The invertibility of tree transducers
IMRE NEUMULLER

Every finite automaton can be considered to be a finite algebra equipped with
unary operations. In this setting, automata process unary polynomial symbols. This
observation led to introducing tree automata by dropping the unary requirement.
Basically, tree automata are finite universal algebras, and tree automata process poly-
nomial symbols, i.e. trees. Similar generalization when applied to sequential machines
leads to the concept of tree transducers. In the first section of the present paper we.
recall some basic definitions on tree transducers and prove a few simple propositions.
The invertibility of frontier-to-root tree transducers is discussed in the second section.
Namely, we give a necessary and sufficient condition describing frontier-to-root tree
transducers posessing an inverse. In addition, an algorithm is given for constructing
inverse transducers. Similar results are formulated in the last section for root-to-
frontier tree transducers. o )

1. Notions and notations

In this section we recall concepts and results in connection with trees and for-
ests.

Definition 1.1. An operation domain F is a disjoint union of sets F, indexed by
nonnegative integers. F, is the set of n-ary operational symbols. A finite operation
domain is called ranked alphabet.

Definition 1.2. Let X, be a set of n variables. An F-polynomial symbol over X,
is called an F-tree over X,. A set TET,(X,) is called an F-forest over X,,.

Let X be a finite set of variables and p€ T¢(X).

Definition 1.3. The set of all subtrees of p, denoted sub (p), is defined as follows :
(D) if peF,UX, then sub(p) = {p},
(2) lf p =f(P1, Dgs ---s pm) (fEFm’ m > 0)’ then

sup (p) = {p}U(sub(p); i=1,...,m).
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Definition 1.4. The root of p, denoted root (p), is given by the following two
conditions:

(1) if peF,UX, then root(p)= p;
) if p=f(p1,-.> Pm) (fEF,,m=0), then root(p) =f.
Definition 1.5. The height h(p) of p is defined by
(1) if pe FLbUX, then h(p) =0,
) if p=flp1,-..» P (fEF), m>0), then
h(p) =max {h(p); i=1,...,m}+1

Definition 1.6. Let F be a ranked alphabet, and X a finite set of variables. The
system A=(%, X, &, A’) is called an n-ary F-automaton, where

(1) A=(4, F) is a finite F-algebra,
(2) &: X—+A is the initial assignment,
(3) A’S A is the set of final states.

Let &: Tp(X)~U denote the homomorphic extension of %, where T(X) is now
considered to be the absolutely free F-algebra generated by X. The forest recognized
by A is defined by:

T(A) = {p€Tp(X); p LA}

A forest Tis called recognizable (regular) if there is an F-automaton A with T(A)=T.

In defining tree transducers we shall make use of a set Z={z,, z,, ...} of aux-
iliary variables. We set Z,={z,, ..., z,} (n=>0). Z is supposed to be disjoint with every
other set.

Definition 1.7. A system A=(Ty(X,), 4, T¢(Y,,), 4’, P) is called a frontier-to-
root tree transducer (F-transducer), where

(1) F and G are ranked alphabets,

(2) Ais a ranked set containing only unary operational symbols, the state set of
A. (It is assumed that A is disjoint with all other sets in the definition of A, expect A".)

(3) A'S A is the set of final states,

(4) Pis a finite set of rewriting rules of the following two types:

() x,—~a(q) (x€X,, acd, g€Ts(Y,)) and
(ll) f(al(zl)""s ak(zk))_’a(q(zli-":zk)) (fEFIH kéo; ayy ..oy Qg GEA;
21 s 206245 422, s WET(YnUZ)).

In what follows, if a€ A and tis a tree, instead of a(¢) we shall use the notation at.
Accordingly, we write AT for the set AT={at|lacA; €T} if T is any forest.

Let A be the above defined F-transducer. It is said that A is

— linear, if every z,€Z occurs at most once on the right side of a rewriting
rule,

— nondeleting, if in every rewriting rule, all the variables z; occurring on the
left side occur on the right side, too,
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— completely defined, if for every i(=n), I(=0), f(¢F,), and ay, ..., a(€A)
there are a rewriting rule with left side x; and a rewriting rule with left the side
flazi, ..., az) .

We are now going to define the tree transformation induced by an F-transducer
A. Let p,q€Te(X,UATs(Y,,UZ)) be arbitrary trees, and A the tree transducer
given in Definition 1.7. We say that p directly derives g in A, if g can be obtained
from p

(i) by substituting ag for an occurrence of x; in p provided that x;—~ag is a rew-
riting rule in P,

(ii) or by substituting ag(p;, ..., px) foran occurrence of a subtree of the form
f(ayps, ..., api), provided that f(ayzy, ..., a.z)~aq(z, ..., z) is arewriting rule
in P. We use the notation = for direct derivation. The reflexive-transitive closure of

= is denoted % If p% q we say that p derives g in A.

Definition 1.8. The F-transformation induced by the F-transducer A is the fol-
lowing relation 7, :

*
a = {(p, DIPETr (X, q€Tc(Yn), p=, aq, acd}.

Definition 1.9. The system A=(Tg(X,), 4, Te(Y,,), 4, P) is called a root-
to-frontier tree transducer, R-transducer for short, if

(1) F; G and A are as in Definition 1.7,
- (2) A’S4 is the set of initial states,
(3) Pis afinite set of rewriting rules of one of the following two forms:

() ax; > q (x€X,, acAd, q€T(Y,)) and
(ll) af(Zl, veey Zk)_)q (fEFk; kéo; aEA; Zyy eney ZkEZk; quG(YmUAZk))'

Linear, nondeliting and completely defined R-transducers are defined in a way
analogous to the F-transducer case.

To define the transformation induced by the above R-transducer we define the
direct derivation = in A for trees p, g€ To(ATr(X,UZ)UY,) as follows: =9

if and only if either

(i) g is obtained from p by substituting g for an occurrence of a subtree ax; in p
provided that ax;—q is a rewriting rule in P, or

(ii) ¢ is obtained from p by substituting g(p;, ..., p,) for an occurrence of a
subtree af(py, ..., p)€sub (p) provided that af(zy, ..., z)—g is a rewriting rule
in P. '

The reflexive transitive closure of = is again denoted => If p:> 9 we say
that p derives g in"A.

Definition 1.10. The root-to-frontier tree transformation (R-transformation)
induced by A is the binary relation: :

= {7, DIPETr(X,); q€Te(¥,); ap= g; ac4)).

5 Acta Cybernetica VIII/1



66 I. Neumiiller

~ Definition 1.11. Let A and B be R-transducers (F-transducers). It is said that A
1s equivalent to B if 1,=15g.

Definition 1.12. An F-transducer A (R-transducer) is called bounded, if 73(q)
is a finite set for every (p, g)€1,4.

Let A be an arbitrary F-transducer. A state a€ A4 is accessible if there is a tree
pETE(X,) with p;i aq for some q€T;(Y,). In this case we also say p leads to a.
Similarly, we say that a state a’€ 4 is accessible from a state a€A4 if there are
PETH(X,UZ,) and geT4(Y,,UZ,) with p(azl)-—%a’q.

Definition 1.13. An F-transducer is called biaccessible if every state a is acces-
sible, and for every state a there is a final state a’ such that 4’ is accessible from a.
(In other words, this means that every state occurs in a derivation p=*; aq where
PETE(X,), q€Te(Y,) and acd’)

It is easily seen that for every F-transducer A there is an equivalent biaccessible
F-transducer provided that z,0.

Let A be an arbitrary R-transducer. A state a€ A is called essential if there are
pETR(X,) and g€ Te(Y,,) with ap%q. A rewriting rule

af(zl’ ey Z) T (1)

is called essential if there are p,, ..., py€ Tp(X,}and g€ T (Y ,,) with af (py, ..., p,‘)%q
such that in the course of the derivation the first rule applied is (1).

Definition 1.14. An R-transducer A is called biaccessible if its states and rewriting
rules are essential, further, every state occurs in a derivation ap% q where
PE TF(Xn)a ‘IE TG(Ym) and ac A"

Again, it is straightforward to prove that for every R-transducer A there is an
equivalent biaccessible R-transducer provided that 7, 0.

Definition 1.15. Let A be an F-transducer. A state a€ 4 is said to be of k-type
for k=0, ..., o, if there are exactly k distinct trees leading to a.

Lemma 1.16. Let A be a biaccessible F-transducer. There exists a biaccessible
F-transducer B which is equivalent to A and such that every state of B is either of
1-type or of oo-type.

Proof. Since A is biaccessible A does not have O-type states. If A has only 1-type
or oo-type states set B=A. Assume that a€4 is of k-type with l<k<co. There are

Dis o9 Pk (plGTF(X) l_l k) and q}l’ ey thJ (qJIETG(Ym) ./'_'1 k
1—1, ooy j) with p,-=A> aq;. (”[he trees p; and ¢, can be determined in an eﬁ‘ectwe

way.) Let 4;={p;, pl, ..., pi} (i=1, ..., k) denote the set of subtrees of p;. In what
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follows, p; and p! will denote states. Take the following sets of rewrmng rules P;

(i=1, ..., k): (Let r be an arbitrary tree in T(Y,,).)
if Ai = {p} then v~ p;q,€P; = v=p; vEX,UF,
=1, ..,

if A4;+ {p;}} then v—pir€eB o v=p{; veX,UF,;
S zi, oo Bi"2) ~ Pir€R if and only if f£,(pf, ..., pI¥) = p
(B 2y, ..., Bi" 2) > Biqim€P; if and only if f,(pf* ..., pi*) = p;
h=0;m=1, ..t Ujg, ..., ju€{l, ..., s;}-

Let P* consist of all those rules of P not containing an occurrence of the state a as
well as the rules formed in the following way : If a rule in P contains an occurrence of
a then substitute p;,(i=1, ..., k) for a in every possible way. Take the F-transducer
C=(TF(Xn), Ca TG(Ym)s Cla Pl), where

C=A4UA4U...U4,—{a}

A, if a¢d
"U{py, .o By —1{a), if acd’

P =P U...UPUP*.

It is easy to see that A is equivalent to C and C has fewer states of type k, 1<k=< oo,
than A. In a finite number of steps we arrive at the transducer B with the required

property.

We continue by introducing a few concepts to be used later. Let A be an arbi-

trary F-transducer. A rewriting rule is called jumping provided that it is of the form
flayzy, o axz) ~az; (0<i=k). .
A state ac A is called

— deleting state, if there is a rule containing az; on the left side but z, does not
occure on the right side,

— multiplying state, if there is a rule containing az; on the left side and z, occurs
at least twice on the right side,

Jumpm g state, if there is a jumping rule containing az; on the left side, and the
right side is of the form bz; for some b, i.e., the right side contains the variable cor-
responding to a on the left side of the rule.

A chain q,, gy ooy Gy (k=0) of states is called a jumping cycle if for every i=
=1, ...,k thereisa jumplng rule containing a; on the left side and such that. its right
51de is a,ﬂz where z; is the variable correspondmg to a; on the left side of the rule.
If i=k, a;.1=a,. For the sake of simplifying the treatment, if the left side of a rule
contains a state a of k-type, then the auxiliary variable corresponding to a is called of
k-type, too.

Let A be an arbitrary R-transducer. A rewrmng rule is called a jumping rule
prov1ded that it is of the form af (zl, . zk) a’z;. Astateaissaidtobe = = .

]umplng state, if there is a Jumplng rule whose left side contains . A chain
Aysoees Oy is a jumping cycle if for every i there is a jumping rule w1th left side contam-
ing q; and right side containing g;,,. Again, a;,,=a,.

c'=

s.
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Later we shall use the following notation: A(a;) is the R-transducer obtained
from A by letting g; to be the unique initial state.
The proof of the next result can be found in [3].

Theorem 1.17. For every linear nondeleting F-transducer there is an equivalent
linear nondeleting R-transducer and conversely.

Definition 1.18. Let A be an arbitrary F-transducer (R-transducer). An F-trans-
ducer (R-transducer) B is called an inverse of A, if t3 =14.

2. The invertibility of F-transducers

In what follows we shall always assume that the F-transducers to be considered
are biaccessible with states 1-type or c-type. By the previous section this assumption
does not restrict the generality of the treatment except for the induced transformation
is the empty relation — however, in this case the inverse is obviously inducable.
~ First let us discuss some necessary conditions of invertibility.

Theorem 2.1. Let A be an arbitrary F-transducer. Then the domain of 7, is

regular and ;" preserves regularity. '
The proof of the above result can be found in [3].

Lemma 2.2. Let A be a biaccessible F-transducer. If A is invertible then 7,
preserves regularity.

Proof. The statement is obvious by Theorem 2.1.

. Lemma 2.3. Let A be a biaccessible F-transducer. If A is invertible then A is
bounded.

Proof. If A is not bounded then thereare an infinite number of trees mappedtothe

same tree g under 1, . Thus, ¢ has an infinite number of images under 7;*. This con-
tradicts the invertibility of A. 4

nLemma 2.4. Let A be an arbitrary biaccessible F-transducer. A is bounded if and
only if
" (1) A has no jumping cycle of states and
(2) A has no deleting state of <-type.

- Proof. Let A=(Tx(X,), 4, T¢(Y,,), A, P). Assume that a€ 4 is a deleting state
of oo-type. Let ry,7,, ... be distinct trees in T¢(X,) with ri%aq,- (i=1,2,..),

9:€Tg(Y,). As A is biaccessible, there are p€Tr(X,), ¢g€T;(Y,) such that
(p, 9)€1a, and in the derivation of ¢ from p we go trough the state g at a stage where
the subtree r belonging to a is deleted. Let us replace the subtree r in p by ry, rs, .
respectively. For the trees p,, py, ... obtained in this way we have (p;, g)€14.
Suppose now that a,, ..., a,(k=0) isa jumping cycle of states, and let s, ..., s
be the corresponding jumping rules. Put r,=z, where z€Z is an auxiliary variable.
Having defined r, (I=1, ..., k);: form r,,, in the following way. Let' 5, be the rule

ey
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f@z,...,az, ...,a*z,)~a,z. (Of course, a@,,=a,) Take a tree r¢Tp(X,)
with t‘:*za"qi where ¢'€T(Y,) for every i=1,...,u. Put
P =f(&, .., r, .., 1=1,.,k

Denote by p* the tree r,,,. Obviously, h(p*)=0. Since A is biaccessible there are
pETw(X,), g€T¢(Y,,) with (p, g@)€7a, and such that a derivation of ¢ from p goes
through 4, . Denote by p that subtree of p leading to a, . Put

Po =D,
Piv1 = D% .Di»
where -, denotes the z-product of trees. Substitute p; for p in p, and let p;
(i=0, 1, ...) be the resulting tree. Obviously (p;, g)€7a, ending the proof of the

necessity.
Conversely, if both (1) and (2) are satisfied by A, then for every (p, g)€t4 it

holds that h(g)>(h(p)—m)/(k+1), where m=max {h(r); r%aq, q€Te(Y,), acA
is a deleting state}, and k is the cardinality of the state set. From this, A is casily seen
to be bounded.

Next we try to construct an inverse transducer by “inverting the rules”, if it is
possible.

Definition 2.5.

— The inverse of a rule x;—~agq or fy—~aq( fo€ F,) is a finite set of rules ensuring

q=*>ax,- or q=*>af0. ‘

— The inverse of a rule f(ayzy, ..., ¢,zr)~aq k>0, (q€T(Y,,UZ) g+#z;
(i=1, ..., k) is a finite set of linear rules in which none of the auxiliary variables
occure (the auxiliary variables are denoted e.g. by 2y, %, ...), and such that these

rules realize a derivation ¢g(a;z,, ..., G zk):*:» af(ry, ...,r,) where the variables z; occure
with the same multiplicity and with the same states as in the original rules and

{z,- if a; is of e-type
"= p; if a; is of l-type and p; leads to a;.

— Further, we say that some occurrences of the variables z;, ..., z; meet at the
same vertex in a tree g€T¢(Y,UZ) if q has a vertex such that there is a path in ¢
from that vertex to every given occurrence of the variables z;(j=1, ..., ) and there
is no edge in g belonging to two different such paths.

Lemma 2.6. Suppose that the states occuring in the rules are of 1-type or of
oo-type and none of them is an co-type deleting state. Then

(1) all the rules x;—~aq, fo—~aq ( fo€ Fo; g€ T(Y,,)) are invertible.

(2) alinear rule f(a,z;; ..., apzi)>aqk=0; geTe(Y,,UZ); g#z;i=1,..., k)
is invertible if and only if all «-type auxiliary variables in g meet at same vertex,

(3) a nonlinear rule f(a;z,, ..., a.z)~aq (k=0;g€T(Y,,UZ)) is invertible
if and only if each <-type auxiliary variable in ¢ has an occurrence such that these
occurrences meet at the same vertex.
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_ Proof. Suppose that a rule is invertible. There is a uniquely determined vertex in
q such that we get back the given occurrence of the symbol f during the derivation
process. Of the arguments of £, all «-type auxiliary variables occur. Since none of the
auxiliary variables z; occurs in the rules realizing the inverse of the rule, the vertex
in question has an outgoing path to an occurrence of every e-type auxiliary variable
and no edge belongs to more than one such path. We have proved the necessity in
case of conditions (2) and (3).

(1) In the same way as in the proof of Lemma 1.16 we can construct an F-trans-
ducer transforming a given tree to a given tree. Let us replace in this transducer every
occurrence of the final state by a, the resulting set of rules is the inverse of the rule
given in (1).

(2) Further on the symbols z;(i=1, ..., k) will not be considered to be auxiliary
variables. The auxiliary variables will be denoted by ». Denote by S={s,, ..., 5}
the set of all those vertices of ¢(z,, ..., z) from which there are paths leading to
o-type z;’s. Let R={r,, ...r;} be the set of those subtrees of ¢(z,, ..., z;) whose
roots are directly attached to vertices in S and which does not contain vertices of S.
(Different occurrences are treated separately.) Let #€T:(X,) be an arbitrary tree.
Forevery j(j=1, ...;I) thereisan F-transducer B; with tg,={(r;, £)}. Let P; be the
set of rules of B;. If z; occurs in a rule then replace all occurrences of the state appear-
ing on the right side with ;. Delete those rules containing an occurrence of one of the
symbols z;. Denote by P’ the union of the sets of rules obtained in this way, and let
¢1, ..., ¢, bethe final states. If S is empty then R={g}. In this case put t=f(p,,...;ps)
where p; leads to a;, and replace ¢; with a everywhere — the proof is done. Otherwise,
let e denote the vertex where the o-type z’s meet, if there is only one such z; let e
be the root. Let us assign to each s; astated; (i=1, ..., n) as follows: If s; is the root

then d;=a, otherwise let d; be a new state. Let g(q,, ... q,) be the subtree correspond-
ing to the vertex s;. We construct a rule to every vertex s; in S. If the vertex is differ-
ent from e then the rule is:

g(b,vy, ..., byv,) — d;v, where

b, =

J

{Cp, if q} = rﬂ
de, if g; hasroot s,

(j=1, ..., ®) and v, is the auxiliary variable corresponding to the unique d occurring
on the left side. If the vertex coincides with e then

g(byvy, ..., bev) — d; f(F1, ..., 7)) where

b {cﬂ, if gy=rg
77 \d4,, if g, has root s,

G=1,...,a
{pj, if a;is of l-type and p; leads to a;

r; . . .
7y, if z;is of e-type and occurs in ¢,

G=1,..,k).
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Take the union of all the sets of rules costructed. Obviously, this set is an inverse of
the original rule.

(3) Choose an occurrence of every oo-type z; in such a way that these occurrences
meet at the same vertex, and consider these occurrences as eo-type z;’s. The proof is
finished as in (2).

The proof of the next two theorems can be found in [4].

Theorem 2.7. Let A be an arbitrary F-transducer. 1, preserves regularity if an.
only if A is equivalent to a linear F-transducer.

Theorem 2.8, Let A be a biaccessible F-transducer. Then A is equivalent to a
linear F-transducer if and only if A is linear or its multiplying states are of finite type
(i.e. of k-type with k<<o).

Lemma 2.9. Let A be a biaccessible F-transducer. If A is invertible then its non-
jumping rules are invertible.

Proof. Assume to the contrary that A is invertible and has a non-jumping rule
which is not invertible. On the basis of the previous results we may assume that A is
biacessible, linear, and its states are of 1-type or of e-type. Denote by B an inverse
of A. Let

f(alzl, ...,aka)—’ aQ(Zl, ceed Zk) (1)

be a non-invertible rule. By Lemma 2.6, the «o-type auxiliary variables do not meet at
a single vertex. Because of biaccessibility, there are p€Tp(X,) and g€T4(Y,) such
that (p, )€t andthe rule is used in the course of deriving ¢ from p. Let e denote that
vertex of p where the rule (1) is used. Let z, ..., z;, be all the e-type auxiliary
variables in ¢ with corresponding <-type states a, ..., a;. Obviously, j>2. Let
¢y, -..C;, denote those verteces in p which are direct descendants of e (i.e. there are
edges from e to them) and such that in the course of the derivation we obtain co-type
states after processing the subtrees belonging to them. The auxiliary variables z,...,
..» z;; correspond to these vertices ¢, ..., ¢;,. Let 4, (=1, ...,j) denote the root
vertex of the image of the subtree belonging to c;, .

Since a;,, ...,a;, are of co-type, for every ¢ there are distinct trees pf
u=12,...;t=1, ...,j) leading to a;. Replacing the subtrees belonging to the
vertices ¢y, ..., ¢;, by pit, ..., pjs, respectively, the trees p, (n=1,2,...) can be
transformed to trees g, “similar” to g¢: g, is obtained from ¢ by replacing the subtrees-
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at d;, ...,d; with images of the trees replacing the subtrees at c;, ..., ¢, in p.
By Lemma 2.3, the set of these trees ¢, is infinite, and (g,, p,)€ts by assumption.
Classify the vertices of the trees g, as follows. The vertices of the subtrees replacing
the subtrees at d;, ..., d;, in g belong to O, ..., O;, resp. All other vertices form
a singleton class. It is plain to see that a “similar” classification is obtained for every
n. Since (q,, p,)¢1g for all n, therefore every tree ¢, has a unique vertex whose trans-
lation in B gives back that occurrence of the symbol f which is the label of e in p.
The above classification is finite, therefore, there is a class containing the vertex in
question for infinitely many ¢,. With this we have designated an infinite subset of the
trees p,, as well. It is easily seen that there is a class such that the corresponding trees
Pn satisfy the following: for each c;, there is an infinite number of subtrees at c;, .
In what follows we restrict ourselves to this class. Suppose it is one of the singleton
classes, i.e. a concrete vertex. If this vertex is not on the paths from the root to one of
the d;’s then the same tree belongs to this vertex in every g,. Consequenly, B should
translate an infinite number of trees from this very same tree, which is impossible.
If the vertex is located on a path to one of the vertices d; , ..., d;, then, by assump-
tion, at most j—1 edges lead from this vertex in the direction of d;,, ..., d;,. Since
the designated trees p, are such that infinitely many independent trees are at-
tached to each of the vertices ¢, ..., ¢;, this case leads to a contradiction, too. If
the class in question is one of the classes O, ..., O; then B is not bounded. This
derives from the fact that, if e.g. O, is the particular class, then an infinite number of
trees may be attached to each of the vertices d,,, ..., d;, but the subtree belonging to
this vertex is already obtained during the translation of the subtree belonging to d;,.
It is also impossible because B has inverse, namely A.

Lemma 2.10. Let A be a biaccessible, bounded F-transducer such that t, pre-
serves regularity. If the non-jumping rules of A are invertible then A is inver-
tible. .

Proof. We may assume that every state of A is of 1-type or of «-type and that A
is linear. By boundedness, A does not contain deleting states of e-type and jumping
cycles. If P has a jumping rule then form all the state chains a,, ..., g, (k=1) satis-
fying the following condition: a, ..., a,_, are jumping states, a unique jumping
rule leads from g; to a;,, (i=1, ..., k—1). In a similar way as we assigned a tree to
jumping cycle in the proof of Lemma 2.4 let us assign a tree to every chain in question,
as well. We do this in all possible ways. Of course, it may happen that more then one
tree is assigned to the same chain (if there are more jumping rules from a; to a;,,).

Let a, ..., a, be a state chain with corresponding tree . Choose a non-jumping

rule leading to g, , say it is
fla'z, ...,a'z) - a,q. (D

Of course, it can be of the form x;—~a,q, too. Form the following formal transition
rule:

r-.fla'z, ... a'z) - ayq, )
where g is the tree appearing an the right side of (1). Take all possible formal transition

rules (2). The inverse of a formal transition rule is meant a finite set of linear rules not
containing the auxiliary variables z,, ...,z (the auxiliary variables are denoted by

v) and such that they realize the derivation g¢(a'z, ...,a’z,):*n'-: A CTRAR
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where the z;s (i=1, ...,/) occure with the same multiplicity and with the same
states as in (2), and

{z,- if a'is of e-type,
% = p; if a'is of 1-type and p; leads to a;.

Obviously, we get a finite set of rules and if (1) is invertible then so is (2).

Let B=(T¢(Y,), B, Tr(X,), B’, P’) be the F-transducer where B=AUA4,

A is the set of the states which are obtained in the inversion process of non-jum-
ping and formal rules,

B'=4",

P’ is the set of the rules which are obtained in the inversion process of non-
jumping and formal rules. It suffices to show that

p%aqo q%ap a€d; peTe(X,); 9€T (Y-

Proof of =. If h(p)=0 the implication holds by the invertibility of the rules.
We proceed by induction of A(p). Suppose the claim for h(p)<m andlet h(p)=m.

If the rule applied for the last time in the derivation p% aq is not a jumping rule
then p=f(py, ....p) (k=0) and

f(a1zy, .. axz) >~ aqéP, q=4(qy, .-n qu), qG#z (i=1,..k)
*
and p; = a,4; (j=1,...,k
for some states ay, ..., a,€ A. Thus,

* -
P =f(p1, o PO =, fO1G1, s G Q) =, 64 (41, - G) = ag.

By the induction hypothesis, qu*gajpj (j=1, ..., k). Since all the non-jumping
rules of A are invertible,

— * _ *
7=3(q1, - ) =,3(@1 P15 - wP) =, af Py, -, 1) = ap.

If the rule applied for the last time is a jumping rule then we have “used” a formal
rule at the end of the derivation. In this case the derivation can be written as

P =B(fps, s P) = B(f @115 s 31 00) =,

— hn o
p(a'd(qs, --r 90) =, a4 (s, --.» 9) = ag,
where the rule applied in the second part is non-jumping and all the rules applied in

the third part are jumping. In this case there is a formal rule p(f(a;z,, ..., aczi))—~
~ag(zy, ..., z). Formal rules are invertible, therefore,

_ * *
g=73(qy, ..., qk)=;q(a1p1, sres QxPi) =, AP-
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Proof of <. The proof is accomplished by induction on k(g). Suppose h(g)=0.
Then; by the construction of the rules in P’, either h(p)=0 and p—aq€P, or p=

* .
=f(p1’ "':pk) (k>0) and f(alzl’ ARRE} akzk)»aqEP; pj=>Aajqj’ (.]= 1’ AR k)

where a; is 1-type. But then p=*; ag. Suppose that the proof is done for h(g)<m, and

let h{g)=m. Take the graph representation of ¢. Let us mark those verteces in the
graph at which the derivation gets into a state belonging to 4. Denoteit by g*. Denote
by ¢’ the maximal connected subgraph of ¢* containing the vertex which corresponds
to the root of ¢ but not containing any other marked vertex. Let g denote that part of
q corresponding to q’. We have

— * ¥ _
q = q(ql’ ceey qk)%‘l(“ll’n revy akpk) =:]’3ap(p1, --"pk) = ap ala (AR ] ak9a€A-

After the first part we will not get back to astatein A only at the root. The inversion
of the rule was done in such a way that we introduced new states at each stage, and
with the new rules, we could get to a state belonging to 4 only at the root of the right
side of the original rule. From this it follows that either p(a,z, ..., axz)—~
—aq(zy, ..., z)€ P or there is a formal rule with left side p(a;z, ..., axz) and
right side ag(z,, ..., z). This ends the proof. ‘

The main results of this section easily follows from Lemmas 2.2, 2.3, 2.9, 2.10.

Theorem 2.11. A biaccessible F-transducer A is invertible if and only if A is
bounded, the non-jumping rules of A are invertible and 7, preserves regularity:

Theorem 2.12. The invertibility of F-transducers is decidable. There is an effec-
tive procedure for constructing inverse F-transducers.

3. The invertibility of R-transducers
Again, we only treat biaccessible R-transducers. The proof of the following
theorem can be found in [3]}.

Theorem 3.1. Let A be an R-transducer. Then the domain of 1, is regular and
75" preserves regularity.

Lemma 3.2. Let A be a biaccessible R-transducer. If A is invertible then 7, pre-
serves regularity.

Proof. The statement is trivial by Theorem 3.1.

Lemma 3.3. Let A be a biaccessible R-transducer. If A is invertible then A is
bounded.

Proof. Similar to that of Lemma 2.3.

Lemma 3.4. Let A be an arbitrary biaccessible R-transducer. A is bounded if and
only if’:

(1) A has no jumping cycle of states,
(2) A is nondeleting.
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Proof. The proof is similar to that of Lemma 2.4.

Theorem 3.5. Let A be an arbitrary biaccassible R-transducer. A is invertible if
and only if:

(1) 74 preserves regularity,
(2) A is bounded,
(3) the rewriting rules are of one of the following three types:

(@) ap~q acd; peX,UF,; q€Tgu6,(Ym)s
(b) af(z) ~ q a€d; feFy; q€T6,(AZ)),
© af(z1, ... z) ~ q; a€d; feF, (k= 1);
g€Ts({v}) - & (r1, --s 1), Where  gi€Gy; 1:€T6,(4Z) (i=1,..., k).

Proof. The necessity of the first two conditions directly comes from Lemmas 3.2
and 3.3. Suppose B is an inverse of A. Then both A and B are nondeleting. Let
(p, g)€7a be arbitrary. Let n(p) (n(q)) denote the number of those vertices of p (g)
whose label is an operation symbol with arity at least 2. Since A and B are nondelet-
ing and (p, q)€7a, (g, p)€tB, we have n(p)=n(q). From this it follows that the
rules of A are of one of the three types as indicated.

For the converse, suppose that A satisfies all the conditions (1), (2), (3). Observe
that this assumption implies that A is linear and nondeleting. By Theorem 1.14, there
is a linear nondeleting F-transducer C equivalent to A. By the assumptions and the
construction given in the proof of Theorem 1.17 the auxiliary variables meet at the
same vertex in right side of the rules of C. Therefore, we can consider all the states of
C and all the auxiliary variables to be of «-type. Let f(c,z, ..., ¢;z))—~q (I=0) be
a rule in C. Then, again by the construction given in the proof of Theorem 1.17 and
our assumptions, the frontier of ¢ only consists of auxiliary variables. Thus, C is
invertible. Let us invert the rules in such a way that every auxiliary variable is taken
<o-type. The inverse obtained is a linear nondeleting F-transducer. By Theorem 1.17,
it has an equivalent linear nondeleting R-transducer. This ends the proof.

To obtain a complete solution we would need to describe R-transducers equiv-
alent to linear R-transducers. For our purposes, we may confine ourselves to bounded
regularity preserving R-transducers.

Lemma 3.6. Let A=(T7(X,), 4, Tg(Y,), A, P) be a biaccessible R-transducer.
Suppose that A is nonlinear. Let af(zy, ..., z;))—~q(a,2}, ..., a,z[))EP; a,€ A™,
(i=1,...,1) be a multiplying rule. Especially, a,=(ay,...,a,). Let T=
= N{dom (t5y)li=1, ...,m} and T;=14 ) (T) (i=1, ..., ny), where dom (t4 ) is
the domain of the transformation 1, (,,) . Thus; to every multipying rule there are cor-
responding forests T and T;. If for every T at most one of the associated T}’s is
infinite then 1, preserves regularity.

Proof. Let A={a, ..., a} be the state set of A. Denote by T the union of the
finite T’s. T’ is finite, say T'={q;, ..., q} qi€T(Yn), i=1, ...,¢. Denote by
Ty (i=1, ..., k;j=1, ..., 1) the set of those trees p€ T¢(X,) with a,-p=*;qj. The
A')

forests T;; are regular, consequently, there are tree automata A;;=(%;;, Z;,
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with T;;=T(A;;). Let V denote the set of all vectors of dimension k¢ over the set
{0,1}. Let H=H,UH,U ... be a new ranked alphabet where Hy=F,; H,=FXV"'
(/=0). Take the F-transducer B=(T¢(X,), B, Ty(X,), B’, P’) with

B=A3XApX ... XAuX...X Ay, where A;; is the state set of A;;,
B'=B

P’
) X > (XL, s XG)XEP, x€X,,
(11) f—» (f‘ﬂu, ,..,fﬁkt) fEP', fE FO,
(iii) f(byzy, ..., byzp) = b(f, vy, oo V)24, ..., ZDEP’

SEF; 1=0; b, by, .., BEB; 0V (i =1, ..., D);

where b=(fMu(by,1; -.» bi,1)s o5 ST (By,nes -5 bige)), and let O<a=k, O0<pf=y,
v;;=1 if and only if b; ;€A4,;, where j=(ax—1)t+p. 7y is a linear nondeleting R-
transformation by Theorem 1.17.

Let C=(Ty(X,), 4, Te(Y,,), A, P") where 4 and A’ are the same as in A,
and P” is obtained in the following way.

In case of nonlinear rules:

(1) Let af(zy, ..., z)—>r(a'z,, ..., a'z)c P be nonlinear. Take all possible rules
a(f, vy, ..., (24, .., 2)—F, where v,€V (i=1, ...,1) and F is obtained from r as
follows: Let O<a=k, O<p=t. If v;=1 (j=(a—1)t+p) and z; occurs in r with
state a, (i=1, ..., /), then substitute gp for a,z; in r. Let P” contain those rules
a(f, vy ..., 0)(zy, ..., z)~F which are linear and such that 7 contains an auxiliary
variable if and only if it occurs in 7.

In case of linear rules:

2 af(z4, ..., z) ~ re P if and only if
a(f, vy, .., 0)(2y, ..., 2) = r€P”; v€V (i=1,..., 1.

(3) ap—~reP ifand only if ap—~r€ P”; p€Tg (X,). We have 1, =1301¢, yielding
that 7, preserves regularity.

Corollary 3.7, If A is nondeleting then so is C. It is known that the composition
of linear nondeleting R-transformations is a linear R-transformation. Thus, 1, is
a linear R-transformation if A is nondeleting, further, one can effectively construct an
equivalent linear R-transducer.

Lemma 3.8. Let A be a biaccessible bounded nonlinear R-transducer. Let a non-
linear rule of A be af(z,, ..., z)—~g(a, 2%, ..., a;zl1). Suppose that this rule multiplies
z;, ie. u>1. Put a,=(a,, ...;a,). Denote by T the forest T={dom (4 );
i=1, ..., u}. If t, preserves regularity then T is finite.

Proof. Since A is bounded so are A(a;)and A(@)(i=1, ..., u). If 7, preserves regu-
larity then 7, ) preserves regularity as well. Therefore, it is enough to deal with
the transducer A (a) instead of A. Suppose that T is infinite although the assump-
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tions are fulfilled. Since T is a finite intersection of domains, T is regular. Let
s€Tp(X,UZ,) bea tree in which z, occurs exactly once. Then
S =580, -
i-times

75
Since T is infinite and regular, there is an r€T such that r=r(r,(r;)) where
r€Te(X,), 1, r:€Te(X,UZ,), h(r,)>0 and for every k, r®=ry(5(r;))€T. Then
T’'={r®;k=1,2, ...} isaninfinite regular subset of T. Since T ST, T;=1 4,(T")
#0 (i=1, ..., u), and by the boundedness, T; is infinite. Since 7, preserves regu-
larity by supposition, all the forests T; are regular. Let p,, ..., p;€ Tr(X,) be trees

with a,-,-pi%q,-j i=2,...,1 and j=1,...,n,. Let p=f(z1,ps>...,p). It holds

that ap:;(j(alzl,...,auzl). Set T7=p-, T (={p(rn(k(re))), k=1,2,..}). T” is

regular, and so is K=71,(T’’). Let B be a tree automaton recognizing K. Since all
the forests T; are regular, thereisa g€ K, g=g(ay, $s, ..., 5,), with s,€T; (i=1,...,u)
such that A(s;), h(s) are greater than the number of states of B. Then s; (i=1, 2)
can be written in the form s;,(s;,(s;,)) such that h(s,)=0 and 1 =s, (sk(s,))ET;
for every k. We have q=g(t{®, t{!, s, ..., 5,)6K. Let n, denote the number of states
of A, and n, the maximum of the heights of the trees occurring on the right side of the
rules in P. Choose #{¥ and #P as follows:

h(#®) > nyh(p(M)+1,
h(1) > ny(ny+ DAY+ ny(ny, + D (G (21, 225 Sgs -5 8,))-

Let ¢*=g(t®, ¥, s, ..., s,), where {0, 1{) are the trees given above. It is obvious
that g*cK. There is a p,€T" (p,=p(r1(r3(rs)))) with ap,,;A g*. Denote by d,

and d, the root of ¢ and 1", resp. There are vertices ¢, ¢, in p, such that d; (i=1, 2)
is obtained when the translation process arrives at ¢;. The lengths of the paths from
the root to ¢, and c, cannot exeed (n,+ 1)h(G(zy; 25, S, ..., 5,)) because A does not
have jumping cycles. Let 7; (i=1, 2) denote the subtree belonging to ¢;. The subtree
r, cannot contain ¢; and c¢,, or even, ¢; and ¢, are located on the path to the root of r;.
(The reason is the height of the trees 1, #{’.) Thus, either 7, is a subtree of 7, or
conversely.
Suppose first that 7, € sub (¥y). Then

h(f2) = h(F1)+(n1+l)h(6(Zl’ Z9s S35 «evs su))

because ¥, is a subtree of 7, and that part of 7, not contained by 7, cannot be higher
than (n,+ Dh(g (21, 225 S35 ---» 5,)- Since 7 is translated to #* and 7, is a subtree of
7,, an upper bound for the height of the trees that can be translated from r, is

ny(n+1) (h (t{k)) +h(q(zy, 22, S35 --s su)))’

However, this is impossible by the choice of the trees #{¥ and #§".

If 7,¢sub (7;) then h(F,)<h(#,). Thus, a tree translated from r, is at least as
high as a tree translated from 7,. Since #? is translated from 7,, h(Fy)=h(t{?)/n,,
and a tree translated from 7, is at least h(Fy)/(n,+ 1) high. It follows that the trees
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translated from 7, are at least h(t;®)+h(G(z;, 22> S3,.--, 5,)) high. This contradicts
the choice of (¥, 1{P.

From our result we immediately obtain.

Theorem 3.9. It is decidable for a bounded R-transducer A if A preserves regu-
larity.

Theorem 3.10. It is decdiable if an R-transducer is invertible, and the inverse, if
exists, can be effectively constructed.

Further results on regularity preserving R-transducers can be found e.g. in [1].
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