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Introduction 

In this paper we examine the class of deterministic root-to-frontier tree transfor-
mations and some of its usual subclasses such as linear, nondeleting, homo-
morphism and so on. We present some equalities and inclusions between the compo-
sitions of different classes and, as an application, show that 3>3%2=Ql&l"- ,for,reaclfc, 

We also study all the classes which can be written in the form jr1oV..ojfn where 
each J f j is 3)01 or one of its subclasses. We pick out a finite number of these classes 
and show that every class JfjO . . .ojfn either equals to one of them or has a rather 
special form. 

1. Notions and notations 

For an arbitrary set Y, we denote by and ^ ( F ) the cardinality and the power 
set of Y, respectively. If Y is a singleton, then we identify it with its unique element. Y* 
is the free monoid generated by Y with empty word X. 

The set of nonnegative integers is denoted by N. For every n^N, [«] denotes the 
set {1, ..., rt}, especially [O]=0. 

By a ranked alphabet we mean an ordered pair (F, v) where F is a finite set and 
v: F—N is the arity function. Elements o f i 7 are considered as operational symbols, 
more exactly, if f£F and v(F)=n then / i s an w-ary operational symbol. We use 
the notation F= (J F„ where the sets F„=v - i (n) are pairwise disjoint. 

Now let F be a ranked alphabet and Y a set. The set of all terms or trees over Y 
of type F is defined as the smallest set TF(Y) satisfying 

( a ) F U F0QTF(Y) a n d , 
( b ) f ( P l , ...,p„)£TF(Y) whenever/€F„(«€iV) and p£TP(Y) (/£[«]). 

If Y=& then TF(Y) is simply written as TF. 
We define the height h(p)£N, frontier fr(p)QY* and the set of subtrees 

sub(p)QTF(Y) of a tree p€TF(Y) by induction: 
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(a) if p£F0 then h(p)=0, fr(p)=l and sub(p)={p}\ 
(b) if p£Y then h(p)—Q, fr(p)=p and sub(p)={p}i 
(c) if p=f(j>x,...,p„) then h(j,)=l+max {hipùMn]}, fr(p)=fr(Pl)...fr(Pn) 

and sub(p)— U sub(pi)U{p}. 
¡e№ 

We shall need a countably infinite set X= , x2, ...}, elements of which 
are considered as auxiliary variables. The set of the first n elements xly ..., x„ of X 
is denoted by X„. 

Letting Y=X„ we have the set TF(XJ. Here, the elements of X„ can be used to 
point out places in the frontier of a tree p€TF(X„). There is a distinguished subset 
fF(X„) of TF(Xn) defined as follows: pZfF{X„) iff p£TF(X„) and fr(p) is a per-
mutation of X„, in other words, each element*of Xn appears exactly once in p. 

Now let p£TF(Xn) and ylt ...,ynÇY. We denote by p(ylt • ••,.}>„) the tree 
obtained by substituting all the occurrencès of xt in p by j>f for each /'€ [n], Note that 
p(yi, y„) is an element of TF(Y). 

By a tree transformation r we mean a relation from TF to TG where F and G are 
arbitrary ranked alphabets, that is we have r QFFXTG. In this way, the identical 
relation iF= {{p, p)\piTF) is clearly a (tree transformation. The class of all identical 
tree transformations is denoted by J. The restriction x\T of T to a subset T of TF is 
defined by 

. ~ . AT = {{p, q)\(p, and p£T}. 
For any tree transformations rQTFXTG and AÇZTGXTH the domain (dom T) 

range (range T) of T and the composition (TO a) of T and a are defined as usual in the 
case of relations. 

Let J f j and Jf 2 be two classes of tree transformations. By their composition 
Jf ioX 2 we mean fao-t^x^X and x2Ç.X2}. For any class JT of tree transforma-
tions and n£N weput if n= 1 and X n = X n ~ x o X if «>1. We say that J f 
is closed under composition if X 2 Q j f holds. If y Q X , as with most of the rea-
sonable classes J f , then obviously iff JT2=JT. 

In this paper we are interested only in tree transformations which can be induc-
ed by deterministic root-to-frontier tree transducers. 

By a deterministic root-to-frontier tree transducer (or shortly DR transducer) 
we mean a system 

21 = (F, A, G, P, a0), where (1) 
(a) F and G are ranked alphabets ; 
(b) A is a ranked alphabet — disjoint with F and G — consisting of unary op-

erational symbols, the state set of 21; 
(c) a0 is a distinguished element of A, the initial state; 
(d) P is a finite set of productions (or rewriting rules) of the form 

afixj,, ...,xj - q, (2) 

where a£A, mëO, f£Fm and q£Tc(AXXm). To guarantee 21 a deter-
ministic behaviour, any two different productions of P are required to have 
different left-hand sides. 

Throughout the paper terms of the form a(p) (aÇA and p is a term) are written 
simply as ap. If we need to specify a production (2) in a more detailed form, then we 
can write (2) as 

af(xx, ..., xm) - qiaiXit, anxJ (3) 
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for a suitable n^O, q£fG(X„), a£A, xtj£Xm (/€[«]), or as 

a/Oi, •••,xm)^q(all xm,---,amn xm) (4) 

for some «¡^0, ah£A, (i£[m],j£ [«,]) and q£fG(Xn) where n=n1+ ... + nm. ' 
Productions of P can be used to transform (or rewrite) terms of AXTF to terms 

of TG, by defining the relation (called direct derivation) on the set Ta(AX TF (X)) 
in the following way: for p, q£TG(AXTF(X)) we say that p^q iff q can be ob-
tained f r o m p by replacing an occurrence of a subtree af(plt ..., pm) of p by the tree 
q(alPh, ...,a„pin) provided the rule (3) is in P. Denoting the reflexive-transitive 

* 

closure (i.e. the iterated application) of the direct derivation by , the tree transfor-
mation Tffl(a) induced by with state a£A is defined by 

*«(<,) = {(/>> <1)\P€TF, q£TG and ap^ q). 

By the tree transformation r a induced by 21 we mean T<jI(0o) , i.e., 

To ={(/>, q)\p£TF, q£TG and a0p^> q). 
We say that a tree transformation t^TfXTg can be induced by a DR transducer 
if t= ts i for some DR transducer 21. 

Next we introduce some restrictions on DR transducers. A DR transducer (1) 
is totally defined if for each A and / £ F there is a rule (2) in P. (1) is called a hom-
omorphism (H) transducer if it is totally defined and has only one state, i.e. A = 
— {a„}. Moreover, we say that (1) is 

(a) linear (L) if for every rule (4) of P and i£ [m], «; ̂  1, 
(b) nondeleting (N) if for each rule (4) of P and i'€[m], «¡^ 1, 
(c) linear nondeleting (LN) if it is both linear and nondeleting. 

The subclasses L, N and LN of H transducers are defined in a similar way. 
If K is some subclass of the class of all DR transducers defined above, then 

the class of all tree transformations that can be induced by K transducers is denoted 
by X . For example Z£3)0l denotes the class of all tree transformations that can be 
induced by LDR transducers. Finally, we present a diagram showing the inclusion 
relations among the classes 2®, JfQiSk, J V J f ® ® , 3V, jVJC, J . 

99t 

4* 
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2. Equalities and inclusions 

By one of the earlier results QiSH is not closed under composition (see [4]). This 
means that, in general, we cannot give a DR transducer C, for any two DR trans-
ducers 21 and S such that ta—z^o t<B . However, we can define a DR transducer 
2Io© called the syntactic composition of 21 and S with a series of useful properties. 
This was also stated, in an implicit form, in [3]. 

Definition 1. Let 21= (F, A, G, P, a0) and S = (G, B, H, P', b0) be DR trans-
ducers. By the syntactic composition of 21 and © we mean the DR transducer 2Io©= 
= (F, BXA, H, P", (b0, a0)) where P" is defined in the following manner: the rule 

(b, a)/(xl5 ...,xmq'{(bix,a^xtl, ...,{ble ,a^xh, ..., 

(bni,a„)xin, . . . ^ b ^ a j x j 

is in P" for some vfiN, bj^B, [n], fcefy]) and q'eTG(Xv) (v=vi+... + v„) if 
and only if there is a rule (3) in P and a state b£B with 

'bq=£ q'ib^xt, ...,blvtxi, ...,bnix„, ...,bn^xn). 

(We let 3 work on q as long as it can.) 

Lemma 2. Under the notations of the above definition, for any a£A, b£B, 
p£TF and q£TH 

(3 r£TG) (ap | rhbr (b, d)p¿^ q. (5) 

The proof, as usual, can easily be performed by induction on h(p). • 

Now we can make the following observations. 
(a) We cannot converse (5) because 93 may be deleting, therefore there may be 

a tree p£TF such that 2lo© can transformp to a tree q£TH by deleting some sub-
,treep' o f p but 21 can not transformp' with any state ad A. Thusp may be in dom rMo® 
but not in dom xa hence not even in dom (Tm°T<B). It can be seen that we can elimi-
nate this problem by requiring 21 to be totally defined (see also in [4]) or © to be 
nondeleting. 

(b) Moreover, (5) can also be conversed if p is in dom xa since in this case 
21 can always transform p' with some state a£A. 

(c) 2to© inherits any property 21 and © have, where property means one of the 
following: completely defined, one-state, L, N, LN. 

We give a summary of the above observations: 

Lemma 3. For any DR transducers 21 and S the following hold: 
(a) if 21 is totally defined or S is nondeleting then Taoa=TaoT®, 
(b) Tfflos|dom Tg^TaOT», 
(c) if 21 and S are x then 2Io© is also x where A=completely defined, one-

state, L, N, LN. • 
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/ o M = (6) XoX = 

Sex 0 = 201 (7) XoJfX = X 
JfXoQ)® = QSl (8) tfo ££ — X 

se xo se srn = ses>0 ? (9) J f X o X = X 
jrxojfoiM = jrm ? (10) sexox = X 

JTXoJTX - J f X 

sexosex = sex 

From the above lemma we have a series of equalities some of which were stated 
in different works. 

(11) 
(12) 

(13) 

(14) 

(15) 

(16) 
(17) 

These follow from the fact that an H(LH, NH) transducer is always completely de-
fined. 

Moreover, we also obtain 

QimojfQiSb = sum (18) 

gsskosejfQ!®. = (19) 

g&oJfX = <3)9t (20) 

jV2>@ojVQi0t = (21) 

Jf®gtoS£Jfg>9t=JfQ!0l (22) 

j v 3 ) ® o j / - j e = j f o i m (23) 

segstosejfgigi = ses»9t (24) 
Sejf9l0loJV3i0l = JVQ)® (25) 

SejfQ>®o<£Jf3)® = <£Jf®0t (26) 

Here we used that the second components are all noiideleting. 
A frequently quoted equality is 

Xo:<£9)0l = (27) 

which can be found in [1] and [2]. From the proof of (27), it turns out that we may also 
declare it in the form 

J f X o S e ® 0 t = 9 ® (28) 

moreover, if we consider only H transducers we get 

JiXoSeX = X. (29) 

By lemma 3, SeXoJf and it is not difficult to see the conversed, inclu-
sion shown by the following lemma. 

Lemma 4. X^SeXoJfX. 
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Proof. Let us be given an H transducer 31=(F, a, G, P, a). Obviously, each 
production can be taken in the following form: 

af(x1,...,x^^q(axll,...,axti)' (30) 

where m g 0 , / € F m , l s i ^ c . . .< i„S«i and q is a suitable tree from TG(X„) contain-
ing at least one occurrence of Xj for every For each production (30) take a new 
operational symbol / witharity n and put F_= { / | / € F}. Now we can introduce the H 
transducers S = ( F , b, F, P', b) and <E=(F, c, G, P", c) as follows: whenever a pro-
duction (30) is in P let the productions bf(xx, ..., xm)-*f(bxh, ...,bxin) and 
cf(x1, ..., jcn)-~?(c*i> ..., cx„) be in P' and P", respectively. Clearly, SB is an LH and 
£ is.an NH transducer, moreover the equivalence 

$ * * 

ap ^ q <=> (3/>€ 7 » {bp r A cr => q) 

can be proved, for each pdTF and q£TG, by induction on h(p). Hence we have our 
lemma and the equality: 

g j e o j f j e = j r . (3i) 

Our next lemma follows from exercise 2 on p. 213 of [3]. This states that dom t a 
can always be recognized by some DR recognizer (for definition see also [3]) for any 
DR. transducer However, we mention that the following correction is needed in 
the definition of the DR recognizer in [3]: the realisation of an operational symbol 
of arity 0 must be considered as a subset of the state set and not as an element of it. 

Lemma 5. For any given DR transducer 91=(F, A,G, P,a0) there exists an 
LNDR transducer 2 t '=(F , 3?(A), F, P', {«„}) such that = i f | dom T«. 

Proof. Let P' be constructed as follows: for any B~ ..., ak}£0'(A), m£N 
and / € F m the rule Bf(xl5 ..., xm)^f(B1x1, ...,Bmxm) is in P' if and only if the 
next conditions hold: 

(a) for each /£[&] there is a production 

aj(x1,...,xj^qi(a[1xi,...,a\ x1,...,al1xm, ,::,dm xm) -l m 
in P where H15 0 (depend on i), a)k£A, 

(j£[m],ki[nj]\qi<ifG{Xn), (n = +nj; 

(b); " ' " Bj= U {a'Jx, . • • / < } , Mm]. 1 

i€W 1 

Then we can verify the following statement: for any • 

B = {a l5 ...', ak}ii?(A) and p<LTj, 

B p ^ p o (V j€W)OqeT G ) ( a jp 4 q) . n «1 tu 
Now let 9t and © be two arbitrary DR transducers. Then, by lemmas 3 and 5 we 

have 
T«OTB = T a o B |dom TH = (if |dom Ta)ota<jS ==T9,VoTao<B -
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from where 
o>m2 = <ejfo>@, o2&® (32) 

and, if 21 and © are LDR transducers then 

gO)®* = Seji^MoSSQlM. (33) 

We are ready to prove one of our main results. 

Theorem 6. For any n S 2 

20T = SfJiQlMoQiM and (34) 

se®®." = s e j f 2 M o s e 2 ® (35) 
Proof. We follow an induction on n. The case n=2 is already proved, the 

induction step of (34) (and similarly that of (35)) is shown by the following computa-
tion : • 

9W+1 S? <ejf®mo3i®" ~ s£jf<ai0iosejr^Mo2 m S 

seji2Mo2M. • 

Consequence 7. For every 2 

2Mn = OsS/P and (36) 

S£2Mn = Se®®?. (37) 

We shall also need the following result. 

Lemma 8. 

SSt Q Mo S£X (38) 

Proof. Let 2l=(F, A,G,P,a0) be a DR transducer. We construct an NDR 
transducer S and an LH transducer £ such that z^o T® . To this end, consider 
an arbitrary but fixed order of the productions from P and number them from 1 to 
|P| in the following form 

i: af(xi, ...,xm) xl> •••> alni
xl> •••» amixm> •••> am„m

xm)> (39) 
where 

nj SO, ajh€A, (j€[m],k£[nj]) and qiTG(Xn), 

(n=n1+ ...+nm). We mention that the symbols used in the specification. of the i-th 
production depend on i. Now, for each /£[|P|] and [m] define Uj by ; 

{ fij if itj >*0 1 ^ nj = 0 

and take a new operational symbol f&F with arity u=ux+ ...+um. Then con-
struct the DR transducer. 93=(F, A U {b}, F', P\ a0) where . 
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(a) F ' = FU{/j | i€ |P |}; 
(b) b$A is a new state; 
(c) P' is defined as follows: the rule 

af(xlt .-,xm) -*ft(bllx1, ..., &iBiXi, ...,bmixm, ...,bmumxm) (40) 

is in P' iff the conditions 

(i) the i-th production of P is of the form (39) and 

(a,.,..., a, if n, > 0 
(ii) ^ ^ K A b ^ if 4 = C) ^ 

hold, moreover the rule bf(xxm)—f(bxi, ..., bxm) is in P' for each 
m^O, fZFu. 

Next, introduce the H transducer G=(F' , c, G, P", c) where the rule 

c/i(*l, - " J *U) "*• # ( C * 1 > •••>
 CXlti> •••>

 CXUi+ . . . + U M _ ! + 1» - " 5 C J C U L + . . . + U M _ 1 + NM) (41) 
is in P" iff the z-th production of P is (39), moreover, to make (£ totally defined, let the 
rule c f f r i , ...,xm)—q be in P" with an arbitrary q£Ta({c}XXm) for each mS0, 

First note that © is nondeleting since 1, 0'€[w]), t®(b)\TF=iF a n d d is lin-
ear. To prove Ta=TsOTa: it is enough to show that for each a£A, p£TF and 
q€TG the equivalence 

a P % 9 (42) 
if and only if 

(3rdTF.)(ap^rAcr^ q) (43) V (l 
holds. We proceed by induction on h(p). 

If h(p)=0, that is p=f£F0, then af^q£P iff there exists an z'£[|P|] for which 
* f a n d cfi—qdF'. Now let h(p)=-0, that is P=f(Pl, ...,pm), where w>0 . 
Suppose that the production applied at the first step of (42) is (39). Then 

a j*Pj^<i j k 0'€[m], ke[nj]) (44) 

under some qJk£TG for which q=q(qllt ..., gi^, ..., qmi, ..., q„n ) holds. From 
here, by induction hypothesis we have 

(3r'jh<iTF,)(aJkpj~ r'jkAcr'j^ qJk) (j*€[«,]) (45) 

moreover, by the construction of S and C, (40) and (41) are in P' and P", respec-
tively. Letting 

= U if n j = 0 * [ m ] > 

and taking into consideration that T B ( J , ) | 7 > = I f we get that 

rA' fe€[«;])AcrA4 qjk (j£[m], /c<E[«J) (46) 
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from where (43) follows with 

r=fi(ru, ..., r1(i , ..., rmi, -,rmuJ. (47) 

Conversely, suppose that r in (43) is of the form of (47). Then the productions used in 
the first step of the derivations of (43) are (40) and (41), respectively. Therefore (39) 
is in P. Moreover, (46) implies (44), by induction hypothesis, hence we have (42). • 

We note that if 91 is linear in the above lemma then so is S . Hence we also 
obtain: 

Consequence 9. 
s e a » i s e j f ® M o s e x . (48) 

Applying our last two results we have two further interesting identities. 

Theorem 10. For each 2 
= JfSiMoSeX (49) 

seat®" = sejfoiMosex (50) 

(38) 
Proof. sejfQiMog® g se^2Moj/-g)Mosex(WLj/~aiskosex and in 

the same way we get (50). • 

By the above results we can easily verify the equality 

= JfXoSejTQ>0loS£X, (51) 

namely, we have 2 M ^ J i 3 i M o S e X ^ M o S e X ^ J T X o S e S i M o S e X ^ J i X o 
sejT®® o sexo sextBjrxo sejr^Mo sex g 

The equalities (49), (51), (32) are able to produce the class as a composition 
of two or three simpler classes of tree transformations. Using them we obtain some 
additional presentations for the class summarized by the following lemma. 

Lemma 11. 

(a) For any and <&£{&X,X,£e2iM,®M} 

3£o <y=9gp (52) 

(b) For any 30$. { J f X , {SejiQiM, JfQ)®,, SeSiM, and 

%^{sex, x, sejf®m, 

9Co<&o2£ = (53) 

(c) SeOlMoQiM = (54) 

(d) For arbitrary 9CZ {Sejf®®, and {S£X, SeO}®,} 
%o<y = se®gp (55) 

Proof. We prove the case (a) only, since (b), (c) and (d) can be verified in the same 
way applying (51), (32) and (50), respectively. 

1 = JfifiMoSeX Q 2To<3/Q , 
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3. On mixed composition of different subclasses 

We now investigate the set of all classes of tree transformations being a compo-
sition of finitely many ones introduced in Section 1. To be more precise we need some 
further notions and notations. Let S= {2)2%, JfQ)3l, <£3)01, £ejT2>®, tf, J f t f , 
and denote by [5] the set of all classes of tree transformations generated by S with 
composition, that is 

[ S ] = { j r 1 o . . . o j f 1 1 | / i S 1, j r ^ S } . 

One of the most important questions concerning [5] is that whether [S] is infi-
nite. We know, by consequence 7, that 'ëQQ®2, for any however, in spite 
of this, [5] may be infinite. In this paper we do not answer this question, instead, we 
present a theorem which, we hope, gives a deep insight into the structure of [5]. 

First define the classes for each k^O as follows 

(a) <#0 = 

to Jf#e if k = 2m 3t it k = 2m 
(b) = ^ o S j r a g t k = 2m + l. ( m ~ 0 ) 

Moreover, we shall use Table 1 in the following sense. Each row and each column of 
the table is marked by a class of tree transformations. Their composition, in row-
column order, is written in the corresponding square of the table. To get the depicted 
form of this composition, the equalities and inclusions the serial numbers of which 
appear in the lower part of the square can be used. If no serial number is indicated, 
then the form of the corresponding composition is meant by definition. For example, 

se^spojfM' seji90to g t f o jrx = sejr®® o ¿e. 

Now we can prove our last theorem. 

Theorem 12. There are two finite subsets Sx and S2 of [S] such that for any ele-
ment if of [S] one of the following conditions holds 

(a) V€Slt 
(b) there exist a and a k^O such that <£=<#'0^, 
(c) for some k^O. 

Proof. Define Sx and S2 by 

Sj. = gQigiojvgim, setus/p, <eo>®ojfje, wo jf®®, ojfgm, 

and 

For any there exists a minimal number n £ l such that <^=jf1o.. .ojTn 
for some jf.G S. We prove the theorem by induction on this number n. 

If c e=t f x for some JiT^S then, by case (a) holds. 
Now let <g'=jf1o. . .ojrn + 1 under a minimal « s i and some J f ^ S . Then, 

since our theorem is supposed to hold for ...o jiTn, three main cases are possible. 
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Case (a). There exists a <£"6Si such that Xxo ...oX^^", thus <8=<S"otfn+1. 
Here can be given in one of the following three forms, verifying our theorem: 

= <r'o<<?0 if and Xn+1 = SejfQ>®\ 

<g = <ex if <e" = sejf3>@. and xn+l = Jrx-, 
(0 

(ii) 

(iii) ^dSi in any other cases, by Table 1. 

Case (b). There exist and /fcsO for which 

X1o...oXtt = m"o%, so <8 = <<g"o<gkoXn+1. 

Now seven subcases detailed from (i) to (vii) can be raised proving again our theorem, 

(i) (€=2>0fl if Xn+1 = S>®, by (32); 

(u)V = V"o^SatSx if X„+1 = -VS>®, by (10), (25) and table 1; 

(iii) <g = 

¡sea®2 if xn+1 = sfast, k = o and = sex, 
by (33) and (9) 
if Xn+1 = Sea®, and k s 1 or ^ SeX 
since in this case S®2 = JTXo S£JfQ>®o Sex g 
g <$"o<&koXn+1 g . 

f* if Xn+1 = SejfS® and k = 2m, by (26) 
(m S O ) 

(v) V = < 

'k+1 if Xn+1 = SeJfS® and k = 2m -f 1; 

if Xn+1 = X , <6" jt Sex or k s 2 because 
s®2 ^ jrxo sejis®o sex g m"o^koxn+1 g s®2 

sejfa®ox if Xn+1 = X , = sex and fc = 0,1 since 
in both cases S e j f 2 ® o X g 
sexosejrs®ox g ses>®2 ox ^se/r®® o 
osexo x £2 sejfs®o x ; 

(vi) * = W'o^ 
'k+i 

(vii) <e = 

if Xn+1 = J f X and k = 2m 
if Xn+1 = J f X and k = 2m +1, by (16); 

if xn+1 = sex, <e" * sex or k s 2, 
similarly as in (v) 
if Xn+1 = sex, <T' = sex and k = 0, 
by (50) and (9) 

SejfS>®oX if Xn+1 = sex, <€" = JSfJf and k=l, 
see as in (v). 

( " •SO) 

Case (c). j f 1 o . . . o j f I I = < g ' ( t for some fcsO, so 1?=(£koXl,+1. This case can be 
handled similarly to the case (b), the detailed proof is omitted. • 
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