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One of the most celebrated results in the field of compositions of automata is the
Krohn—Rhodes decomposition theorem. A detailed presentation can be found e.g.
in [1]. It has, sometimes implicitly, inspired a great deal of research on various notions
of compositions culminating in a series of interesting papers. For references and
most recent results, see [2].

The system given by the Krohn—Rhodes theorem has a peculiar lack of sym-
metry. While it contains all group-like automata on simple groups, all aperiodic
automata are in the meantime realized with cascade compositions of a single aperi-
odic automaton, the two state identity-reset automaton U.

If we want to realize a subclass of permutation automata we need exactly those
simple groups which are divisors of characteristic groups of automata from the given
subclass. Consequently, there is a continuum of different subclasses of permutation
automata closed under cascade compositions, subautomata and homomorphic im-
ages. On the other hand, if we are given a subclass of aperiodic automata, we do not
need the whole strength of U either. The reason is that there are numerous subclasses
of aperiodic automata closed under cascades, subautomata and homomorphic im-
ages. In this note we are going to show that the exact number of these subclasses is
continuum even for of -products. The notion of the «f -product due to F. Gécseg
in [3] is an abstract generalization of the cascade composition.

Although we are using standard automata theoretic concepts we intend to give
a very brief account on the notions and notations to be followed throughout the
paper.

N and P denote the set of all positive natural numbers and the set of primes
p=1 in N, respectively. We set Ny=NU {0}.

X* is the free monoid with identity A generated by a set X. We write u<v to
mean that u is a proper prefix of v, i.e.,, u<v if and only if there exists a word
u € X*— {4} so that uu,=v.

Take an ordinary finite automaton A=(4, X, §) with state set A, input set X
and transition function é: AX X—+A4. (We use the same 6: AX X*—+A for the usual
extension of 4.)

The characteristic semigroup of A is the factor semigroup X*/g, where the con-
gruence g, is defined by ug, v if and only if 8(a, u)=45(q, v) for all a€ A. An auto-
maton A is said to be aperiodic if X*/g, contains only trivial subgroups.

Next we recall the notion of the of-product from [3]. Let A;=(4;, X}, J;),
1=j=n, be arbitrary automata, X a finite nonvoid set and take a system of feedback
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functions @;: 4,X...XA4; ;X X—~XF, 1=j=n. The o5-product A,;X...XA,[X, ¢]
of these automata A; with respect to X and @ is (4,X...X 4,, X, §), where

5((ays ..., a,), x) = (6,(ay, wy), ..., 8,(a,, u,)),
u; = @i(ay, ..., @54, X)
for all aq,, ...,a,€A, x€X, 1=j=n. We put for an arbitrary class ) of automata
P; (o) all ag-products of automata from ¢,

S(o¢") : all subautomata of automata from X%,
H(>¢) : all homomorphic images of automata from 5.

Let o be a class of automata. 5 is called closed under H, S and P}, if H(>Y"),
S(X") and PX (o) are all subclasses of #°. Given 5, HSP} (o¢) is the smallest class

0

containing ¢ and closed under H, S and P;, . Thus, " is closed under H, S and P,

if and only if HSP; (X' )S . The Krohn—Rhodes theorem gives that the class

of all aperiodic automata is closed under H, S and P, . '
We now define a special aperiodic automaton A, for every p¢P.

A, =({0,1,...,2p}, {x,5}, 8,),
. i+1 if 1=i=p,
0,3, x) = { 0

otherwise,

i+1 if p+l=i=2p-1,

3,31, y) =11 if i=2p,

0 in all other cases.
The following statement enlists some pecularities of A,. In this statement % and v
denote arbitrary words in {x, y}*, i is a natural number 1=i=2p, and

XP—H1 yp xi-1 if 1=i=p,
Wi = {yz"‘i“x” yioPt if p+l=i=2p.
Claim.

(1a) 0,(i, u)>20 if and only if u=wfu, where u;<w; and kEN,.
(1b) 8,(i, w)=i if and only if u=w¥ for an integer kEN,.
(22) 8, (i, w;))=0 if ix;.
(2b) If 4, contains both x and y, u;<w; then
0,(i, ud) =0 for every i #j.

(3) 4,(, ¥*)=i implies 8,(i, u)=i for every kEN.
(@) If geN, g#1and g#p then J,(, w*v")=i implies J,(i, u)=4,(i, v)=i.

Proof. (1a), (1b), (2a)&(2b): Observe that there exists a single cycle
1525 . SpIp+1ip+22 L 2p 2]

which does not pass through the ‘trapped state’ 0. Thus we have to move along this
cycle if we want to avoid that state.
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(3) By (1a) we have u=wlu,, uy<w;, me€N,. Assume that u;2. Since
8,(i, uyw;)=0 by (2a) we obtain m=0. From (1b) it follows that u}=w} for some
lIeN. However, this is clearly impossible, thus we have u,=A. We can conclude
using (1b).

(4) We get u=wl'y; and v=wiy, from (la), where u,<w;, vy<w;, m, IEN,
and j=6,(i, u?). If i=j we are ready by (3). Supposing i#; we have u;#4, v;#1
by (1b). If m=0, then by (2a) 6,(i, u;w;)=0, which would imply §,(i, #*v%)=0.
Thus, m=0, and similarly, /=0. By (2b), #; cannot contain both x’s and y’s, and
the same holds for »;. By (1b), #fvi=wfvi=w! for some IEN, oreven, /=1, and
i=1 or i=p+1. Suppose that i=1, the case i=p+1 can be handled likewise.
Then u;=x" sothat rg=p. Since pis a prime and g1, ¢g=p, this gives a contra-
diction.

As an immediate consequence of Claim (3) we get the following:

Corollary. A, is aperiodic for every p€ P. (Or even, since we did not use the fact
that p is a prime in the proof of Claim (3), A, is aperiodic for every natural number
PEN) ’

Theorem, The class of all aperiodic automata contains a continuum of different
subclasses closed under H, S and P}, .

Proof. Let Q be a non-void subset of P. Put #p={A|g€ Q}. We show that for
gc P, A,cHSP; (¥,) onlyif g€Q.

Supposing A €HSP () there is an of-product B=A, X...X A, [{x, v}, ¢]
of automata from ¢}, such that A, is a homomorphic image of a subautomaton
C=(C, {x, y}, 6) of B under a homomorphism h:C—~A4,. We can choose / minimal
with this property. Further, it can be assumed that no subautomata of C other than
itself can be mapped homomorphically onto A,. Let cch~*(1). Obviously, ¢ gen-
erates C, and d(c, (x?y?)™)=c for some mEN. Since the class of all aperiodic auto-
mata is closed under of -products and subautomata we have 8(c, x4y%)=c as well.

Let us now suppose to the contrary g¢Q. Put c=(y, ..., [), u=¢,(x), v=
=¢,(y). (Observe that [>0.) From the definition of the «f-product we then have
d,,(iy, *v*)=1i, which by Claim (4) gives §,,(i;, u)=0,, (i, v)=1#. Since ¢ generates
C it follows that the only state of A, appearing as the first component of a state of C
is ;. However, this implies that a subautomaton of an af-product A, X...XA,
[{x,»}, ¥] can be mapped homomorphically onto A, contradicting the minimal-
ity of I
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