Formal properties of literal shuffle

B. BERARD

) Abstract

We introduce the literal shuffle operation, that is a more constrained form of the
well-known shuffle operation. In order to describe concurrent processes; the shuffle
operation models the asynchronous case, while the literal shuffle operation corresponds
to a synchronous behaviour. ‘

The closure properties of some classical families of languages under literal shuffie
are studied and properties of families of languages deﬁned by means of literal shuffle
are given.

Introduction

The shuffle operation naturally appears in several problems, like concurrency of
processes ([9], [10], [11]), or multi-point cominunication, where all stations share
a single bus ([5]). That is one of the reasons of the large theoretical literature about
this operation (see for instance [1], [3], [6], {7]). In the latter example, general shuffle
operation models the asynchronous case, where each transmitter uses asynchronously
the single communication channel. If the hypothesis of synchronism is made (step-
lock transmission), the situation is modeled by what can be named *literal” shuffie.
Each transmitter emits, in turn, one elementary signal. The same remark holds for
concurrency, where general shuffle corresponds to asynchronism and literal shuffle to
synchronism.

There are no specific studies of literal shuffle. One of the reasons is perhaps that,
when adding the full trio operations, literal shuffle is as powerful as general shuﬁle
Nevertheless, when a more precise approach is made, literal shuffle appears as satisfy-
ing specific properties. In the present paper, we study the literal shuffle operation,
particularly in relation with the classical families of languages: regular sets, context-
free languages, context-sensitive languages and’ recursively enumerable sets. The
paper is divided in three sections. The first one contains some specific definitions about
shuffle and literal shuffle, and some basic properties of these operations. In the second
section; we study the closure properties of the families Rat, ¢f, ¥ and £ under

-literal shuffle and we show that the family of recursively enumerable sets is the smallest
full trio closed under iterated literal shuffle, thus extending a result.of M. Jantzen [6]
about the shuffle operation.



28 B. Berard

In the third section, we give some properties of the language families obtained
by using literal shuffle, in the same way as the families Shuf and & were studied in
{6]. The main purpose of this section is to state that the two families obtained that
way and ¥& are incomparable.

Notations and basic definitions

Let X be an alphabet. X* is the free monoid generated by X, and ¢ will denote
the empty word in X*.

Let fbe a word in X*, | f| is the length of f and if f is not the empty word, f
is the it8 letter of £, | f|, is the number of occurrences of the letter x in f.

A word g in X* is a subword of fif f=ugv, for some, u, vin X*. If u is the empty
word, g is a prefix of f.

Fin, Rat, €1, 4%, #& will respectively denote the family of finite sets, regular
sets, context-free languages, context-sensitive languages, recursively enumerable
sets. Let X and Y be two alphabets. A homomorphism k& from X* into Y* is said

to be: non erasing if A(X)SY*, where Y+=Y*—{e},
alphabetical .. if h(X)SYU{e),
a coding if h(X)2Y,

an isomorphism  if hand h™! are codings. In that case, Y is called a copy
of Xand if Lis a language in X*, h(L)is called a copy of L.
S is the class of all homomorphism and # -1 is the class of all inverse homomor-
phisms.

A full trio is a family of languages closed under hoinomorphisms, inverse homo-
morphisms and intersections with regular sets. A=(¢, #~, AZ) will denote the
full trio operations, where AZ is the class of intersections with regular sets. D{*
the resticted Dyck set over the alphabet {a, b} generated by the context-free gram-
mar with productions:

S—»aSb+ SS+¢ (see [4] and [3] for details).

Part 1 — Shuffle and literal shuffle

The shuffle operation will be denoted by the symbol m and is defined for lan-
guages L and M in X* by

LuM = {f = uyvy... Upvy, #;,v; in X*, uy...u,€L, v... 0,€EM}.

The iterated shuffle will be denoted by m*. Let L be a language in X*, then [™*=
= U L,, where L,={e} and L;,,=LmL. The families Shuf and ¥ were intro-

duced by M. Jantzen [6]: Shuf=(u, m, m *)(Fm) is the least family of languages
including Fin and closed under union, shuffle and iterated shuffle. $&=(u; -, *, m,
mr*)(Fin) is the least family of languages including Fin and closed under umon
product, Kleene star, shuffie and iterated shuffle.
- We give now the specific notations of this paper and make the ideas more precise
about literal shuffle. ,




Formal properties of literal shuffle 29
Let fand g be two words in X* with the same length p. The interleaving I of the

words, £, g is defined by:
I(e,e)=¢ if p=0,

I(f, g) =f(1) g(1) ...f(") g(p) if p=0.
Let L and M be languages in X*, we define:
1) The initial literal shuffle m, :

LmlM = {I(fnfz) glfl’fz,g in X*, |f1| = |f2|,
(fig€L and féM) or (ficL and f,gEM)}.

2) The literal shuffle m, :
Lu, M = {fI(g;, g2)h|f, g1, g2, b in X*, |gi] = |gal,
(fesh€L and g,eM) or
(g,€L and fg,h€ M) or
(fe.€L  and ghéM) or
(g1h€L and fg.€ M)}
Example: L=a* and M=pb*
Lu, M = (ab)*(a*Ub™),
Lu, M = (a*Ub*)(ab)*(a*Ub™).
3) The iterated initial literal shuffle wiy and the iterated literal shuffle n1} :
L% = UL, where Loy={g} and L, =ILmlL,

M = \JL, where L,= {e} and L;., =Luy,lL.

i=0
‘We then define four families of languages:
% Fh = (v, my, ury) (Fin)
LFh = (U, m,, ur}) (Fin)
L FE = (U, +,*, 1y, my) (Fin)
LFE = (U, -, *,1m,, m3)(Fin).
At the end, we summarize some basic properties of the initial literal shuffle and the

literal shuffle. _
Proposition 1.1. Let X be an alphabet and 4, B languages in X*.

a) The initial literal shuffle and the literal shuffle are not associative operations.
b) The literal shuffle is commutative but the initial literal shuffle is not commu-

tative.



30 B. Berard

¢) AB < Am,B, AmyB & Am,B & AwmB.

d) X* = X = xTs,

e) Let f, g, h be words in X* such that h=fuy,g or héfurg, then |hl=|f|+]g|.
Recall ([1]) that D;*=(ab)=*; we have:

Proposition 1.2.
a) (ab)™ = {¢, ab}Ua?(ab)* b?,
b) (ab)™ = D{*.

The initial literal shuffle seems then to be less powerful than both shuffle and literal
shuffle. However, we will see that even a very simple language like ((ab)™)™ is not
context-free. Furthermore, the three families ¢, £,¥8 and L £ are pairwise
incomparable.

Proof.
a) The proof is straightforward.

b) From the definition, we can write (ab)m; =U L,, where
=0

Ly={e} and L,,, = L,ux,{ab}.
Since Am,BE AmB (Proposition 1.1.c), it is easy to verify that
A" C A™', thus (ab)™: S DJ*.

For the converse inclusion let fbe in Di* with | f|=2p. An induction argument proves
that fisin L.

The basis when p=1 is trivial.

Induction step. Assume the result for words of length 2p and consider a word f
in D{* of length 2(p-+1). There are two possibilities:

Case 1. f=(ab)’*1. By the induction hypothesis, (ab)? is in L,, thus fbelongs to
L,{ab}. Since L,{ab}< L m,{ab} (Prop. 1.1.c), f€L,.,.

Case 2. f=f, f,f;, where f, is a word of Dy, the set of restricted Dyck primes,
with | f;|=4. ,

Let uy=¢eu,, ..., uy=f;, be the sequence of prefixes of f,, k=2, and let
llujli = [u;l,— lu;l, be the height of the word ;. If i is the greatest integer such that |||
is maximum, then there exists a letter x in {a, b} and a word v in {g, b}* with f,=
=u;_pxabbv. We define g=fiu;_,, vi=xb, v,=ab, h=vf;. f= gl(v,,v,)h, thus
fisin gv,hm,ab. Since gv,h is a word in Di* of length 2p, gv,h is in L, by induction
hypothesis. Consequently, fisin L,,,.



Formal properties of literal shuffle 31

Part 2 — Closure propertles of the families Rat, €f, 4 and % under
literal shuffle

We first show that, when adding the full trio operations, literal shuffle is a power-
ful as shuffle.

Recall ([3]) that a full trio is closed under shuffie if and only if it is closed under
intersection.

Proposition 2.1. Let % be a full trio. The following properties are equivalent:

a) & is closed under shuffle.
b) & is closed under literal shuffle.
c) 2 is closed under initial literal shuffie.

Proof. The result is easily obtained from the two following facts. Let L and M
be languages respectively in X* and Y*.

Fact 1. Assume that X and Y are disjoint alphabets; we define regular languages
i (XUY)* by:

= (XY)*X*UY™* and R,=X*UY®XY)X*UY™.
Then
Ly M = (LuM)YNR, and Lunp,M = (LuM)NR,.

Fact 2. If § is a new letter and if & is the homomorphism from (XUYU{$})*
onto (XUY)* defined by:
h(z)=z, foreachzin XUY, and h($)=¢,
then
LM = h[h=Y(L)us k=1 (M)] = h[h=1(L)m, h=1(M)].

Proposition 2.2. Let L be a language in X™*, let 3 be a letter not in X and let h be
the homomorphism from (XU {$})* onto X* defined by: h(x)=x if x is in X,
h(8)=e¢. Then,

= [(h )] = B[ @)
Proof. Using Proposition 1.1.c, we can get
R[(hL)™] S B[ @)
Furthermore, if ¢ is an arbitrary homomorphism and if 4, B are languages, then
¢(AmB) S (4)mo(B). '
Therefore, we have the following inclusions:
h[(A@)™] E [ @)™] S L™,
Conversely, we use the definition of iterated shuffle and initial literal shuffle:
= UL, Li={ Lyi=LulL |

and .
(h—1L)W = U M, M,={, M, = M,um h2(L).



32 B. Berard

We prove that for each integer n=0, L,Sh(M,). If n=0 or n=1, the result
is immediate. Assume n=2 and let ube aword in u,m...mu,, where uy;€ L. There
exists an integer p=1 such that

P
ok _
u= J[(u ;... 4)), w;in X¥ w=u,...u,
i=1

We define a sequence of words f;, 1=i=n, by:

fi =f;',1 "'f;',pa f;',j = §'us U; ; 8%, with:

rl’j =0
ry; =2"" (ug )+ Fluwoy 5, i=2
s1,; = lug, 1 +...+|u, ;i

$i.; = Q72D |y 14+ 22w gl Flug ), i =20
Clearly, f; belongs to h~1(L), 1=i=n,
|fil =|ul and |fj] =2i-2|u| for each i = 2.
Define:
g,=/f, and for 1 =i=n-1, g, = guLfi..

Obviously, g; is in M;, 1=i=n. Further, |g|=|f+]=2""Yn| for 1=i=n, and
lgal=2"""u|.

Then, we can write g;=g;, ... &, ,, where |g |=|f41;l, 1=i<n, and
18n, il =2l f, jl. It is easy to prove by induction on i=2that:

g.;=gi;8%, where ¢ ;= Si, ;s 5l
and
. h{gi, ) = uy, j.. 1y ;.
For i=n, we obtain:
gn:'gn,l"'gn.p’ h(gn,j) = Up, e Up s
hence h(g)=u and uis in h(M,).
From L,Sh(M,), wehave L™ Sh[(h~%(L))™], and the proof is complete.

We now state the closure properties of the families Rat, % and 2¢& under
literal shuffle. They can be obtained by easy machine constructions.

Proposition 2.3.

a) The families Rat, 4% and & are closed under m; and 1, .
b) Moreover, the families % and %#¢ are closed under m; and ms3.

Corollary 1. The families %,%8 and £ ¥ & are both contained in the family of
context-sensitive languages.

We will see in the next section that there are, in fact, proper containments.
- Using Propositions 2.2 and 2.3 together with a result of M. Jantzen ([6]): &=
(A w*)(Fin), we can show: o



Formal properties of literal shuffle 33

Corollary 2. The family of recursively enumerable sets is the least family of lan-
guages including the finite sets and closed under the full trio operations and the iter-
ated literal shuffle.

The same result holds with the iterated initial literal shuffle:

RE = (M, m3) (Fin) = (A, uz}) (Fin).

Property 2.3.a) does not remain true for context-free languages: let L and M
be two different copies of the restricted Dyck set over the disjoint alphabets {a, b}
and {c, d}, respectively. Then, neither Lo, M nor Lm,M are context-free languages.
We mention a strong result of M. Latteux about the shuffle operation:

Proposition 2.4. ([7]) Let L and M be two languages over disjoint alphabets X and
Y respectively. LmM is a context-free language if and only if either L or M is a regular
language.

This result does not extend to the initial literal shuffle: Let G be the context-free,
non regular language over the alphabet {a, b} defined by:

G={a"b...a"™blk=1, n =0, 3isn}

(G is known as the Goldstine’s language.) If G is a copy of G over the alphabet
{a, b}, we have:

Proposition 2.5. Guy, G is a context-free language.

Scheme of the proof. Let $ be a new letter and let G be the following language in
({a, b, 8}x{a, b, 8})*:

G={§§2], fe€G, g€G and p+lf|=q+lg|}1).

Let h be the homomorphism from ({4, b, $}X {a, b, 8})* into {a, b, a, b}* de-

fined by :
()= e a((£) -

h([;]]::: if xc{a,b} and h([jf]]:y if y€{a, b}.

Clearly enough, h(G)=Guy,G. Then,; it suffices to prove the context-freeness of
G, and we build a pushdown automaton recognizing G. We will use two different
versions of non-deterministic pushdown automata recognizing G (by final states).

First version. The underlying idea of how this automaton works is the fdllqwing:
let w be a word in {a, b}*. Non-deterministically, a block of a’s is chosen. The b’s
preceding this block are pushed into the stack. Then, each a in the chosen block makes

: e} .
1) I, yela, b, 8)" with Lxi=lyi=n, ve wite [] for [S]-[Jem]-

3 Acta Cybernetica VIII/1



34 B. Berard

a b to be popped from the stack. The word w is accepted if the number of a’s in the
chosen block does not match the number of 4’s in the stack. (Initially, the stack con-
tains a single b.)

Second version. It allows to keep in the stack, after checking, the rank of the
chosen block of a’s. It is based upon the fact that G is also defined by:

G={a"b...a"bjn, #1 orthereexistsa k, 1=k=p—1,

- such that n,,, = n,+1}.

The automaton first checks wether ornot n,=1 or chooses a block of a’s. (Let k+2
be its rank.) In the second case, the first k b’s are pushed into the stack, then the a’s
of the following block (their number is 7, ,,) are also pushed into the stack. The b is
skipped and it is then checked if the number of a’s in the following block is different
of m,.,+1 (by using the n, ., a’s on the top of the stack). If this test is positive, the
word is accepted and the rank of the current block can be retrieved from the
stack (number of b’s plus 2).

Now we can describe a non-deterministic pushdown automaton recognizing G.

a b .
As long as couples of letters [ a] or [ b] are encountered, the automaton works as in

. a . . .
the second version. As soon as a couple [, or{ | is encountered (involving that

one of the upper and lower words is then known to be in G), the automaton uses the
a’s at the top of the stack for determining which word is in G (say the upper word).
Using the b’s in the stack and switching for first version, the automaton checks then
that the other word (here the lower one) does belong to G.

Clearly, no problem appears if the first encountered couple of different letters is

HEINESI!

Open question: Do there exist two non regular languages L and M over disjoint
alphabets, such that L, M is context-free?

Property 2.3b) does not hold for Rat or ¥f. We use Proposition 2.2 with the
language L= {abc}. It is easy to see that L™ is not context-free. M=h"Y(L)=
= $*a$*b8*c$* is a regular language and since L™ =h(M™1)=h(M™:)is not in
%f, neither M W} nor M™s is a context-free language.

However, regular languages or context-free languages can be obtained in some
very particular cases:

froposition 2.6. Let F be a finite set. FI1 is a regular language.

Proposition 2.7. Let F be a finite set such that for any word f in F, the length of f
is less than or equal to 2. Then, F™: is a context-free language.

Proof of Prop. 2.6. The proof consists of a construction of a left linear grammar
such that L(G)=F"i, -



Formal properties of literal shuffle 35

Since ¢ ={e} and for any language 4, (AU {e})™ = A", we may assume
that F is not the empty set and does not contain the empty word; F={f, ...; fi}»
k=1. If X is the alphabet of F, we set p=card (X), t max {| fjl, 1=j=k} and we
consider the set X* of words in X* with length t: X'={g,, ..., g.} where m=p'.
We can write

Fm; = ULi’ L0= {8}3 Li+1=LimiF’
i=0

Let n, be the smallest integer greater than or equal to k, such that for each word f
inL,,|fl=t

Since ¢4 F, the words in L, are strictly shorter than the words in L;,, and such
an integer n, can be found.

We define: R= |J L;, Ris a finite set,

i=ny—1
J@) ={feL,)\g: is a prefix of f}, 1=i=m,
I={i€{l, ..., m}|J(i) = 0}
and for each i€l, g;=card (J(i)), so that
J@) = {hi1, ..o by g} with h; =g;u,, forsome wu,, in X%
l=r=gq,
L, = iLgJI J().

For each (i, ), 1=i=m, 1=j=k, there exists a unique intéger s@,j)in {1, ..., m}
and a unique word v, ; in X* such that:

g f; = g iy Vi, -

Now we can finish the proof by constructing a grammar G=(X, N, S, P); N=
={S, D, ..., D}, where S, Dy, ..., D,, are new letters. The rules of P are the fol-
lowing:

(i) S—w for each word win R;
(i) S+Du;, foreach r, 1=r=gq,;, foreachiin I;
(iii) D; - g;, 1=i=m;
(iv) D; > Dy pv;;, 1=j=k, l=i=m.
G is left linear and it is easy to see that L(G, S)=F @y,

Proof of Prop. 2.7. Let F be a finite set in X* and L=F%, If every word in Fis
of length less than or equal to 1 and if X is of minimal cardinality, then L=X* isa
regular language. Since (AU {s})m: = A" for any language 4, we may assume that F
does not contain the empty word. .

We define a sequence of languages F,, nz1, inductively by: F,=F,

F, 1= {f€ X*|there exists a word g in F, such that:
. either g=g,g,, g.7¢ and f—glygz, where y is a word of length l1in F,

3.



36 B. Berard

or g=g,xg,; for some x in Xand f=g,y,xy,g., where y,y, is a word
of length 2in F.}

For each n=1, the set F, is contained in L, therefore the language M defined by
M= F, isalso contained in L. It is straightforward to verify that L is a submonoid

nx=1l
of X*; it follows that M*C L. The converse inclusion also holds; the argument is an
induction on the length of a wordin L.

Since L=M?*, it suffices to show that M is a context-free language. Thus, we
construct a context-free grammar G=(X, N, S, P) such that L(G, S)=M.

We consider the fixed alphabet X={a,,...,a,} and we define: N=
={S, Ty, ..., T,}, where S, T, ..., T, are new letters the homomorphism h from

X*into N* such that h(a)=T;, ISzSp,
I={ic{1, ..., plla;c F}

and w;=a; a;,, 1=j=k; the words of length 2 in F.
The productlons of P are the following:

(1) ST, iel
S~T,T, l=j=k
(i) T~ T,T; icl,
T T, TT,,,

(i) T; -~ a;, 1=1i=p.

1=j= k} for any variable T€{Ty, ..., T,}

Clearly, this grammar generates M.

Part 3 — Properties of the families %, & and X¥¢

* We do not mention in this part specific properties of the families LA Fh and
% %h; however, we state two useful results about some particular languages in these
famlhes

Proposition 3.1. The language N= ((ab)m; )5 (in .%.?h) is not context-free.
Proof . (the details are omitted)

a) Let f be a word in {a, b}*. The height of fis || fll=|fl.—|fl, and PR(n)
denotes the set of all prefixes g of the words in the language N, satisfying: |g|=n.

We define, for each integer n=0, H(n)=Max {|ig|l, g¢ PR(n)} By induction
on n=2, we can obtain the followmg nequality:

H(n) = 6 log, (n).

b) A sequence f;; k=1, of words in N can be constructed; such that: fi=
=g, b%*+*, for some word g, in {a, b}*.

c) We suppose now that the language N is context-free and; using the Iteratlon
Theorem, {4], we will obtain a contradiction. Let N, be the integer from the Iteration
Theorem and let h=fy, be the word of N, obtained as in. b): h=gy, bN+4, where

g



Formal properties of literal shuffle 37

the last 3N,+4 b’s are distinguished. There exists a factorization h=aufvy, such
that h,=au? fvPy€ N, for any p=0. The height of &, is O, for any p=0, andvisa
subword of b*¥o+4, Thus; [lu]|>0 and, using a), we obtain a sequence au of prefixes
of N, such that |||+ pllul| =6 log, (Ja|+plu]), which is impossible. Hence, N is not
context-free.

Proposition 3.2, The language P={ab, ca'}m; (in &h) is a generator of the
family of context-free languages.

Proof. We define the words a=a™*", B=>b"(ac)?, y=(bd)?b™ and é=ab, where
m, n and p are integers, m=2, p=2, n=p+1. We then define a regular set X recog-
nized by the transition system ([4]) of the figure below:

At the end, we introduce the context-free language A, generated by the grammar with
productions: T—aTBTy +34.

. We shall prove that PNK=A. Since {«, B, 7, 6} is a code?, it proves that P
is a generator of f([2]).

We will say that a word f'is directly reduced in a word g if f=f"axbf” or f=
=f'cxdf” and g=f'xf", for some letter x in X and some words f’, f” in X*. We
will write f~g and =~ will denote the reflexive and transitive closure of —. If f=» g,
we say that f is reduced in g.

' a) It can be shown by induction on k=2 that, if fisa wordin 4, | f|=k, then
f is reduced in ab. This gives the inclusion A4S P.

b) It is easy to see, by induction on the length of a word in 4, that 4ACK.

¢) So far, we have obtained the inclusion A4S PNK. To get the converse inclu-
sion, we need two facts:

Fact 1: Let fbe a word in P, neither ady nor 3f is a subword of f.

Fact 2: Let f=f"adfdyf” be a word in P. Then f'is reduced in f’df”, and this
reduction is the only one which can concern the subword a6y of 1. Let f be a word
in PNK. The argument is again an induction on the length of f.

Case 1. a is not a subword of . Since fis in K, it can be written as: f=(5y"f)...

(Y B)Sy™*1. Since fisin P, |f|,=|fls, therefore k=0 and r,,;=0; hence
J=ab isin A.

Case 2. o is a subword of /. We then consider the last occurrence of « in f, so that
f=f"af”, a is not a subword of /. Since f'is in K and in P, using Fact 1, we obtain:

2) A subset Cin X * is a code if C* is a free monoid with base C.



38 B. Berard

f"=206Bbyh, f=f'adBoyh is reduced in g=f"6h. Obviously, g is in K and, using Fact
2, it turns out that g is in P, too. By induction hypothesis, g belongs to 4, and we
consider the place where the rule 7—¢ has been applied in a derivation for
g: TS m' Tm"=m'ém"= g, where m'=> f’ and m’Sh. Since T=> m'Tm’"=
=*>m’aTBTym”=*> f, f belongs to 4. At the end, we have 4= PNK and the proof
is complete.

Before comparing the families %, ¢, & and &, we provide some neces-
sary conditions for a language to belong to one of them. Recall ([6]) that every infi-
nite language in && contains an infinite regular set. Using Proposition 2.6 and
an inductive proof, we can extend this property:

Lemma 3.1. Every infinite language in %€ or in L& contains an infinite
regular set.

Proposition 3.3.

a) The language {a"b"ln=0} is not in £, S EUL FE,

b) the language {@*’|n=0} is not in L, FEULFE.

Proposition 3.3 b) gives the proper inclusions:

Corollary 1. L SELEY, FSELCY.

Using proposition 3.3 a) and the preceding results, we have:

Corollary 2. Each of the families 4, $h, LSh, ¥, ¥ & and LF& is incompa-
rable with the family of context-free languages.

Proposition 3.4. The families ¥ and & (EDTOL) are incomparable.

Proof. The language {a?"[n=0} is in & (EDTOL) ((11]) and does not belong to
£ &. The language P= {ab, cd }m; isin Z%& but it does not belongto & (EDTOL),
since it is context-free generator ([8], Proposition 3.2).

Lemma 3.2. Let L be a language in X*, where X is of minimal cardinality,
LeZE, then

either L is regular,

or for each letter x in X, for each integer p=0, there exists a word fin L, such
that x? is a subword of f.

Lemma 3.3. Let L bealanguage in X*, Le £&&. Then, either L is regular or the
two conditions hold:

(i) there exists a letter x in X and an integer n, such that, for each integer p=0,
aword f=gh can be found in L, where |g|=n,+p and x? is a subword of g.

(ii) there exists a letter y in X such that, for each integer p=0, a word f=gh can
be foundin L, where |g|=p and y* is a subword of h.

We now consider languages over a fixed ordered alphabet X= {a,, ey G}
with n=2, satisfying:

(*) There exist integers ki, ..., k,_; in Z, such that for each word f in L,
'f,m_lfla“lzki, I=i=n-1.



Formal properties of literal shuffle 39

Lemma 3.4. Let L be a language in X™*, satisfying the property (*) above.

a) if Lisin %, &#&,then LNdafaf...a} is a finite set,
b) If Lisin %€ and n=3, then LNdfa;...a} is a finite set.

We can now state the main result of this section :
Proposition 3.5.

The families 4 £8, ¥ & and & & are pairwise incomparable.
The families %, $h, £ %h and Shuf are pairwise incomparable.

Proof.

— The language L= (abc)m; isin #S%h and it is easy to see that L is not regular.
Moreover, if b? is a subword of a word in L, then p=3. Using Lemma 3.2, we obtain:
L¢ &8.

— The language M=(abc)™ isin Shufand M Na*b*c* is equalto
{a"b"c*|n=0}. Since M has property (), we can use Lemma 3.4 a) and b). Thus M
is neither in %, %& nor in ¥&.

— The restricted Dyck set D;* is in the families Shuf and £ %h, (Proposition
1.2.b)), and D{* has the property (+). By Lemma 3.4. a), we have: D{* does not be-
long to the family %, ¥#¢&.

— The language N=((ab)™ )™ is in %, &h and is not regular (Proposition 3.1).
Using Lemma 3.2 and Lemma 3.3 we can show that N is not in £%& and N is not
in 8.

8, BD DE 'HOPITAL
75005 PARIS — FRANCE

References

[1] Araxki, T. and N. TokURA, Flow languages equal recursively enumerable languages, Acta Infor-
matica 15, 209—217, (1981).
[2] BEAUQUIER, J., Générateurs algébriques et systémes de paires itérantes, Theoretical Computer
Science 8, 293—323, (1979).
[3] GINSBURG, S., Algebraic and Automata-Theoretic Properties of Formal Languages, North-Hol-
land (1975).
[4] HArrIsON, M. A., Introduction to Formal Language Theory, Addison Wesley (1978).
[5] Iwama, K., Unique decomposability of shuffled strings; a fromal treatment of asynchronous
time-multiplexed communication, 5th ACM Symp. on Theory of Comput., 374—381, (1983).
[6] JanTZEN, M., The power of synchronizing operations on strings, Theoretical Computer Science
14, 127—154, (1981).
[7] LATTEUX, M., Clnes rationnels commutatifs, Journal of Computer and System Sciences 18,
307—333, (1979).
[8] Larreux, M., Sur les générateurs algébriques et linéaires, Publication du Laboratoire de Calcul
de 1'Université de Lille I, n° I. T. 11—79, (1979).
[9] Nivat, M., Behaviours of synchronized systems of processes, L.I.T.P. Report n° 81—64,
Université de Paris 7, (1981).
[10] OGpeN, W. F., W. E. RIDDLE and W. C. Rounps, Complexity of expressions allowing concur-
rency, Sth ACM Symp. on Principles of Programming Languages, 185—194, (1978).
[11] RozeNBERG, G. and A. SaLoMmaA, The Mathematical Theory of L Systems, Academic Press,
(1980).
{12} SHAW, A. C., Software descriptions with flow expressions, IEEE Trans. Engrg., SE-14, 242—254,
(1978).

( Received Dec. 27, 1985)



