On the supplement of sets in functional systems

V. B. KUDRYAVTSEV

Introduction

One of the main problems for functional systems (f.s.) [1] is that of completeness.
It consists in indicating all subsets whose functions make a complete set of the func-
tions of a given f.s. by means of f.s. operations. Such subsets are called complete.
This problem is closely related to a supplementation problem, i.e. to the question of
comparison of representable possibilities of two sets of functions under considera-
tion. The problem is to find out when one of the sets is extended to a complete set
“more easily’” than the other, and when they behave identically in this sense. The
paper consists of three sections. Section 1 deals with the problem on supplement for
the systems Z=(P, I) of a general type where P is a set and [ is a closure operator
determined on the subsets of the set P. In Section 2 the results of Section 1 are applied
to the supplementation problem for finite f.s. Section 3 deals with an analysis of
two-valued logics. For major notions see [1, 2).

§ 1. Supplementation problem for the system 2

Let us consider a pair (P, I) or 2 in brief. P is here a nonempty set, [ is a closure
operator determined on the set £ (P) of all subsets of P i.e. I possesses the properties
that 1(Q) 20, I(1(Q))=1(Q) and 1(Q))21(Qs) if 0,20, for all Q, 0,,0,c#(P).
The set 1(Q) is called the closure of Q, the set @ is called closed if I(Q)=Q and is
called complete if /(Q)=P. The compieteness problem for & consists in finding all
complete sets. As mentioned above this problem is the main one for 2. It may be
interpreted in a broader sense. Namely, to find out Q' for a given Q what supple-
ments Q' make it a complete set. In the case when Q is empty we have a complete-
ness problem. The treatment leads to the following question. Let 0, and Q, be given,
we are to know which of them is “nearer” to being complete, or to be more precise,
when with equal supplements Q' the completeness of @, UQ’ will follow from the
completeness of Q,UQ’. We shall denote this relation by Q,00Q,. It is easy to see
that it is equivalent to I(Q,)11(Q,), therefore we can consider Q to be closed sets.
Let us denote by Z(2) the set of all closed subsets from P and consider the relation
. on. Z(2). 1t is clear that this relation is reflexive and transitive, and as a relation
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of preorder it reduces to the equivalence relation ~ on % (%) determined by both

0,00, and Q,00Q; and to the partial order relation < on the factor set %(%)
of the set #(2) with respect to this equivalence. The relation < is determined as
follows. Let O, Q,€B(#) and 0,, @, be the corresponding eqmvalence classes.

Suppose 0,< @, if Q,[0Q,. Thus the study of the relation [J is reduced to one of

the relation ~ on #(%)and < on %(2). We shall call the description of the relation
supplementation problem. Its solution enables us to determine which sets are “more
complicated” and which are “‘simpler” by completing them in the same manner, and
which sets have similar behaviour under these conditions. In considering the problem
it is natural to use the properties of the inclusion lattice formed by #(%). Let us first
recall some facts concerning the completeness problem. From [1] we know that its
solution may be obtained by constructing a so-called criterial system. Namely,
0SS B(2P) is a criterial system, if for any set Q< P its completeness is equivalent to
non-entry of Q as a subset in every set from 8. Criterial systems are known [1] to

sented as 6,(2)U6,(P) where 01(9”) is the set of all precomplete clas<es in # and
0,(2) is the set of all elements Q, Q= P, from %(Z) such that no precomplete class
has Q as a subset. Let us remind that Q€ (%) is called a precomplete class if 1(Q)# P
but 1(QU {a})=P holds for any ac P\ Q. According to [1] we have in the general
case that 6,(2)=0 and 0,(?)=0, 0,(#)=0 and 6,(?)=0, 6,(#)=PH and
0,(#)=0, 0,(P)=0 and 0,(P)=9. The last situation holds when I(#)= P. Further
we shall assume that this condition is not fulfilled for 2 and the pair £ for which
the additional condition 8,(£)=0 holds is correct.

Theorem 1. If Q,, Q,€#(#) then the relation @, 30, holds if and only if
either Q,=P or if Q,#P then I(QUQ)EB(PN\{P} is valid for any
Q'€ B(P)\{P} such that Q' 20Q,.

Proof. If Q,=P or Q,# P and the above conditions are fulfilled, then Q,0Q;
is obvious. Let Q,=P, 0,00, and Q. EQ’ hold for any Q'€ Z(#)\{P}. Con-
sider the set 1(Q,UQ"). If 1(Q,UQ’)= P then our statement is valid. If 1(Q,UQ")=
=P then by virtue of the relation Q,Q, there must be I(Q.UQ)=P but
I(Q,UQ)=0", Q'=P, what disproves the assumed equality I(Q,UQ")=P. The
theorem is proved.

Corollary 1.1. Different precomplete classes from £(#) are not comparable
with respect to O.

The theorem, if symmetrically wused, gives a criterion of equivalence
of two sets. It also demonstrates an obvious sufficient condition of equivalence of
two sets. Let 0y, 0,€2(%), 0,0, and for any Q€ %B(2) such that 0,SQ, if
0,EQ, then Q;2Q,. In this case we shall write Q,[1Q,. It is clear that this re-
lation will hold for Q,0Q,. The converse does not, generally speaking.

Proposition 1. If Q,, 0:¢%#(#) and 1(1Q,, G+#P then Q)~Q,.

Proof. Since by definition 0, SQ, then 0,0Q,. Now we prove that Q, DQl .
Let Q'€ B(P)\{P} and Q’'20, then, because of Q,[1Q, we have either Q’CQ,
or Q'20,. In the first case we have I(Q,UQ")=0, in the second case we have
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1(Q,U0N)=0Q" ie. I1(Q,UQ')P. Hence by theorem 1 we arrive at Q,00,.
Consequently, Q,~ Q, the proposition is proved.

Moreover the class of equivalence with respect to =~ is also characterized by the
following obvious proposition.

Proposition 2. If 0,,0,¢#(#) and Q,~Q, then I(Q,UQ,)~0,.

Theorem 1 also permits to describe the relation [0 in a different form using the
notion of type of a set. Let Q€ #(#) and 74(Q) be a set of all precomplete classes
each of which contains Q as a subset; t4(Q) will be called the type of the set Q.

Obviously, t5(8)=0,(%) and 15(P)=0.

We have

Theorem 2. If Q,,0,€ #(%) then for Q,;[1Q, we have 72(Q;) 215(05).

Proof. If Q,=P or 15(Q,)=9 then the statement is valid. Now let Q,#P
and 15(Q.)#0. Consider n€15(Q,). Since @, 1Q, and 7 20, we have by theorem
1that I(Q,Un)e Z(P)\{P}. Hence by virtue of the precompleteness of = we have
0, S and thereby 75(Q,) 272(Q0;). The theorem is proved.

Corollary 2.1. If Q,, Q,€#(#) and O, =~ Q, then 15(Q))=15(Q))

Note that the statements reverse to theorem 2 as well as to corollary 2.1 are
wrong, generally speaking. They may not hold even for £ such that 6,(#)=0. How-
ever for correct # we have

Theorem 3. If 0O, Q.€#(P) and 2 is a correct system, then Q,[0Q, if and
only if 75(Q1) 215(Qs).,

Proof. The “only if” part follows from theorem 2. Now let 15(0)) 272(Q)
hold. We shall prove that Q,01Q,. If 75(Q,)=9 we have in view of £ being correct
that Q,=P and, therefore, Q,(1Q,. Let 15(Q;)=P and suppose that the relation
0,00, does not hold. By theorem 1 it means that for some Q'€ #(P)\{P} we
have 0’20, and I(Q;UQ")=P. Consider 15(Q’). It is obvious that 15(Q)&
C15(Q,) and in view of 2 being correct we have 15(Q")#=0. Let n€15(Q’). Since
720" weget I(Q,Un)=P.

It follows that 7n’¢1s(Q’) for any n’€15(Q;) what is contrary to the relations
15(0)) 2715 (Q") and 15(Q’)# 8. So, the assumption concerning the incorrectness of
the relation Q;0Q, is false. The theorem is proved. .

Corollary 3.1. If Q,, Qze.@(g’) and # is a correct system, then Q,~ Q, if and
only if 75(Q1)=14(Q).

Theorem 3 and corollary 3.1 permit to describe the relation [0 when £ is a cor-
rect system. If £(Q) is known for Q€#(#) then the class of all sets equivalent to the
set O consists of all 9’ such that 7(Q")=1(Q) i.e. this class is uniquely determined by
the value of 7. We denote it by K,. Then the relation K,<K, on #(%) is equiv-
alentto 7' <.

Let |A| be the cardmallty of the set A. Consider [#(Z)|. 1t characterizes the
variety of systems in the supplementation problem By corollary 1.1 we prove the
validity of the following statement.
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Proposition 3. We have
16,(P)| = |4(2)| = 2171,

According to [1] |6,(#)| may take any value =2/l depending on P and I
thus |#(2)| is majorized from below by the same values. In particular, the equiality
|%(2)|=2?| is possible which implies extremely great variations of cardinality of
the class #(2).

§ 2. Supplementation problem for functional systems

A functional system (f.s.) is such a system £ =(P, I)in which the set Pis a set of
functions, and [ is the closure operator given by the automation. If P consists of
functions defined on the collections from the subsets of a natural series with values of
the very functions taken from the natural series, then the f.s. is called a truth func-
tional system (t.f.s.). If P consists of lexicographic functions, then the functional
system is called a sequential functional system (s.f.s.). Typical examples of f.s. are
many-valued logics (examples of t.f.s.) and algebras of automata (examples of s.f.s.).
An important class of t.f.s. is formed by finite t.f.s; (f.t.f.s.). They are defined as fol-
lows. Let E,={0,1,...,k—1}, k=1, U={wy, u,, ...} be the alphabet of the vari-
ables u,, whose values are the elements from E,, let P, be a set of all functions
S @y, ..., u;)) with values from E,, M, & P, and let I, be a special closure operator
called a finite automaton-given operator. I, is specified by a collection Q of finite-
place operations @ given by the automaton over the elements from M, which falls
into two parts ©, and Q,. The collection @, gives the closure operator I, correspond-
ing to the closure of the subsets M’ S M, with respeet to taking all the superpositions
of functions from M. The collection @, is finite. The system #,=(M,, 1) is called
a finite t.f.s. Consider the partial order < on the factor set %(.#,) in the form of an
oriented graph. The elements of #(.#,) will be points in space. Any two points a and b
are connected with an oriented edge from a to b if b<a and there is no point ¢
distinct from a and b such that b~<c<a. The graph obtained is denoted by G(#,)
and the number of its vertices is denoted by |G(.#,)|. It is to the description of this
graph that the supplementation problem is reduced for fit.s.f. We introduce some
notions to characterize f.t.f.s. 4. Let MS P, and M™ be a set of all functions
from M which depend only on variables from the alphabet U,={u,, u,, ...; u,},

let p{ be a number of elements in P®™. It is clear that p™= > Ci.k¥. Let
Px k Dy n

=1 .
S(P{™) be a set of functions from P{™ each of them is equal to u;, i=1,2; ..., n for
some i. For the finite set M’S P,; we shalluse m(M*) for the greatest index of the
variable of the functions from M’. Let Q,={w,, ®,, ..., ®,} hold in the fit.fs. 4.
Let the value of w;(fy;fe, ---, f;,) be defined and

m; = m({fi.for - Sfspp @i (1o fas o fD)s G =1,2, .51

Since m; depends only on w; then we can introduce the notation |w;| for m;. Let

m(Q2;)=max {|w,], |w, ..., |®,{}. If A, is finitely generated and M} is a set of finite

M’ M, suchthat Io(M’")=M, then let my= Minfl . m(M’) and s=max (mg, m(8y)).
M



On the supplement of sets in functional systems 15

Let the nonempty set M S P NM, be called R-set if I,(M)NPS=M and M#
# P& NM,. We denote it by R. Let #=(RUS(P®), R). We shall say that the
functlon f(xy, %3, ...y x,) from P, retains % if f(g;, g, -..» 8x)€R holds for any
collection of functions 1582, ---» & from RUS(F?). The class of all functions
from M, with # will be denoted by U (%). We will call the R-set R maximal unless
there exists an R-set R’ such that U(R)2U(R), R#R’. Let, for f.tfs. #,, R be
the set of all maximal R-sets, and let R be a set of all pairs & for which RER.

Theorem 4. If an f.t.fis. #,=(M,, I) is finitely generated, then the following
statements are true:

) IG ()] = 207+

holds for the graph G(4));
2) the graph G(4#;) can be constructed effectively.

Proof. We start from some given finite set M EM, such that Io(M)=M,.
According to [1] the finitely generated ft.f.s. ., is correct, s and R can be found by M
effectively, U (R) coincides with the set of all precomplete classes in .}, and

|U(R)|§2P’(‘S). Let R={%,, #,, ..., #} and U;= U(%), i=1,2,...; 1. Consider
the set X whose elements are expressions of the form A= & U;, where i,<i; and

Ui, #=U;, for j’<j”, t=0. The formula of o is mterpreted as a set of functions
Wthh Is equal to the intersection of the sets U;, which form 2. This set is denoted by
9. For =0 we have an empty conjunction ¥, which by definition generates the

whole set M,. Let z(2W)= 'c(QI). We introduce a partial preorder relation on 2 putt-
ing ALV if and only if 1 (W) 21(B), 7(#,) being an empty set by definition. It is
obvious that this preorder coincides on X (by the above interpretation) with the rela-
tion [J, and is reduced to the equivalence relation = and the relation of partial order
~< on the factor set £ of the set X with respect to this equivalence. Represent this
partial order as a graph & (.#,) in the same way as it was done in constructing the
graph G (4,). Now establish a connection between these graphs. We see that for any
150,(4,) the following holds: if, in the graph G (#,) and G (4,) thereexists a vertex
which denotes a class of sets of a given type 7 (a vertex of type 7), then this vertex is
unique, and both graphs have such vertices simultaneously. Let us establish the cor-
respondence between the vertices of the graphs G(.#,) and & (.#,) by the property of
coincidence of their types . Since it is a one-to-one correspondence, then /=

=|G(A)= 22p“(s) holds and thereby relation 1) is established. Now, if we extend the
correspondence between the graphs to the correspondence between the edges con-
necting the corresponding vertices, we can see that these graphs are isomorphic, so,
to establish property 2) it is suffices to show that the graph ®(.#,) can effectively be
constructed and the types of its vertices can effectively be determined. For this pur-

pose we first establish that the relatlons (1) %A, S, and 2 UP AL are equiv-

alent if 9,; WeZ and g=k*" 2P” . This results from relation (1) being a con-
sequence of (2). Now let us prove it. Suppose M P,. Let M™ denote a set of all
functions from M™ depending exactly on all the variables from U,. We construct a

pair  #,=(RPUS(P®)®, R{®) corresponding to #;=(R,US(PM), R) and
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introduce a set U (£, by analogy with the set U (£;). We see that U (%)= U (%))
holds. For a set R US(P®)® we construct a matrix pair T as follows. Let all
hy, h,, ..., h, be the functions from R and all 4,, 4,, ..., 4, be the functions from
S(P®)®. Their choice can be represented by the summary table

u, Uy ...u; |hy hy ... h, A Ay ... A

ay 033 ...43, |by by ... by €y Cg ... €y

gy Qg .- Qg bvl bv2 bvr € Cug -+ Cos

akl]_ aklz e ak-_, bk'l bk'2 con bk’r ckll Cklz oo Ckls

Let us single out two of its matrices

{1 1 . . . )
011 Ups .- bl’ €11 €12 ..o C3g

T; = .
bkll bkaz vee bk'r Cysy Cpsg o.. Cysg
bll b12 o bkr
T/ =
i - “ne
bk'l bk32 e bk"r

and consider the pair T;=(T7, 7;). We shall say that f(x,, x;, ..., x,,) from P,
retains 7; if for any matrix
dy dyg ...dy,
T=
dk"l dk'2 oo dk'm

whose columns are all taken from the matrix 77 the column

f(d11$ d12s LRAR dlm)
f(T) =
f(dk'l’ dk'29 ceey dk"m)
will be the column of the matrix T7. Let U(T;) be the set of all functions from M,

retaining 7. We see that U (T)=U(£;). Now we introduce an operation with
tespect to the matrices 4 and B. C=A4-B, if C.consists exactly of all such columns
v which result from placing the column « of A on top of the column 8 of B.
We denote by A" the result of multiplication of A4 by itself  times. For the expres-
t

sion A= & U,, t=0 we shall construct a pair T(W=(T('W), T ”(A)) where
j=1
W =T;"-T, .- T},

t
T =T T T, S, =2R0

w=1
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and r,>0 for all w. By introducing aset U(T(YW)) by analogy with the.set .U (T})
we can see that U (T(U))= ﬂ U (7)) and hence U (T(A))= A,

As established in [1] the relauon U@ =M@ holds. Therefore in the course of
proving relation (1) to be a consequence of (2) we may assume that 2; and U, are
distinct from U,.

Now suppose that relation (2) holds whereas relation (1) does not. It means that
in 91, there is a function Ssuchthat f¢ 91,. It is clear that it must depend on » variables
and v>gq. Notice that by construction the matrices 7”(%)and T ” () have columns
of the same length equal to ks - 2°<) for any U from 3, =%,. Thus, these matrices
have not more than g different columns. By assumption f does not retain T(20,).
This means that there is a matrix T consisting of the columns of the matrix 7(2[,)
such that f(T)¢ T”(,). The matrix T has not more than g different columns, so,
we may assume without loss of generality that it is formed by successive groups of
equal columns. In accordance with these groups we divide the variables of finto the
same groups and in f replace every variable of the j-th group by the variable x
1=j=gq. Asaresult we get f’ from 2P not retaining 7'(2L,) either, what is at variance
with relation (2). Thus, relation (1) is a consequence of relation (2).

Let now UeIN\{U,}. Construct T(A). According to [1] we can effectively
construct the set M{® and, consequently, the set U (T(QI))(”—(QI)(“’ Since (1) is a
consequence of (2) we can effectively define all precomplete classes U; such that
U299 and thereby estimate t(2). Knowing these values and the value of 7(Wy)
we can construct the graph 6 (.#;) and, consequently G(A,). The theorem is proved.

It is known from [1] that f.t.fs. #,=(P,, I,,) is finitely generated and for the
number |0, (#,)| of precomplete classes in it we have

10:(P) ~ 8(k)- k- 253" for koo
where d(k)=2 ifkiseven, and 5(k)=1 if k is odd. By this we arrive at
Corollary 4.1. The graph G(,) can effectively be constructed and

3(K)- k- 285 < |G(@] 5280+ % T for koo,

§ 3. Supplementation problem for Post classes

Let us consider the supplementation problem for the fit.fis. Mp=(M,, I,,)
where M,SP,. E. Post is known to have described all the closed classes M, [2]. He
established that the set of these classes is countable and that they are finite-generated.
He constructed an incluston lattice formed by these classes. The set of the classes in
question is reduced to the following: C;, 4,, D;, L,., O,, S,; P;, F?, F;> where
i=1,2,3;4, j=1,2,3, k¥=1,2,3,4,5, 1=1,2,...,9, r=1,3,5,6, 5s=1,2,...;8,
n=2,3, ....

The class C, contains all the functions of the algebra of logic and coincides with
-P,. C, consists of all f(x;, x,, ..., x,) such that C, consists of all £(x;; Xp; -.. X;,)
such that C,=C,NC;. The class 4, comprises all monotone functions; A4,=
=C,NAy; A3=C3NA;; A,=A,NA;. The class D; consists of “all functions

2 Acta Cybernetica VIII/1
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f(x1, X, -5 x,) such that f(x;, x,, ..., Xx)=f (X1, Xz, ..., X,). The function
F*(X15 Xas -0 s Xp)=F (%1, X3, .., X,) being called dual with respect to f and the set
IN* consisting of all functions dual with respect to the functions of M is called dual
with respect to M; the class M is called self-dual if M=M*; D,=C,ND;; D,=
=A,ND,.

The class L, consists of all functions f (x1, X25 ..., X,) suchthat f(x;, x,,..., x,)=

=2 x"+d(mod 2); L2=Can1; L3=C30L1; L4=L20L3; L5=D30L1- 09

i-1

comprises all the functions essentially depending on not more than one variable;

=4,N0y; 0,=D;N0y; 05 C.NO0y; 0=C3N0y; 0,=0;N0¢; O, consists
of all constant functions; 0,=0;MN0,; 0,=0;N0,;. The class S; consists of all
functions f(xy, Xz, ..., x) x1Vx2V .Vx, and all constants; S;=C,MNSg; S;=
=C3NSs; $1=S83NS;. The class P consists of all functions fx, Xyy oo X,)=
—xl&xz& .&x, and all constants; Pi=C,NP;; P3=C,;NPFg; =P; N Pg.
A function is said to satisfy the condition a", n=2 if any n collections in which it ig
equal to 0 have a common coordinate equal to 0. Analogously, with the replacement
of 0 by 1 we introduce the condition A”". The class F} consists of all functions with
property a®; Fi= C4ﬂF;'; F}=A,NF}; F}=F!NF}; F? consists of all functions
with property A", Fr=CNF}; Fi=A;NF}; Fi=F!NFr. A function is said to
satisfy the condluon a ifallthe collectlons in which it is equal to zero have a common
coordinate equal to zero. Again by replacing 0 by 1 we introduce the property A=.
The class Fy° consists of all functions with property a~; Fi°=C,NFy; Fe=A,NF;;
F§°=F;°OF;°; Fg consists of all functions with property A~; F5°°=C4OF§°;
Fr=A,NFgy; Fe=FNFy. The above inclusion lattice formed by these classes
is given in Fig. 1. In this figure classes are represented by points. Two points are
connected by an arc if the underlying point denotes a class contained immediately in
the top class (i.e. there are no intermediate classes between them). The lattice has an
axis of symmetry. Self-dual classes are represented by points on the axis; classes dual
with respect to each other are represented symmetrically with respect to the axis.
The self-dual classes are C,, Cy, Ay, Ay, Dy, Dy, D;, L1 Ly, Ly, Oy, Oy, Oq, Og, O,.
For other classes we have

Cy= Ca, A2=A§a L2=L§9 P{=S]).k’ P:;=S;<9 P;=S;=a
P6=S:a 05=0:9 02=0§9 F]’.l=(F;)*’ F;=(F3)*,
F3=(F)Y, F{=(F), =), FP=(F),

. Fg& = (Fr)', Fy=(FO*
Thus, the supplementation problem for any f.t.f.s. 4, is reduced to considering
such f.t.f.s. #, for which M, coincides with one of the classes of the set
Z = {Cla Csa C‘h Al: Aas A49 Dla DZ! Daa Lls L3s L49 L5a
’ FE, Fé', F';’ H, F;’ F:’ F’;°, F;,P],,P:;,PE,P{;, 01,03, 041 089 07: 08: 09}-

By virtue of theorem 3 and corollary 3.1, the solution of the supplementation prob-
lem, under. condition that M,€Z, is as follows. By the aid of a Post lattice we cal-
culate 74 (M) forevery closed class M’SM,. The set of all classes of the same type
of 7 is declared the class K. On the set of these classes we introduce the relation of
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partial order which coincides with the relation of inclusion for types of classes. As
already mentioned the attributing of closed classes to a single class K, corresponds to
2z, In this way we construct the relation OO over #(4,). Now we give the Post
lattlce and the results of calculations for the graph G(.#,). There turned out to be
eleven graphs of this kind accurate to isomorphism. They are given in Fig. 2—8 with
the edges oriented from top to bottom. Now let us describe the values of the
parameters K, for different graphs and classes M,. -

2
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k12345

Fig. 2

In Fig. 2 we have the graph G(C,). Here
K, ={C}), K ={C,, F},F}, .  F}, .., F7},
K, ={Cs, F}, F§, ..., F}, ..., F5*}, K3 = {4, Pg, S}
Ky ={Ds}, K;={Li,Oq},
Ky, ={C,, FE,F}, ... F}, ... F& , P}, F}, ..., F}, ..., F{°},
Ky ={4;, F?, F}, ..., F}, ..., F;°, S5, Pg},
Kys={4,, F;, ..., F7, Fy, Sa}, Kis = {Ly},
. Kgs ={0s, 07}, Kps ={Ls}, K5 ={Ls, Oa},
Kuss = {day FE, F2y oo F& F2 FR, oo P P S,
“ K1;4 ='{D.1}’ Kizs = {05, Oz}, Kags = {Oq, Oa},

Kiony = {Dy)}, . K1'245 = {L4}’ Kiosss ={0,}." .
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Fig. 3

In Fig. 3 we have the graph G (). Here
K, ={4:}, Ky ={4,, F,F, ..., F;}s
Ky ={4;, F}, F}, ..., F7}, Ky={Se}, K.,={Ps},
Ky = {4y, F F¢, ..., F&,F2LFS, ..., FP, Dy},
K5 = {53}9 Ky = {Ss}s Ky, = {P é}a
Koy = {P3}, Kiy={05,0;}, Kipz= {Sl}s
Kya = {P ;}, Ko = {05, 02}, Koz = {06, 03}9
Kyo3s = {01}-




22

V. B. Kudryavtsev

In Fig. 4 we have the graph G(C,). Here
Ko={C}, K ={C, F},F}, .., F°,D},
Ky ={43, S5}, Ks={Ls}, K,={F, F3,... Fg},
Ko = {4y, F}, F}, ..., F, $1}  Kis ={La},
Ky={F3, F2, .. F}, Ky={F}, F},.. F, P},
Koy = {F¢, F3, ..., F°, P1, Dy}, Koz = {06, 03}, Koy = {04}

Fig. 5

In Fig. 5 we have the graph G (%;). Here
K, = {Ll}9 Ky ={L}, Ky= {La}: K; = {Ls}’ K, = {0,, 04, 0,},
K= {Oss 02}, Ky = {Os, 03}, Ky = {04}, Ky = {L4}, Kygsy = {01}~
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In Fig. 6 we have the graph G(C,). Here
Ko = {Ca}, Kl = {F]_z, F]:?, veey Ffo}, K2 = {Dlv L4}, KS = {A4},
K4={F521F53,-"’F;}9 K13={F22,F23,...,F;°,S1},
Ky = {Fszs Fga S P{}’ Ko = {Dza 01}-

;23
Fig. 7

In Fig. 7'we have the graph G(Z). Here
Ko={F}, K ={F*,F}*, ., F), K={F), K={F),
Ko = {F2*Y, F?+¥8, ., F7}, Kig={F3%, F}*?, ..., F3, Py, Og, Og},
Kn={F)}) (1=2, Kn={F4D} (n=2,

Kygs = {F3*Y, F§*3, ..., F3, P;, O,}.

- Ky

Fig. 8 -
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In Fig. 8 we have the graph G(.#,) where .
M,€{4,, Pg}.

For M,=A, we have K,={4}, Ki={A4, F3, F3, ..., F5°}, K;={S;}, K3=
={F%, F, ..., F7, P3}, Kyu={51}, Kus={F§, F§, ..., F&, Pi, D3}, Ky={04}, Kigs=
={0,}.

For M,=P; we have K,={Pg}, Ky={Pi}, K;={0;, Os}, K3={P3}, Kyo=
={0,, Os}, Kiz={03, O¢}, Kis={P1}, Kiz={0:}.'

K42

Fig. 9

In Fig. 9 we have the graph G (.#,) where
M€{F;, F7, F§, F}, Fy, P;, Py, Dy, Dy, Ay, Ls, Ly, Og}.

For M,=F} we have K,={F}}, K,={F% D;} for n=2, and K,={Fg} for
n>2, Ky={FI*, FI*2, .. Fy, P}, Og, Os), Kis={Fs*", ..., F&", P,, Oy},

For M,=F we have Ko={Fy), K,={F5"}, Ks={P}, Os, O5), Ks={P}, 0,).

For M,=F? we have - K,={F%); Ki={Ds}, K;={F%, F¢, ..., F, Pj}, Kpp=
= {01}-

For M,=F! we have K,={F?}, K,={F*', Fg*? ..., Fy}), K,={F§, Dy}
for n=2 and K,={Fg} for n>2, K,={Fg*', Fg*? ..., Fg, P{, O}.

For M,=Fy we have K,={Fg}, K,={Fs, P}, Oq,0q), Koy={F&}, Ky=
={Fg, P{, O}.

For M,=P; we have K,={P3}, K;={0s, O3}, K;={P;}, K,;.={0,}.

For M,=P; we have K,={P;}, K,={P{}, K,={0;}, K;2={0,}.

For M,=D, we have Ky={D,}, Ky={L,}, K;={Ds}, Ky;={0;}-

For M,=D, we have K,={D;}, K;={D;, D;}, Ky={Ls, Oy}, Kiz={L4, Or}.
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For M,=A, we have K,={A4,}, Ki={F;, F3, ..., Fy", 8}, K,={F;, Fg, ...
wes F&, P}, Kyp={D,, O4}. '

For M,=L, we have K,={Ls}, Ki={L}, K,={0s,O¢}, Kiz={0:}-

For M,=L; we have K,={L;}, K;={L,}, K.={04}, K1,={0.}.

For M,=0; we have K,={0g}, K;={0,, Os}, K;={03, O}, Ki3={0,}.

Fig. 10

In Fig. 10 we have the graph G (4,) where
M2c{04, O, Oy}-
For M,=04 we have K,={0g}, K;={0;}, K,={03}.
For M,=0, we have K,={0;}, K;={0.}, K;={05}.
For M,=0, we have Ky={0y}, K,={0;,0,}, K;={0,, 04, 0, Og}.

¥s

I

X,

Fig. 11

In Fig. 11 we have the graph G(4,) where
M,e{P{,D,, L,, Fg, F§, Fg°, 0.} where n>2.
For M,=P; we have K,={P;}, K,;={0,}.
For M,=D, we have K,={D,}, K,={0,}.
For M,=L, we have K,={L,}, K,={0,}.
For M,=F; we have K,={F*}, K,={F5, P{,0,}.
For M,=F? we have K,={F}}, Ky={F*', Fg*%, ..., Fy°, P{, Oy}.
For M,=F;° we have K,={F;}, K;={P;,O:}.
For M,=0, we have K,={0,}, K;={0,}.
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. In Fig. 12 we have the graph G (/) where M,€{0,, O,;}. It has one vertex cor-
responding to K, which coincides with {0, } or {O;}.

(- P ¢

0
Fig. 12
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