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Results on compositions of deterministic root-to-frontier
tree transformations

Z. FOLGP and S. VAGVOLGYI

Introduction

In this paper we examine the class of deterministic root-to-frontier tree transfor-
mations (2%) and some of its usual subclasses such as linear, nondeletmg, homo-,
morphism and so on. We present some equalities and inclusions between the compo-
sitions of different classes and, as an application, show that @ﬂz—gglwfor;each,
n=2. s

We also study all the classes which can be written in the form o£;0...0¢, where-
each A is DZ or one of its subclasses. We pick out a finite number of these classes
and show that every class J#j0...09, either equals to one of them or has a rather
special form. ' :

1. Notions and notations

For an arbitrary set Y, we denote by | Y| and 2 (Y) the cardinality and the power-
set of Y, respectively. If ¥ is a singleton, then we identify it with its unique element. ¥*
is the free monoid generated by Y with empty word A. :

The set of nonnegative integers is denoted by N. For every nc N, [n] denotes the
set {1, ..., n}, especially [0]=0.

By a ranked alphabet we mean an ordered pair (F, v) where F is a finite set and
v: F—N is the arity function. Elements of F are considered as operational symbols,
more exactly, if f€¢F and v(F)=n then fis an n-ary operational symbol. We use
the notation F= () F, where the sets F,=v~1(n) are pairwise disjoint.

nEN _ '
Now let F be a ranked alphabet and Y a set. The set of all terms or trees over ¥
of type F is defined as the smallest set T (Y) satisfying
(@) YU FyCST:(Y) and, '
() /(P1 -, PETF(Y) whenever feF, (n€N) and p,cTo(Y) G€[n).
If Y=0 then T(Y) is simply written as T..

We define the height h(p)EN, frontier fr(p)SY* and the set of subtrees;
sub(p)ETE(Y) of atree p€Tp(Y) by induction:
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(a) if p€ Fy then h(p)=0, fr(p)=2 and sub(p)={p};

(b) if peY then h(p)=0, fr(p)=p and sub(p)={p};

© if p=f(p1, .-, ps) then h(p)=1+max {h(p)licinl}, fr(p)=/fr(ps)-..fr(pn)
and sub(p)= U sub (p)U {p}.

We shall need a countably infinite.set X= {x1, X3, ...}, elements of which
are considered as auxiliary variables. The sét of the first n elements x,, ..., x, of X
is denoted by X, .

Letting Y=X, we have the set Tr(X,). Here, the elements of X, can be used to
point out places in the frontier of a tree p€Tp(X,). Thereis a dxstmgmshed subset
To(X,) of Tp(X,) defined as follows: p€T;(X,) iff p€Tx(X,) and fr(p) is a per-
mutation of X,, in other words, each element of X, appears exactly once in p.

Now let p€T(X,) and y,,...,y,6€Y. We denote by p(y;,...,y,) the tree
obtained by substituting all the occurrenc'es of x; in p by y, for each i€ [n]. Note that
2(¥;, ..., v,) is an element of Ty (Y).

By a tree transformation 7 we mean a relation from 7y to T;; where F and G are
arbitrary ranked alphabets, that is we have 1 S FeXT¢. In this way, the identical
relation 1= {(p, p)|p€ Ty} is clearly atree transformation. The class of all identical
tree transformations is denoted by .#. The restriction 7|T of 7 to a subset T of Ty is
deﬁned by
g AT = {(p, Pl(p, g)€r and peT}.

For any tree transformations t&TpXT; and ¢ ST;X Ty the domain (dam 7)
range (range t) of 7 and the composition (o) of t and o are defined as usual in the
case of relations.

Let o, and X, be two classes of tree transformations. By their composition
HioH, we mean {r;07,|7,€H; and 1.,€X,}. For any class & of tree transforma-
tionsand nEN weput A= if n=1 and H"=H""'oX if n>1. Wesay that )"
is closed under composition if #2CS X holds. If # S, as with most of the rea-
sonable classes o, then obviously 2S¢ iff A 2=,

In this paper we are interested only in tree transformations which can be induc-
ed by deterministic root-to-frontier tree transducers.

By a deterministic root-to-frontier tree transducer (or shortly DR transducer)
we mean a system

= (F, 4, G, P, a;), where . $))

(a) Fand G are ranked alphabets; :

(b) A is a ranked alphabet — disjoint with F and G — consisting of unary op-
erational symbols, the state set of U;

(c) a, is a distinguished element of A4, the initial state;

(d) Pis a finite set of productions (or rewriting rules) of the form

af(xly sy xm) -~ 4, (2)
where a€Ad, m=0, fcF, and g€Tz(AXX,). To guarantee A a deter-
ministic behaviour, any two different productions of P are required to have
different left-hand sides.

Throughout the paper terms of the form a(p) (a€ A and p is a term) are written
simply as ap. If we need to specify a production (2) in a more detailed form, then we
can write (2) as

af(xl’ ""xm) -’-q-(alxip ";’anxi,,) (3)
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for a suitable n=0, gcT;(X,), a;€A, inEX,,, (j€[nY), oras
af(Xy;s ...y Xp) ~ Glas, X1, covs B1, Xis o5 Gy Xoms +vs O, Xp) )

for some m;=0, g;,€A4, (i€[m], j€[n]) and geTs(X,) where n=n,+...+n,.
Productlons of P can be used to transform (or rewrite) terms of AX Ty toterms
of T, by defining the relation 1 (called direct derivation) on the set T (AX Tp(X ))

in the following way: for p, g€ Tg(AX T¢(X)) we say that poq iff g ‘can be ob-

tained from p by replacing an occurrence of a subtree af (p;, ..., p,,) of p by the tree
g(a, Diys +> Gy pi,) provided the rule (3) is in P. Denoting the reflexive-transitive

closure (1 e. the iterated application) of the direct derivation by => ,the tree transfor-
mation 7y, induced by U with state a€ 4 is defined by

*
ta@ = {2, DIp€Tr, 9€T¢ and ap= g}

By the tree transformation 7y induced by 2 we mean 1y, 1.€.,

*
ta={(p, PIPETr, q€T and aop= q}

We say that a tree transformation T ETyX T can be induced by a DR transducer
if =14 for some DR transducer U.

Next we introduce some restrictions on DR transducers. A DR transducer (1)
is totally defined if for each ac 4 and f€ F there is a rule (2) in P. (1) is called a hom-
omorphism (H) transducer if it is totally defined and has only one state, i.e. A=
= {a,}. Moreover, we say that (1) is

(a) linear (L) if for every rule (4) of Pand i€[m], n,=1,
(b) nondeleting (N) if for each rule (4) of Pand i€[m], n;=1,
(c) linear nondeleting (LN) if it is both linear and nondeleting.

The subclasses L, N and LN of H transducers are defined in a similar way.

If K is some subclass of the class of all DR transducers defined above, then
the class of all tree transformations that can be induced by K transducers is denoted
by o. For example #9% denotes the class of all tree transformations that can be
induced by LDR transducers. Finally, we present a diagram showing the inclusion
relatlons among the classes DR, N DR, LDR, LN DR, K, N H, LK, .f o

2%
"
-,
NOR ﬂlm
./l/x’ zx
LND
N/

‘.
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2. Equalities and inclusions

By one of the earlier results 24 is not closed under composition (see [4]). This
means that, in general, we cannot give a DR transducer €, for any two DR trans-
ducers A and B such that tg=rtg0ts. However, we can define a DR transducer
AoB called the syntacuc composition of A and B with a series of useful properties.
Thls was also stated, in an implicit form, in [3].

o Deﬁmtlon 1. Let A=(F, 4,G, P,a;) and B=(G, B, H, P’, by) be DR trans-
ducers. By the syntactic composition of U and B we mean the DR transdicer Yo B=
=(F, BX A, H, P”, (b,, a,)) where P” is defined in the following manner: the rule

(b, a)f(xl’ reey xm) - q,((bllv al) Xiys +=os (blvla al) Xiys -es

(boys @) x5 o (Boy 5 G %)

is in P” for some v;éN, b; €B, (j€[n), k€[v;]) and ¢'€Te(X,) (v=v,+...+v,) if
and only if there is a rule (3) in P and a state b€ B with

‘bq% g (by, Xys ooy by, X1y ooy by Xy o0s By X,).

(We let B work on g as long as it can.)

Lemma 2. Under the notations of the above definition, for any a€A4, b¢B,
p€Ty and g€Ty

(3reTe) (ap =;> rAbr =;> g)=(b,a)p m——}% q. ’)

The proof, as usual, can easily be perfo;rﬁed by induction on h.( p). O

Now we can make the following observations.

(a) We cannot converse (5) because B may be deleting, therefore there may be
atree p€ T such that AoB can transform p to a tree g€ Ty by deleting some sub-
tree p” of p but A can not transform p’ with any state a€ 4. Thus p may be in dom Ty,
.but not in dom ty hence not even in dom (tq07w). It can be seen that we can elimi-
nate this problem by requiring 2 to be totally defined (see also in [4]) or B to be
nondeleting.

(b) Moreover, (5) can also be conversed if p is in dom g since in this case
A can always transform p” with some state a€A.

(c) UoB inherits any property W-and B have, where property means one of the
following : completely defined, one-state, L, N, LN.

We give a summary of the above observations:

Lemma 3. For any DR transducers ¥ and 9B the following hold:

(a) if A is totally defined or B is nondeleting then Tyo.u=14901s,

(b) ta.sldom 1q=10017s,

(c) if A and B are x then oB is also x where x=completely defined, one-
state, L, N, LN. O
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From the above lemma we have a series of equalities some of which were stated
in different works.

HoDR = DR (6) HoH = (11)
LHDR = DR (7 HoNH = H (12)
NHoDR = DR (8) HoLH = H (13)

LHLDR = LIR © NHoH = H _ (14)

. NHNDR=NDR (10 LPHH =H (15)
NHNH = NH (16)

LHLH = LH an

These follow from the fact that an H(LH, NH) transducer is always completely de-
fined. oL .
Moreover, we also obtain

DRON DR = DR (18)
DR LN DR = DR -.(19)
DRNH = DR . (20)
NDRN DR = N DR (21)

N DR LN DR = N DR . (22)
NDRON H = N DR (23)
LDRLN DR = LDR , (24)
LN DRoN DR = N DR (25)
LN DROLN DR = LN DR (26)

Here we used that the second components are all nondeleting.
A frequently quoted equality is

HoLIR = DR @)

which can be found in [1] and [2]. From the proof of (27), it turns out that we may also
declare it in the form

NHLDR = DR S (28)
moreover, if we consider only H transducers we get
NHoLH = H. 29)

By lemma 3, £ oW ¢ S and it is not difficult to see the conversed mclu-
sion shown by the following lemma.

Lemma 4. £ SLHoN H.
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- Proof. Let us be given an H transducer A=(F,a, G, P, a). Obviously, each
production can be taken in the following form:

af(xy, ..., X)) —~ q(ax;,, --., ax;) (30)

where m=0, f€F,, 1=ij<...<i,=m and q is a suitable tree from T;(X,) contain-
ing at least one occurrence of x; for every j€[n]. For each production (30) take a new
operational symbol fwith arrty nand put F={ f|f€ F}. Now we can introduce the H
transducers B=(F, b, F, P’,b) and C€=(F, ¢, G, P”, ¢) as follows: whenever a pro-
duction (30) is in P let the productions bf (xl, coos Xp) =S (bxy, ..., bx;) and
of (x1, ..., x,)~q(cxy, ..., Cx,) bein P’ and P”, respectlvely Clearly, 8 is an LH and
€ is.an NH transducer, moreover the equivalence

ap =*> q o (3p€Ty) (bp=*> ricer ;' q)
can be proved for each p€Ty and g€ T(;, by induction on A(p). Hence we have our
Iemma and the equality: . :
LHONKH = H. (31)

_ Our next lemma follows from exercise 2 on p. 213 of [3]. This states that dom 14
can always be recognized by some DR recognizer (for definition see also [3]) for any
DR transducer 2. However, we mention that the following correction is needed in
the definition of the DR recognizer in [3]: the realisation of an operational symbol
of arity 0 must be considered as a subset of the state set and not as an element of it.

Lemma 5. For any given DR transducer U=(F, 4, G, P, a,) there exists an
LNDR transducer W' =(F, 2(4), F, P", {ag}) such that tg - =17{dom g.

-~ Proof. Let P’ be constructed as follows: for any B= {al, s MYEP(A), mEN
and f¢F, the rule Bf(x,, ... ,,,)—»f(lel, vees Bpx,,) isin P’if and only if the
next conditions hold: .

" (a) for each i€[k] there is a production

a; f(xyy oo X)) = qi(@h x5, .0y ainlxl, ces By Xy o 'a',',,nm x)

in P where ny; ...; n,=0 (depend on i), a§k€A
a (JE[m], ke[n,]) a€Te(X), (n=n+. o m);
RONEE =\ @, - ,a,n} jemy. Y

Then we can verify the following statement : for any g
= {a;, ..., a}eP(4) and peTy
Bp => pe (vfé[k]) (BqETG) (a;p => 9. O
Now Tet 9 and B be two arbrtrary DR transducers Then by lemmas 3 and 5 we

have
Tg0Ts = Tuos|dom tgq = (1p|dom 19)o Tyss = T4-0 tasy. ~ - -
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from where
DR2 = PN DRoDR 32
and, if A and B are LDR transducers then

LDR? = LN DRoLDR. 33)
We are ready to prove one of our main results. .
Theorem 6. For any n=2
DR = LN DRoDR and "3
LDR = LN DR L DR (35)

Proof. We follow an induction on .n. The case n=2 is already proved, the
induction step of (34) (and similarly that of (35)) is shown by the followmg computa-
tion:

2R+ E2 PN DR DR DR = LN DR DR" L2 LN DR LN DR DR 2 )
LN DRDR. 0O

Consequence 7 For every n=2 -
DR" = DR* and (36)
LR = LIR. (37

We shall also need the following result. |
Lemma 8. :
DRC NDRLH L 68)

Proof. Let U=(F, 4,G, P,a,) be a DR transducer. We construct an NDR
transducer B and an LH transducer € such that tq=1g01s. To this end, consider
an arbitrary but fixed order of the productions from P and number them from 1 to
| P] in the following form

i af(x;, .., Xp) > q(ay, X1, .o Ay, K15 +s Oy Xms -5 am;' X . (39
where : , : C
n; =0, a; €4, (jé[m), ke[n]) and geTqs(X,),
(n=ny+...+n,). We meéntion that the symbols used in the specification . of the z-th
production depend on i. Now, for each i€[|{P|] and j€[m] define u; by .. -

J

n, if nj>0
“={1 if n,=0

J

and take a new operational symbol f ¢ F with arity u= u1+ +u Then con-
‘struct the DR transducer. B8=(F, 4U{b}, F’, P’, a;) where .
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(@) F'=FU {fli€|P|};
(b) b¢ A is a new state;
(c) P’is defined as follows: the rule

af(xXyy oo Xp) = fi(by, %15 s blulxl’ cees Dony Xy evs b"'u,.. Xm) (40)
is in P’ iff the conditions
(i) the i-th production of P is of the form (39) and

.. {a.h, aesy a]"! if nj>0 R

(1]) b.in’ a4 bluj - b if n; = 0 JE[m]
hold, moreover the rule bf(x,, ..., x,)—=f(bxy, ..., bx,) isin P’ for each
m=0, f€F,.

Next, introduce the H transducer €=(F’, ¢, G, P”, ¢) where the rule

cﬂ(xla vy xu) - ‘7(6351, AREE ] cx,,l, “rey Cxu1+...+u,.,,_1+la ey cxu1+...+u,,,_1+nm) (41)

is in P” iff the i-th production of P is (39), moreover, to make € totally defined, let the
rule ¢f(x, ..., X,)—¢ be in P’ with an arbitrary q€T¢({c}XX,,) for each m=0,
JeF,.

First note that B is nondeleting since u;=1, (jé[m]), te@)|Tr=1F and € is lin-
ear. To prove tg=1g07¢ it is enough to show that for each acd, p€Ty and
q€Tg the equivalence

*
ap=4q 42)

if and only if
@reTe)(ap rier= q) (43)

holds. We proceed by induction on h(p).

If h(p)=0, thatis p=fcF,, then af—+g€P iff there exists an i¢[|P|] for which
af-+fi€ P’ and cf;—+q€P’. Now let h(p)>0, thatis p=f(p,, ..., p,), where m=0.
.Suppose that the production applied at the first step of (42) is (39). Then

a,p;= 45, (€lm], keln)))’ (44)

under some ¢;,€7; for which ¢=3(qy,> .-, 91, 5 -» Gmys -+ Gm, ) holds. From
‘here, by induction hypothesis we have "

’ * .
@rhETe)an Py rherl, = 44)  (€lml, keln,) (45)

moreover, by the construction of B and €, (40) and (41) are in P’ and P”, respec-
tively. Letting

"jp--:”;‘n if n;=0
rh, e = 4

.l'uJ - p] if nj = O JE[m],
and taking into consideration that tg)|Tr=1F we get that

bypy= The UEIm), kelwDAer,= g, Gelm), keln) - (46)
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from where (43) follows with
r=fi(ry, .- Paa> w5 Tmys +oo r,,,um). NG

Conversely, suppose that r in (43) is of the form of (47). Then the productions used in
the first step of the derivations of (43) are (40) and (41), respectively. Therefore (39)
is in P. Moreover, (46) implies (44), by induction hypothesis, hence we have (42). 0O

We note that if U is linear in the above lemma then so is B. Hence we also
obtain:

Consequence 9.
LPDQR S LN DR L H. (48)

Applying our last two results we have two further interesting identities.
Theorem 10. For each n=2
DR = N DR L H 49
LDR" = LN DR L H (50)

(38)
Proof. QA" LLN DRoDRCS LN DRON DR LH BN DR L H# and in
the same way we get (50). O

By the above results we can easily verify the equality
DR = N H LN DR LK, (51

(48)
namely, we have DR:E2N DR LH S DR L H LN Ho LDRo LH SN Ho
PN DR LHLH LN H o LN DR L H# S DRED D2,

The equalities (49), (51), (32) are able to produce the class 22 as a composition
of two or three simpler classes of tree transformations. Using them we obtain some
additional presentations for the class 2%* summarized by the following lemma.

Lemma 11.
(a) For any Z€{NV/' DR, DR} and Hc{LH,H, LIR, DR}
oW = OB (52)
(b) For any Z¢{NH, N DR}, V(LN DR, N DR, $DR, DR} and
ZXe{LH,H, LN DR, DR}

oo F = QR* (53)

©) LDRDR = DR 549
(d) For arbitrary Z€{LN DR, YDA} and Fc{LH, LIR)}

oW = LDR (55)

Proof. We prove the case (a) only, since (b), (c) and (d) can be verified in the same
way applying (51), (32) and (50), respectively.

2R L N DR LH S XY C DR, 1O



58 Z. Fulop—S. Végvolgyi

3. On mixed composition of different subclasses

We now investigate the set of all classes of tree transformations being a compo-
sition of finitely many ones introduced in Section 1. To be more precise we need some
further notions and notations. Let S= (2R, /DR, DR, LN DR, K, N #, LK}
and denote by [S] the set of all classes of tree transformations generated by S with
composition, that is

[S]={Ho.0d n=1, AHeES)

One of the most important questions concerning [S] is that whether [S] is infi-
nite. We know, by consequence 7, that ¥S2%? for any %€[S], however, in spite
of this, [S] may be infinite. In this paper we do not answer this question, instead, we
present a theorem which, we hope, gives a deep insight into the structure of [S].

First define the classes 4, for each k=0 as follows

(2) G, = LN DR

GoN X i k=2m
(®) (g"?‘l_{fgkogm@@ if k=2ms1. ™=0

Moreover, we shall use Table 1in the following sense. Each row and each column of
the table is marked by a class of tree transformations. Their composition, in row-
column order, is written in the corresponding square of the table. To get the depicted
form of this composition, the equalities and inclusions the serial numbers of which
appear in the lower part of the square can be used. If no serial number is indicated,
then the form of the corresponding composition is meant by definition. For example,

LDRoNH L2 LN DR LAHoNH ED PN DR H .
Now we can prove our last theorem.

Theorem 12. There are two finite subsets .S; and S, of [S] such that for any ele-
ment € of [S] one of the following conditions holds

(a) (gE Sl; ’
(b) there exist a ¥’€ S, and a k=0 such that ¥= ‘6’0%,
(c) ¥=%, for some k=0.

Proof. Define S; and S, by

S, = SU{9%2, LDQRoN DR, LIR, LDRON H , H o N DR, £ DR*o N DR,

LN DRo H#}
and

Sy = (o, N H, LI, LDRON K} LN DRo H).

For any %¢€[S] there exists a minimal number n=1 such that ¥=,}0...0,
-for some. ;€ S: We prove the theorem by induction on this number n. -

If ¢= Ji’l for some XIES then, -by SES,, case (a) holds. -

Now let ¥=70. n+1 Under a minimal n=1-and some X;€S. Then,
since our theorem is supposed to hold for A#j0...0¢,, three main cases are possible.
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Case (a). There exists a 47¢€ S, such that Sj0...04,=%", thus €=%"0) ;.
* Here % can be given in one of the following three forms, verifying our theorem:

@) @ =%"0%, if €S, and X,., = LN DR;
(ii) =% if € =LNDR and N, = NHK;
(iii) %cS, in any other cases, by Table 1.

Case (b). There exist €€ S, and k=0 for which
10...0H, =%"0%,, 50 € =%"0% 0K +:-
Now seven subcases detailed from (i) to (vii) can be raised proving again our theorem.
@ C=9%* f H,.,.=9DR, by (32);
i) 4 =% "o N PRES, I H,.1=HDR, by (10), (25) and table 1;

LOR: if Hyy=LDR, k=0 and ¥ =LK,
by (33) and (9)
(iii) € =
IR

—

if Ay =2%DR, and k=1or " = LH¥
since in this case D% E2 N H o LN DRo L H <
C GoC 0N, 1 & DR?;
N @ {‘g”o(g,‘ if Hyp1=LNDR and k=2m, by (26)
W)€ =\grog,,, if H,py=LHNDR and k=2m+l;

DR? if Hppy =3, €” % LH# or k =2 because
DR DN Ho LN DR LH S B 0% 0K 11 S DR

LN DR H f Hypi=H, €' =FH# and k =0,1 since
) €= in both cases LN DRoH C G 0B0H, 22
LHOLNDRH S LDR 3 2 LN DR

ofHoH L PN DR H;

m = 0)

. % O%k+1 i f"+1=ﬂéf aﬂd k=2m
(i) ¢ = { ” i _ _ . (m=0)
€%, if A, =HN# and k =2m+1, by (16);
DR? if A1 =2LH, € =#LH ork=2,
similarly as in (v)
. _ ) Z2%* if Hppy=LH, 6" =% and k=0,
(i) € = by (50) and (9)

PN DRoH f H,p =L, €' =F# and k=1,
see as in (V).

Case (c). Hyo...0X4,=%, for some k=0, so =%, 0X4,,,. This case can be
handled similarly to the case (b), the detailed proof is omitted. O
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