A Su_s (=2, ...,k)

u
such that the following equalities hold:
) g'= dka

ii) lf’(b p) = ¥,
iy Z'=W,=Zy, 5>
iv) O'= g, = O, p1y»
V) Q' =1,=Q¢p pny

The proof of the basic step is complete.
_Assume that the statement is true for n—1. It means that there is a derivation
" sequence .

Dy: a,p"! =’;11 pl_[Spl’ M) (P1€PGI(Y1)’ M: Spl —~ A, Sp"")?
Dy: axp, =>;|2 p2[Sp2’ 2] (Pze PG,(Yz)a Np: Sp, —~ A Sp;_)’

Dy: ay py_y =%, PilSpes i) (Pi€ P6, (Y)s i Sp, — Ak Sy, _,)
such that the following equalities hold:
) pe=q""Y
) Y-y =Y"""
i) Z"'=Zp -y,
iv) @""1= O pn-3),
V) Q7= Qp, -1y

Because of the transition K, _,=gK, there are mappings 3x;: [Z");,—~ Zg()
(/=0, ..., k) which satisfy condition (1) in Definition 3.3.
Take the sequence ry, ..., r;, of quasi trees given as follows:

ro=p" for_‘ i=2,...k let r,=plS,, el

where ¢;: S, —T; (Y;UN") such that for every s€S,,, &(s)=w () holds, where
4;[S,,. @;] is the third component of

ki(s) = (bl '-"'bl’ uOs ui[Su,-a (0,] Qis Wi, ti)‘
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Let. &: S, ~ A4S, , (i€{t, ..., k}) be the mapping satisfying the following requi-
rements: we know that for each 5,€S, there is a unique decomposition 5;=s5;1;
of §i, where 5;€ Spi’ *; (sl) (b bI’ Uy, U; [Su s (P;] Qu i Ti) and tiE Su,'
I ()=, os iy 8 ((fos -0 tic1, £)E W) and - 1((t, ..., iy, )=
=¢;...city for some c;€4;, ...,¢€A4;, and n(s)=b;s;_, for some s;_,€S, _
then &(s;t)=c;5;_1t;_;. We obtain that for i=1, ...k, E; ar_I:,‘r[S,‘, é,]
holds. -

From the definition of the transition in B and from the definitions of r,,

Z(E, ) O, ) Q(E’ ) I/I(E, pn) it follows that
D orn=4q"
i) Y, =Y
i) Z"=Zg
v) O"=0g
V) Q"= Qg m.

Assume that (p, g)€14. Then there are configurations K,, ..., K, (n=1) such
that K, is a starting configuration, K,=(e[{e}, V"], @, Z°, Q°) where ¥°(e)=
=gq,...q;p for some a,€A4;, ...,aq,€A;, K, is a final configuration, K,=(g, 0, 9, 9),
moreover, K;_;=gK; holds for i=1, ... n .

According to the above proposition there is a derivation sequence

D = Dl’ vvey ‘Dk’
Dy: a,p" =y, 11[S;,> ml (P1€ P, (YD), m: Sy, ~ Ay Sp")’
D,: a,p, 3;2 Do [sz, AN (p2€PGz(Y2)’ UPY Sp, -~ Ay Sp,)a

Dy: ayp_ :;lkpk[Spk’ nk]’(pkEPthYk)’ Mt S, — Ax Spk_.)
such that the following equalities hold:
) p=4q,
i) Yp,,my=y"=90
i) Z"=Zp, s
v) 0"= 0y,
V) Q"= Qp .
Thus Zp, =0 Op, m=0, Qp, =9 According to the definition of Zyp, n,
‘,‘—[Z(D p,.)], for i=1, ..., k. Thus Pi€Tg (Y) for i=1, ..., k. One can see that

a;0"[Spns Y1=8P1 holds Thus (P"[Spm> ¥ q)E‘L'g,lo‘::glz .0Ty,. The proof of
the theorem is complete.

Theorem 3.6. Let B=(Gy, Gy, ..., Gy, Yo, ¥y, ..., Yy, Ay ...y Ay, A1, ..., AL,
Zg, V) be a k-synchronized R-transducer Then there are R-transducers AqA,, .., A,
such that Ta=1g,0...0Ty, . -
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Proof. The production sets Zg(/) for i=1, ..., k—1 are considered to be operator
domains with arity function v': Zg()—~{0,1,2, ...} as follows: for l1=i=k-1,

o= (bi - by, ug, “.'[Su;a @il 00, Wi, Ti)EEs(i)

let vi(6)=|S,|, where |S,| denotes the cardinality of the set Sy -
Remember, the arity function of the operator domain G, is denoted by v.

Convention; Let SCN*. If S0, then &, &: S—S denote the identity
function. If S=0 then &, : S—S denote the empty function, '

For every j (1=j=k) if S#0 then ¢;: S——{l, ..., | S|} denotes the function
whose value on s€ S is the ordinal number of s in S with respect to the lexicographic
ordering. If S=@ then ¢;: S—S denotes the empty function. Thus ¢; always
denotes a bijective functlon which is determined by its domain.

Take the R-transducer

A = (Go, Yy, Ay, 25(1), 0, Zy,, A,’),
where

Ty, = {battg ~ a1(1, <., V(@) {1, ..., v (@)}, Bl

o, has the form (bn g,  [S,,5 @1l €1, Wi, T1)€ Em(l)

(%a (b1, g, 1 [Sys @4ls 015 Wn ) €V1 and the mapping

Bi: {1, ..., v (o)}~ 4. {1, ..., v(op)} is defined as follows:

Let & {1 v(u,,)}—-{l S ¥(ug))y &Sy~ {1, .., IS, ]}

For each tlesula B1(51(f1)) e &olty) 1ff Ql(tl) (fo: 4) and 71((to’ tl))—

=c4y. (Thus for each #€S,, Bi(E.(t))=c &o(ty) iff @ (f)=c1t. )}
For j=2,..,k—1 consider the. R-transducer UA;=(Zg5(j—1),9, 4;, Z5()), 0,
Zy,, 4] H) where the production set Zy is defined as iollows

Zay = {b;05-1= 0,(L - VO L, s V(o) B

There is an e]ement (9¢5 ..., 0;_1,0)€V such .that o;_, has the form
(b] -1 bh Ug, U Jj— ][Suj 19 (p1—1]7 Q) 1s WJ_]JTJ 1)9

o; has the form (bj..-by, ug, 1S, , 04l 05, W;, 1)

There is a mapping ¢;: S, ~A4;(W;_]; 4 such that conditions 1)—iv) in
part (5).b of Definition 3.1 hold.

The mapp1n<7 Bi: {1, .., vi(a)}~A4;{1, ..., v ~(o;_))} is defined as follows:

Let &;_y: -{l, .. ,| - 1|} & S, —»{1 ,|S ,|}- For every tES,,j,
B(é rj)) IS C,_l(t, l)(c €A, t;_ IES‘,] l) iff Q,(t,) (to, ... tj—1, t;) and
' (to, ..., tj— 1,t‘,)) ¢j...c1ly. '
(T(m)xs for every 1€S,, ﬁ,(c,(r,))_c c, W) (€4, 1;4€8,, ) iff
£ A

Take the R-transducer ‘Hk;(Eg(k 1), Q) 4, Gy, YL, Xg, . A;) where the productlon
set Zy, is defined as follows:

Zy, = {ako-k—}"“k[suks B . _ ' o
- There is'an element (g, ..., 6,_q, 6)€V such that ¢, _, has the form
(bk—l by, t, 1 4 [S e -1° Pr— b 0k—1s Wiy, T 1), -
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0y has the form (by...by, ty, 4[S,,, Pul, 0k, Wi, Ti). There is a_mapping
&: S, =~ A[Wi_1lk—1 such that conditions 1)—1v) in part (5).b of Definition
3.3 hold. The mapping ﬁk S, = AL, ..., v 1(ak v} is defined as follows:
Let &yt S, ,—~{L ... ,,k_ll}, ék S~ S, For every t€S,,
ﬂk(tk)=ckfk—1(’k—1) iff e (t)=Co, --s t—1, &) “and T((tos oor 15 1)) =
=Gy Cyly. (Thus for every 4€S,,, Bk(tk) S (A l)(c,‘EA,‘, t—1€S,,_)
iff & (t)=city—s-)}
We may assume without loss of generality that for

i= 2, aeey k—l, Aiﬂng(,-_l)(ﬂ) = 0, 14|'r11‘},'$(i)(g)=ﬁ

and that 4,N Tyy)(9)=0, Akatg(k—l)(g)zg'
Thus 9A,, ..., A, satisfy requirement (2) of Definition 1.10.
We shall prove that Tg=14,0...07yq,. Let € be the k-synchronized R-trans-
ducer that can be obtained from U, ..., Y, by the construction of Theorem 3.5.
In this case

G = (Go, Zm(l), ceey Zg(k—l), Gk, Yo, ﬂ, very Q, Yk’ Al’ ceey Ak’ Ai, ceey A,:, ZC? V)-

“.
k—1 times

We may assume without loss of generality that for i=1, ..., k, 4;...4,N T (Y;)=0
and that 4,...4,NT; (Y,)=0. Thus C satisfies the requxrements of Definition 3.1.

By Theorem 3.5, Tg=Tq,0Tq,0...0Ty,, SO it is sufficient to prove that Tg=r1g.
In order to prove this equahty we shall introduce bijective mappings y;: Zg(j) > Z¢(j)
for j=0, ..., k—1 and a surjective mapping 7;: Zg(k)—~Z¢(k), and we shall show
that for '= ., k the mappings 7,, .. -» 7; satisfy assumption (1) and that for
Jj=0, .. k the mappmg y; satisfies assumption (2).

( 1) "There are two cases. _

Case 1. 0=j=k—1. In this case if (oy, ..., aJ)EV then (yo(00), ..., 7;(6,))€ ¥},
and if (Gy, ..., 6,)€V; then (yg1(Gy), ..., ¥} 1(crj))e

Case 2. j=k. In this case if (g, ...,0)€V; then (v0(60), - ,yk(a,‘))EVk,
and if (G, ..., Gy_1, G)€ Vi then there is a unique 6,€ Z4(k) such that yk(0) =0y

and (y5(80), ---» 71 (Gi—n) 04 )E Vi
(2) There are three cases.

Case 1. j=0. In this case Zg(0)=25(0) and yp, is the identity function.

Case2. 1=j=k—1. Let (ay,...,0))€V; and o,=u,. Assume that o, (1<lsj)
bas the form (.. bl, Uy, wy[S,, qo,], o1 W,,‘r,) Let & {1, ...,v(u)}=[W
{1, ..., v(up)}, f: w=IW1~{1,...,|S,l} for I=1,...,J. Th en )’ i(a;) has the
form y,(aj) (Bj... by, ug, _,(1 LV (a,))[{l , v (a,)} @, e, W, J) and the
following hold:

D [Wh=Wl andfor i=1..,j=L[W]={l,...|[Wl}={L..|S/]}=
=rg (&)

ii) (fo, ty, ..., t)EW; iff (éo(to)a &, ..o ft(tz))EWj A=1l=)
(tEN*, HLEN™, ..., LEN™).

8 Acta Cybernetica VII/4
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iii) For every
€S, 0;(t) =cj...eity if (&) =c,...c1&5(k),
(10€ Sy 1€ A1, ... €;€4)).
iv) For each
€S, 0;(1) = (to, trs s 1)) HfF 2;(E;(1))) = (Lote)s Ex (1D, -..s (1))
v) For every
(tos tys s )EW; (1 =1=)), t((fo, tyy s ) = ¢ponecrty iff
‘Ej((fo(to)a &), s ft(tl))) =¢;... 1 &o(t0),
(t€{L, ..., (1)}, c1€ 4y, ..., i€ A)).

Case 3. j=k. Let (o0y, 61, ...,0)€V, and o6y=u,.
Assume that o, (1=/=k) has the form

(bl bl: uo: ul[Sun (PI]’ Ql’ I'Vl’ Tl)'

&t {L ., v(u)} = Wido — {1, - v(ug)}s
S, =W~ {1, ..., |S,,,[} for I1=1,..,k=1,¢&: S, =Wk~ Sus

Then Yk(a-k) haS the form ’Yk(ak)= (bk bl’ Uy, uk[ g ? (pk]s Qka VVks Tk) and the
following hold:

D) Wl =Wilo, for i=1,... k=1 [Wl={l,... W} = {L, ..., IS,,[]} = rg (&)
and [Wk]k =Wk = Suk =1Ig (ék)'
) (o, s o Wy I (Eoll)y E4(1), ooy E(D)E T
A=l=kit,t,. . ,ENT.
iii) For every
LES,, ou(t) = cp...crty iff (_ﬁk(fk(tk)) = ¢j... 61 &o(to),
(1€ Syys 1€ A1, ..., GEAY).
iv) For each .
HES,, > a(t) = (f, s o ) iff -Q-k(ék(tk?) = (&(to), E1(t)s5 -y & (1)-
v) For every
(tos try s )EW, (1 = 1=K, 0((to, s oy D)) =€y Cr 8y ifE
fk((ﬁo(to), 1 () N él(tl))) =¢ ... C1lp,
({1, ..., v(u)}; 1€ 4,4, ..., c,€4).

We shall define mappings 7;: Zg(j)~>Z¢(j) according to the construction of
Zy(j) and ;.

Let
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Let j=0. Since X (0)=Z25(0), let y, be the identity mapping.
Let j=1. In this case
EC(I) = {(bls uO) 0'1(1, ey VI(O'I))[{I, svy vl(al)}’ (ﬁl]s él, WI, f1)[

i) (uy, 6)€V such that ¢, has the form (by, 4o, w3 [S,, @1, 01, W1, T1).
ii) po(ug)=u,, the production

byuy —~ 0'1(1, ‘e Vl(o'l)) [{1, eees V1(0'1)}s ﬂl]ezﬁh,
where the mapping B,: {1, ...,v1 (6D} ~4; {1, ..., v(up)} is defined as follows:

Let
Eo: {1, .., v} = {1, ..., v(up)}, &t S~ {L, .., IS}
For each
HES,,, ﬂl(fl(tl)) = ¢, &(t0) iff o.(t) = (%, 1) and Tl((th tl)) = k.
(Thus for each #€S,, ﬂ1(51(t1))=c1€o(to) iff ¢’1(t1)=01t0-)
iii) @, = By,
iv) g1 {l, ..., vi(a)} ~ Wy;
for every
&@De{l, ..., v (o)}, if ﬁl(fl(tl)) = ¢, &(t)) (c1€4y, 1,E{L, ..., v(14)}) then
01(& (1)) = (%o (t0), &u ().
V) 3 Wi—A4, {1, ..., v(u)};
for every
(éo(to), E(R))EW,, if ﬂl(él(ﬁ)) = ¢;8(t0) (clEAI’ 10€{L, ..., v(up)}) then
‘El(@o(to)a él(tl))) =0 fo(to)-}

It can be seen that

V1 = {(10(00), G1)loo = € 25(0), 1€ Z¢(1)) has the form
(b19 Uy, 0-1(1’ s Vl(O'l))[{l, ceey Vl(O’l)}, 61]5 éla WI’ f1)
and &, is generated by the production
byuy — Ul(la ooy V1(01))[{1’ ees Vl(a'l)}, ‘—ﬁl]EEB(I)-}

We define y;: Zg(1)—Z(1) as follows:
Let o;=(by, o, 41[S,,, @1, 01, Wi, 7,)€ Zg(1), then by the construction of
U, and € there is a unique production b, uy—~0,(1, ..., vi(aD)[{l, ..., v} (60}, BiI€ Zq,
which generates a unique ,€ Zg(1). We define y,(o,) to be &,. One can see by the
definition of Zg(1) that vy, is onto, hence y, is bijective.

It is routine work to check according to the construction of U, and Zg(1) that
Yo, 71 satisfy condition (1) and that y, satisfies condition (2).

Let j be an index between 2 and k—1. We can assume that Zg(0), Zg(1), ...
ey Zg(j—1) and yp,, ... ,y;-, are defined such that y,, ..., y,;-, satisfy condition (1)
and that y;_, satisfies condition (2).

8
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We know that X;(j) is the set
Ze() = {(b;--- b1, 40> 0,1, .., V(G ){L, ... V(o)) @)1, 855 W, T)|

i) There is an element (oy, ...,0;_1, 6;)€V such that g,=uy, 6;_, has the
form
(bj —1.0- by, Uy, Uj- 1[Su, 1 Pi- i) o Qj- 1,Wj—1,7j-1)s

o) has the form (b;...by, uo, 4;[S,,, @), 05, W;, 7;)- There is a mapping
& Sy~ A;[W;1)j-1 such that conditions 1)—1v) in part (5.b of De-
finition 3. 1 hold.

'il) Yj—l(a'—l) = (bj—l. b.h Up, 0'_,-_1(1, cevy vj_l(a'—l))[{I’ LAt vj_l(o"—l)}9 (5]—1]’
éj—n Wj—ls 'Fj-l)EZc(j_‘l)

and the production b;6;_,—+0;(1,...,v/(6))[{1, ..., v/(e)}, B} is in Zq,, where
the mapping '

Bi: {1, ... V(op)} = A4;{1, ..., v"1(5;-1)}
is defined as follows

Let &t S, ,~{L...1S,_I} & S,~{l,....|1S,|}. For every
€8, Bi(t)=c;&; ~1(t - i Q; (t)—(to, t,_l, t) and
T;((tgs +ves tj—15 z,)) ..y ty. (Thus for each 7, €8, B; (é (t))=¢;&;1(t;—)

iff gi(t)=cjt;
iii) W; = {(o5 -+ Fj—25 E5m1 (15205 E;UD)BAE (1) = ¢5&5-1(2;-0),
5-1(85-1(t;-0) = (fo5 s B2, &5-1 (1 D)} U
U{(fo, cees [j_1)EW;_,| there are no ¥; in {l,...,4/(s;)} and
c;€A; such that B;(#) =c;i;_,}U
U{(fs, ..., T)EW ;I = 1 = j-2}.
iv) g;: {1, ..., v/ (o))} ~W,; satisfies the following requirement: for every
€8, if Bi(&;(t)) = ¢;¢;-1(t;-) and
éj—1(§j—1(tj—1)) = (éo(fo)a oo éj—l(t‘—l)) then
(8olte); s &5-1(t)-1), €;(t))€W; and
éj('fj(tj)) = (éo(to)a s §521 (820, éj(tj))'
v) For 7;: Wy—A;... 4/{1, ..., v(u)},
Tlw,aw,_, = Tj-alw,aw,_, andif
(fos -oos tjm2s &2 (ti-1), &5 (1))EW,
Bi (&) = ¢;&i-1(t;—) and  g,-1(&;-1(ty-2) = (Fos s Fj—2s &5 105~ 1))
then  T;((Fo, ..» Bj—2s &jma(ty=), E;(1)) = ¢;T;-1((Fos -5 Fjmas Ej=n (¢ 1)))
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It can be seen that
Vj = {(Yo(ao), cees ¥i-1(07-2), 51')' for i=0,...,j—1
6:€Z5(i), (Yo(00)s - .- ')’j—l(‘fj—l))EV'—x,
gy has the form uy, and o;_, has the form (b;_,...by, uo, u; 4[S,, _,, ©;-4),
0j-1, Wj_1,7;_1). There is an element
O‘i = (b bl’ Uy, u'[Sup (Pj]’ Qj’ W" T])EZg(j)

such that (oo, ..., a._l, 6)EV;, and there is a mapping ¢
A j[W —1lj—1 such that conditions 1)—1v) in part (5).b of Definition 3 1. hold

(bJ’ covs by, uo’ 1(1 -5V (0'1))[{1 v’("")} ‘Pj]s Q_p _,)
satlsﬁes the requirements ii)—vi) of Zg(j).}
We define y;: Zg(j)—>Z¢(j) asfollows: Let us consider the set

ry={r: Zg() ~ Zc()| 'for each o0;€Z5(j),y(0) = G;
has the form

(bj o bl’ Uy, 0'}(1, trre vj(aj))[{1$ secs vj(o-l)}’ 6]]’ éj’ W', fj) .

- andthere is-a vector (gy, ..., 0;_;, 6;,)E¥; such that 00 has the form u,, 6;_,
has the form (b;_;...by, g, #;_1[S,, 1> @51l 051, Wjoa, T 7j-1), 0 has the
form (b;...5,, uy, 4; [ ups @il Q15 Wi, 'c,), and there is a mapping ¢; S -
- A;[W; 1] -1 such that conditions 1)—iv) in part (5).b of Definition 3 1 hold
and G; satisfies the requirements ii)—vi) of Z¢().}

One can see that if §;€I'; then ¥; is injective and 7; satisfies condition (2) be-
cause of the construction of U; and Z(5). Using this fact one can see that |I'}]=1.
Let y; be the only element of I';. One can see that y; is bijective, and y,, ...

> V51, ¥; satisfy condition (1). 4

Let j=k. We can assume that Z(0), Z¢(1,) ..., Zg(k—1) and 7, ..., Va1
are defined such that y,, ..., 7,—; satisfy condition (1) and that y,_, satisfies condi-
tion (2).

We know that Zg(k) is the set -

Zg(k) = {(bk e bys 1y, uk[Suk5 @, &, Wi, ’Ek)|

i) there is an element (o, ..., 65_1, 6,)€ V. such that 6,=u,, 0,_, has the form
(bk —1--bys g, 4 [S,, s (Pk 1l Qk—1> Wi- 1> Te— 1) O has the form (bk by,
uO’uk[Suks @il Qs k,‘fk) There is a mapping &: S, ~A[W,_ii—y such
that conditions i)—iv) in part (5).b of Definition 3.1 hold

ii) ')’k-l(o'k—x) = (bk-l o byy ug, 041, 1, vk_l(ak-l))[{la eeey Vk_l(o'k—ﬂ}: Pr-1)s
Gk-15 Wk-n ‘fk—l)ezm(k—l) '



472 . L S. Végvolgyi .

and the production
byoy—1 = u [S,,> Bi] is in Zg,,
where the mapping
Bi: Su. —~ A{l, ..., V¥ 7Y (o, 1)}
is defined as follows: Let
&1t Sugy = {1 oo 1Suealb &t Sup = S
For every
=-tk€Suk, Bk(tk) = ckék 1(’1 v iff e () =(t, ..., -y, ) and
-.Tk((to, s b1 tk)) = Cph.. Cy Lg- '
(Thus for each #€S,,, Al&ltd)=climi(tD I g (R)=cutio )
i) W, = {(fm coos Tmzs e (tec)s gk(tk))lﬁk(fk(tk)) = ¢ &po1(te-1)s
Oc-1(&-1(te-)) = (Tas o> Fr—2s fk-l(tk—l))}u
U{(fos -» Te—2s B-D)EWi
there are no €S, and ¢4, such that B,(%) = ¢l -1} U
UlGor - fimgs IEW, |1 = 1= k=2),
iv) . @x: S, —W, satisfies the following requirement: for every
" -“ltk_E‘S_‘uk‘a if Bu(&i(8)) = cxdi-r{te-r) and
B Bi-1(G-1(ti=1) = (f3 - Ta=g» &—1(t=1)), then
' (Fos s Begs Exm1(te-r), E(1D)EW, and ‘
: ’ @k(fk(fk)) = (fo; s B2y Shm1(fh-1)s &x(1))-
-v)- For - ’
AT W Ay A AU U 4, UA) (L, -, v} Tulwoow, ., = Tcalwenw,
“and lf . ’ . .
(io, coos Tz Epm1(Be=n)s SD))EW, ﬁk('fk(tk)) = ;&1 (t-1), and
Ox- 1(5:‘ 1{t- 1)) = (fg, -.es Tg—2s &k Z1(t-1)) -then
o }Tk((tm O PRY SR (/SR fk(tk)) = ¢, Ty—1((Fos s Tugs [SURY (1Y)
Vl) i = ij’fk } B ’
It can be seen,that' o _
Vielm{(ro(@0)s 05 ema(on i@l mfor's i =05, k=1, 0,€ 2y (i),
s (76(00)s s Vem1(84-1))€Vio1, 6 has the form ug).. o, ..., . -
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and o6, has the form (by_;...by, tg, Up_1[S,, s Px—1l, G—1> Wiy, Tys).
There is an element o,=(by...by, ty, w[S, , Pil, 0k, Wi, T )€ Zg(k) such
that (o, ..., 6 )€V, and there is a mapping &: S, ~A4[W,_ i}, such
that conditions i)—iv) in part (5).b of Definition 3.1 hold, and
Gv=(by... by, tg; w[S,, . Pil, Ou, Wi, T,) satisfies the requirements ii)—vi)
of Zg(k).}
We define y,: Zy(k)— Ze(k) as follows: Let us consider the set

I, = {y: Zg(k) ~ Zg(k)| for each 6,€Zg(k), y(0x) = G

has the form (by...by, ug, u[S,, . il 0k, Wi, 7,) and there is a vector
(09, .., Ox_1, G )€ V. such that ¢, has the form u,, 6,_; has the form

(bk—l coo byy gy o [S, s Pk—1)s k-1 Wi—1, Tk—1)a

o, has the form (bk---bl, Uy, u[S,,» Pul, 0xs Wi, 7,) and there is a mapping

&: S, ~ Ax[Wy_1]k—1 such that conditions i)—iv) in part (5).b of Definition 3.1

hold, and &, satisfies the requirements ii)—vi) of Z¢(k)}.
One can see that if €I, then 7, satisfies condition (2) because of the constructions
of A, and Zg(k). Using this fact one can see that |I'y|=1. Let y; be the only element
of T',.. One can see that y, is surjective. Using the fact that 7, satisfies condition (2),
one can easily prove that the mappings y,, ..., ¥ satisfy condition (1).

Finally we shall prove, using the fact that for j=0, ..., k the mappings y,, ..., 7;
satisfy condition (1) and for j=0, ..., k the mapping y; satisfies condition (2), that
Tg=Tg.

Assume that K,=(e[{e}, ¥o: e—~bp], @° Z° °) is a starting configuration of
B and that for a configuration K,=(g,[S,,, ¥, 6%, Z*, Q'), K,;=%K; holds. Then
K, is a starting configuration of € as well. We shall show that there is a configuration

K, = (¢'[Sa. v, 6%, Z', Q")
of € with bijective correspondences
%2 [Zo ~ [2']
() :
ou: [Z) -~ [Z');

such that o, and , is the identity function and K,=2K, holds, moreover
i) for every s,€Sa, O s)=(5, 51, ...5) if O ((5))= (2(50), 11 (5, ..
oo 2 (s53)) and

i) (Sg5 S15 -00s S)EZY AT (g(Se)s 21 (51)s .., &t (5;)€ 22
(1 =j =k, (s, 515 ..., s)E(N*)) and
iii) for every
(Sos 515 ++-» SEZY (1 = j = k), Q((So5 $15 +00s 7)) = @ (to(50), A1 (51, -5 #;(5)))).

Conversely, if K,=K; holds then there is a configuration K; of 8 and there are
bijective functions (*) such that a, and o, are identity functions and i), ii), iii) hold.
Hence if K; is final then K, is final and vice versa, thus ty=1¢ follows.
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First we shall prove the first part of the statement, the second part can be proved
similarly. We prove by induction on the length of the transition K;=gK;.
a) The length of Ky=3K, is zero, (K;=K,). Trivial.
b) Assume that the statement is true for Ky=3K;, K,=¢K, and for the functions
(%) and that K,=gK,=(q2[S,, ¥?), O2, Z2, Q%) holds.
By the definition of the relation =g, there are mappings 2x;: [ZY],~ Z4(i) for
i=0, 1, ..., k such that for every (so,$1,...,5)€2Z (1=j=k) if

Ql((SO, sl, ceey s")) = bJ ene bl uo(l, cevy V(uo))[{l, eeey v(uo)}, \90]
(bJGAj, seny b1€A1, uoéGouYo, \90: {l, cesy V(uo)} ind TGo(YO))

then 3,(so)=up, 2,(s) has the form (b;...by, uy, u[S,,. @, 0;» Wy, 7;) for
i=1, ...,j, moreover (xy(so), #1(sy; ..., %;(s;))EV;. Take the mappings %:[ZY),—~
—+Zg(i) for i=0, ..., k defined by x;(x;(s))=7:(»,(s)) for each s,€[Z"],. Notice,
that % is well defined, because o; and ¥; are bijective. By the induction hypothesis for
eaCh (s09 S5 eees sj)EZ1 (l §]§k)’ Ql((SOS 815 -ees sj))=gl((a0(s0)! al(sl)’ ver
s a;(5;))). Since x,=%, and for each s;€[Z%; the first two components of x,(s;)
are equal to the first two components of #(x;,(s)) for i=1, ..., k, moreover for
every (04, 015 s 6)EV; (1=j=k),  (v0(00), 110D, --., ¥i(0))EV; it follows
that the mappings x; (=0, 1, ..., k) satisfy condition (1) in Definition 3.3. The
mappings %; (i=0, 1, ..., k) uniquely determine a configuration K,=(g2[Sz, ¥,
62,72, Q%) of € such that K;=¢K, holds. First we show that g3[S,., %=
=g2[Sz, Y*]. By the transition K,=>4K; we know that ¢*=q'[Sp, 6], where
6: Sp—,T6, (Y,UN?Y) satisfies the following formula: for each s5,€S, if %.(s)=
=(by...by g, w[S,,, @), 0> Wy, ) then d(s)=w, (4. By the induction hypot-
hesis and the transition K,=K, we obtain that §>=g[S,:, 8], where &: S, —
-T6 (Y,UNY) satisfies the following formula: for every s,€S8, if %.(s)=
=(by.... by, tg, 4 [Sy> O, 0k, Wiy ) and 8(s)=w,, (u) then (o (s))=3.(s)=
V(3 (5))=(bg ... bs, g, (S, , ), @, Wi, T;) for some g, W, and 7,, moreover
5(5) =0, ()= 3(s, thus =g

Again by the transition K,=¢K, and K,=¢K., we have that y® and ¥2:
Spa—~Ay... A4, T (Y,) satisfy the following conditions: _

Let §,€S,. be arbitrary and consider its unique decomposition §,=s,#,, where
€S, 8(s)=w, () for some u,(€Pg, (Y,)), €S, and %(s) has the form
”k(sk)=(bk---b1, g, U[Su;s @ils Qs Wes fk)- Then if  @u(t)=c...c1t, (Ck---
i C€ Ay Ay, LE{L L v(u}) and Y (s)=up(L, ..., v(u)){L, ..., v(up)}, S,
(1€ GoU Yo, 85 {1, ..., v(ug)}~T,(Yy)) then Y2(spt)=cy...c;9(%).

We know that §; has the same decomposition using =3 and %,, because
#.(s) has the form (b,...by, uy, w[S,., 0, 8¢, Wi, f‘%). Since @ (t)=c,-- 1ty
and  Yi(s)=uo(1, ..., v JI{L, ..., v(up)}, Jo] thus Y2(sct)=ci...c19(t). We
have obtained that y2=y2.

Z2={(sotos -os S; I (S5 --» SPEZY, j=1lsk,
#i(s) = (by ... by, g, [y 04, @1 I'Vl.’ 1) and (o, b, ..o 1)EW).
Z® = {(2o(50) T ---» aj(sj)ij)l(ao(so), wooy(s))EZY, j=l=k,
and (7, ..., {;) is a member of the fifth éomponent of % (a,A(s,)).}
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Now we define the mappings of: [Z2),~[Z?;, (=0, ..., k) as follows: Let a2
and «f be identity mappings, and for i=1, ...,k—1 take an arbitrary element
5;4,€[Z%);, where %, (s)=(b;...by, ug, u;[S,,, ), 0;, Wi, 7;), then we define a2(s;t)
to be a;(s)¢&; (1), where &2 S, ~{1,...,|S,|}.

We have to show that for i=1,...,k—1 of is a bijective function. Let s;¢,=
=5,1;,(€Z?) and assume that s;5;. Then one of s; or §; is a proper initial segment
of the other one, which contradicts the definition of the configuration, thus of is .a
well defined function.

Assume that of(s;2)=07(5;f) such that 5,55 or £,=§. If s5;%#5 then
o (s)#0;(5) and &; is a function whose range is N thus o;(s)¢;(2)# o (5) & ().
If 5,=5; and 1,7, then of(s;5)=0;(s)&(E) = (s)Ei(F)=a2(;T) since &(r) 7
#&,(f) thus we obtained that of is injective.

Let 5;7,€[Z?];, then there is an element (S, ..., 5if;, ..., 5;£)€Z% where

j=i. By the construction of Z2%, (5, ..., §;, ..., §;, ..., 5)€Z* for some 5.1, ...
s S(END), 1=j=l=k, and

2 (5) = {(b, by, 00, 00, V(@)L ..V (0)) @ 8, W, T) if 1=k,
e = (bk bla Go» uk[Suk’ (pk]a éka Wka fk) lf l = k,

and (%, ..., %, ..., [;)EW,. By the induction hypothesis there is an element
(Sos «vos Sis ovvs 855 ..0n 8) Of Z1 such that

(%0 (50)s -5 03 (5s w5 (875 -y (8D)) = B - Sty ves B oves §))-

Since #,(s;) =7:(%¢:(s;)) by definition, we can apply condition (2) (ii) stated for y,, which
tells us that (%, ..., &;, ..., L)W, iff there is a (&571(), ..., &2 (), .., E72(ED)EW,
for ¢, ..., ¢; defined in the condition. Thus -

(5056'1(?0), LR ] siéi—l(il’)a ey sjéj_l(ij))ezzs
“?(si fi—l(fi)) = a;(s) Ei(fi—l(ii)) = o;(s)f; = 5,1,

hence of is surjective (f=1, ..., k—1). Thus we have proved that o} is bijective
@=0, ..., k).

Let 5,£S,. be arbitrary and consider its unique decomposition §,=s,# where
Skesqh %k(sk) has the form (bk"'bl’ Uy, uk[Suk, (pk]9 @ Wk’ Tk)a é(sk)zwsk(uk)s
€S, In this case #,(s)(=7.0a(s))) has the form (b;...by, uy, 1,[S,,., @il,
i> Wi, 7). Using condition (2) (iv) stated for y,, 0,(t)=(to, ts, --., &) iff G(t)=
=(&(to), E1(t), ... &(1)) for &, &, ..., & defined in the condition.

Using the induction hypothesis @(s)=(sp, 51, ... 5) Iff @1(s5)={(otp(50),
#,(sy), ..., %(s;)). By the definition of ®2 and @2 we obtain that

O%(5) = (Sotos S1tys s i 1y) iff
e}5) = (%(So) &), an (s) €1 (2, cees O (S5) fk(’k)) =
= (a%(so to)s 03(S1 1) ..., 03 (S, tk))'

Thus we have proved that condition i) holds for the mappings of, ..., «.
Let (soto, ..., 5;2)€Z? be arbitrary, where 1=j=k and (s, ..., 5}, ..., S€Z*
for some s;.q,..,5€(N¥), (j=I=k), moreover x,(s)=(b;...by, tty, u[S,,, @il

moreover
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01, Wy, 7p)-and; (1, ..., 1;)€W,. By the induction. hypothesns (ao(so), a,(s,))e A
By the’ deﬁmtlon of %, % (% (s))= y,(zc,(s,)), ie, - . . ,

{(bl b17 Up, 0'1(1 " (‘71))[{1 , ¥ (0'1)} ‘Pl]a Qh Wl, Tl) if l =< k
A‘(a’(s’)) (b bla Uy, Uy [Suk, ¢k] (4 Wk: Tk) if 1=k..

We can apply condmon (2) (u) stated for 3 1 ‘which tells us that (§o(to) , Ei(1))EW,
iff (15, ..., t))€ W, for the mappings &,, .. SE; ‘definied in the condmon Thus

‘ (ao(sofo) ‘12(51 J)) (ao(so)go(to), (S)f ( ))622

Conversely, let (1,0,, , ¥ J)E Z~ be arbltrary By. the constructlon of the set Z? there
are two vectors (3,, .. . s,)EZ1 (I=) <l<k) and (o, ..., ;)€ (N*)?) such that
v;=5;1; for i=0, .. ,j, and (to, .. i) is in the fifth component of %,(5). By the
induction hypothe51s (52 (Go)s - 1(sj), s 07 1(5))EZY. We know that #%,(5)=
=4 (27 2(5))). Accordmg to. condmon (2)(11) stated for y, we obtain that
(&1, ..., E71(T) is in the fifth component of /,(s,) for the mappings &, ..., ¢;
deﬁned 1n the cond1tlon Thus (ao 1(s(,) Eo (to) - O 715 &574(F;))€Z3, moreover

2(oz 1(s){ 1(t))=§i for i=0,...,j.

‘We have proved that condition ii) holds for ‘the mappings a:('*;, ey O,
It has remained to prove that condition iii) holds for oZ, ..., ak. Let (soto,
.- 8;1,)€Z* be arbitrary, where 1=j=k, (so, ..., Sj5 ..., SD€EZ? for SOME Sjyq, .
SI(EN*) Jj=I=k; and 'fl(st) (bl -by; U, ut[Su,a (PI] Q> Wta'ft) and (t()a
sl )E W We rknow, y thati;)- Q1 ((s(,,. o S8js e SD))=by L brug(1, L, v(ug) J{L, -
()}, 9g). forsome. 9q: {I; .3 v(ug)}—~ TGO(YO) and ‘c,((to, s ,))—c clto
for some c;i€A;, .. . €Ay, LE{L, . ,,v(uo)} thus Q%((soZp» ..., 5; J))—c clso(to)
By the induction hypothes1s (%(So) 0 (87), ., ou4(s))EZY and

(b bl? Up, ul[Sun (pl]’ Q- VV!: Tl) lf I - k

/l(“z (Sl)) = l’z(/l(sl) = (bl by, u, 41(51)(1 -5V (”t(sl)))[{] l("‘1(51))} @
, e TR BN QUVVI’TI) if |l <k. :

We can apply condltlon 2(v) stated for y, which tells us that 7,((zo, ..., £)))=¢;...c1 4o
iff’ f,((éo(to) " ’c,_( ))) ¢;...c&o(ty) for the mappings &, ..., &; defined in the
condmon

ThusM t,((«fo(to), A é () =c;...c1&o(tp) holds. By the induction hypothesis,
Ql((oz0 ENN-REN g a,(s,))) b Shyug(1, o, ()L, ... v(u)}, o). By the
deﬁnmon of Q and o} (=0, ,k),

02((0o(50) Eo (to)s > 2 () ;1)) =
= Q*((63(So o) ---» 05(5;2))) = €j-- €1 90(t0)-

Thus  Q2((solo, - ;1)) =25 (So o), .., % (s ;1)) holds. The proof of the first
part of the statement is complete. The second part of the statement can be proved by
induction on the length of the transition K,=>¢K,.

a) The length.of K,=&K, is zero, (K,=K,). Irivial.

b Assume. that the statement is true for K,=g¢K;, Ky=>gK, and for the functions
(%) andithat- K, =¢K, holds. By the definition of the relation = there are mappings
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#%;: [ZY,—~Z4() for i=0,1, ..., k such that for every (5, 5, ..., §)€Z' (1=j=k)if
QY (55 S1 -0 5))=0;...byue(l, ..., V)L, ..., v(u)}, S0l (BjE€EA;, ..., b€ 41, uyE
€GoUY,, 99t {1, ..., v(u)}~T5(Yy)) then Z(s))=uy, for 7=1,..,j, »(s)
has the form , . R -

{(bi...bl, g, 0i(1, o VDL, - V(0 B 80 Wy T) if 1= im k-1,
(bk"' bl’ Uy, uk[Suk, ¢k]’ [ Wk, Tk) if i= k,

moreover (%(3o), ..., %;(5;) )€ V;. - . ) : .

Take the mappings x;: [Z];—~Z4(/) for i=0,..,k—1 defined by x;(s)=
=74 (%,(¢;(s;))) for each s,€[ZY);. Notice that x; is well defined, because «; and y;
are bijective. According to Definition 3.2 for each 5,€[Z1],, @ (s, is the only element
of Z! which has the form (5, ..., 5,_1, 5;) for some 3, ..., §x_1,€ N*. We know that
(3%Go), ---» Fr—1(k—1), % (5) )€ V. We can apply condition (1) stated for - 7y,, ...
eevs Pk—15 Y&, Which tells us that there is a unique o€ Zg(k) such that y,(c)=5%.(5)
and  (yg10¢o(s50))s - Viti(Pk—1(sk—1)s 64 )EV;. Let %,(5,) be ;. By the induction
hypothesis for each (sq, 51, ..., s)€Z* (1==k), Q1 (S5 515 ---» 5;)) =2 ((eto(50)
(1) ..., a;(s;)). Since x,=%, and for each 5,€[Z"]; the first two components of
%;(s) are equal to the first two -components of x;((s;)) for i=1, ..., k, moreover
for every (o, 815 ..., SHEZY (1=j=k), (%(50), %1(8D); ..., %;(5;))EV; it follows that
the mappings »; (=0, 1, ..., k) satisfy condition (1) in the Definition 3.3.

The mappings x; (=0, 1, ..., k) uniquely determine a configuration K,=
=(q2[Sp, Y2, @2 Z2, Q) such that K;=¢K, holds. o

From now on the proof of the second part of the statement is similar to the
proof of the first part.

_ The proof of the theorem is complete.

4. Eﬁ(ample

Let us consider the folloving two R-transducers:
Ay = (Gy, Yo, 43, Gy, Y1, 45, Zy,)), where
Go = Gy={go}, Yo= {xo}; A
G, = Gi={g} V1= {x1, m}
Ay = {a1, by, c1}, A7 = {a,},
Zg, = {b1Xo~> y1, biXo~ X,
as g~ &1, 2)[{1’ 2}, ot 1—=byl; @ 2+ b,2),
a; 8o~ &1(1, [{1, 2}, @321 1> by1l; @11 2+, 2]}
{(go(xo’ xo), 81(¥1» J’1)), (go(xo, Xo), g1(%1, xl))."
(80(xo, Xo); 810x1, Y1) (80 (X0, X0, 82 (1, X))}
A, = (Gy, Y1, 4, Gs, Yo, A, Zy,), where

i

Tgh



478 L S. Vagvolgyi

A2
[l

- G§= {g2}’ Y2 = {xz, Y2, 22}1
= {a;, b3}, 45 = {a,)}.
Zay = {281~ g(L, D[{1, 2}, ¢21: 1 byl @pp: 20— by1],

by Xy =~ ys, bexy — 23, by Y —~ xz}-

BN
o
I

One can see that

Tq, OTgq, = {(go(xo, Xo)s 82 (%2, xz)), (80 (Xo» Xo)> g2(¥2> J’z))a
. (20(%0 X0)s 82325 22))s (20(%o, X0 82(225 ¥2),
(go(xo’ Xo)s 82(22, zz))}
' We construct the 2-synchronized R-transducer B according to the Theorem 3.5:
B = (Gy, Gy, Yy, Ys, Ay, A, A7. A3, 2, V'), where
Z6(0) = ¥y = GUY,, \
Zg() = {01, 6., 0;,6,), where o, = (b, X0, y1, 9, 0, 0),
g, = (by,x9,%:,0,0,0),
a5 = (1> 20> £1(1, D1, 2}, @3: 1> byl; @5: 2> b, 2],
0a: L—>(1,1); @3t 2~(2,2), {(1, 1), (2, 2)},
730 (1, 1) = byl 150 (2,2) — by2),
G4 = (a1, 80> £1(L, D1, 2}, [@a: 1415 @g: 2>, 2],
ot 1> (1,1)5 04t 2(2,2), {(1,1), (2, D)},
70 (1, D)= b1; 148 (2,2) = ¢, 2)

Vi = {(x0, 61), (o> 62); (80> G3)> (&0 60}

Zg(2) = {05, 04, 04, 05, 05}, Where o, = (byby, X, X2, 0, 9, 9),
os = (b2by, %o, 12, 0,0,0), 07 = (b by, X0, 23, 0, 0, 0),

o5 = (a2a1, 8o, 82(1, 2)[{1, 2}, @g: 1> byby1; @g: 2 byb,1],

0 1—=(1, 1,1); gs: 2—(1,1,2), {(1, 1, 1), (1, 1,2), (2, 2)},

750 (I, L, 1) = bybil; g (1, 1,2) = by by 15 740 (2,2) — byl),
o, = (201, 8. 82(1, 2)[{1, 2}, @o: 1> baby1; @41 2+ byby1],

2: L—(1,1,1); 0o: 2—(1,1,2), {(1, 1, 1),(1, 1,2),(2, 2)},

79t (1, 1, ) > byby1; 191 (1,1,2) > by byl 191 (2,2) = 4l):

Ve = {(xm 01, 05)s (X0, 02, Gg); (Xo, 03,.05), (80, O3, 0g), (8o, 04, oy)}-
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Let us consider configurations K, K, K;, K3, K, K5, K; of B, where K, is a
starting configuration, K,, K;, K, K;, K; are final configurations.

Ko = (aza,8o(X0, Xo), Op: e (e, &, ), {(e; ¢, &)}, Qo (e, €, €) — asa, go(x0, X)),
K, (g«_.(bzblxo, bybyxg), @1: 1 —~(1,1,1); ©,: 2—~(1,1,2),
{L L, D,1,1,2),2,2)} 9 (1,1, 1) — by by X,
Q,: (1, 1,2) — bybyxg; Q1 (2,2) — by xy),
Ky = (g2(x2, x2), 9, 0, 9),
K; = (gz()’z’ ¥2), 9,9, 0)’
= (gz(.Vz, z5), 9, 0, 0),
K; = (82(2'2, V2), 0, 0, ﬁ),
Ko = (g2(22, 22, 9, 0, 9)-

All the transitions from configuration K| in B which are ended by final configura-
tion are the following:

&
|

Ky =g Ky =g K,

Ko=g Ky =g K3,

Ky =g K, =g Ky,

Ky=g K, =24K;,

Ky=g K, =4 K;.

The transition 'K0=>‘BK1 is determined ‘by thé mappings:
#o: {e) > Zu(0); %0() = 2o, |

ny: {e} — Zg(1); 21(e) = o3,

#: {e} —~ Zg(2); %:(e) = ay.

The transition K;=4K, is determined by the mappings:
%o: {1, 2}~ Z5(0); #o(1) = xq5 #,(2) = X0,

% {1, 2} = Zg(1); % (1) = 015 :1(2) = 0,

u2: {1,2} = Z5(2); #:(1) = 055 #2(2) = a5.

The transition K,;=>¢K; is determined by the mappings:
%ot {1, 2} ~ Zg(0); 20(1) = xo5 %0(2) = xo,

1y {1, 2} = Zg(1); (1) = 055 #,(2) = 7y,

%yt {1,2} > Z5(2); #,(1) = a4; #:(2) = ay.
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The transition K,=4K, is determined by the mappings:
%o {1, 2} = Z5(0); %o(1) = xo; 0(2) = xo,

{1, 2} = Za(1); (1) = 033 2(2) = 05,

20t {1,2) ~ £ %(1) = 055 (2) = 0.

The transition K,=¢K; is determined by the mappings:'
%00 {1,2} = Z5(0); (1) = Xo; %,(2) = xo,

2y {1,2} = Zg(1); (1) = 025 (2) = 0y,

#g: {1, 2} = Z5(2); #2(1) = 055 %:(2) = 0.

The transition K,=4K, is determined by the mappings:
xo: {1,2} - Z5(0); 20(1) = xo; %#0(2) = Xo,

x: {1, 2} = Zg(1); (1) = 625 #(2) = 05,

et {1,2} = Z5(2); %:(1) = 673 #:(2) = 0.

One can see that T4="Ty,0Ty,-
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