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Every finite automaton can be considered to be a finite algebra equipped with 
unary operations. In this setting, automata process unary polynomial symbols. This 
observation led to introducing tree automata by dropping the unary requirement. 
Basically, tree automata are finite universal algebras, and tree automata process poly-
nomial symbols, i.e. trees. Similar generalization when applied to sequential machines 
leads to the concept of tree transducers. In the first section of the present paper we 
recall some basic definitions on tree transducers and prove a few simple propositions. 
The invertibility of frontier-to-root tree transducers is discussed in the second section. 
Namely, we give a necessary and sufficient condition describing frontier-to-root tree 
transducers posessing an inverse. In addition, an algorithm is given for constructing 
inverse transducers. Similar results are formulated in the last section for root-to-
frontier tree transducers. -.•>•• 

1. Notions and notations 

In this section we recall concepts and results in connection with trees and for-
ests. 

Definition 1.1. An operation domain F is a disjoint union of sets F„ indexed by 
nonnegative integers. F„ is the set of w-ary operational symbols. A finite operation 
domain is called ranked alphabet. 

Definition 1.2. Let X„ be a set of n variables. An ¿-"-polynomial symbol over X„ 
is called an F-tree over Xn. A set TQ TF(X„) is called an F-forest over X„. 

Let X be a finite set of variables and pd TF(X). 

Definition 1.3. The set of all subtrees of p, denoted sub (p), is defined as follows: 

(1) if pdF0UX, then sub (p) = {/>}, 

(2) if p =f(,Pi,P2,. • •, Pm) ( /6F m , m > 0), then 

sup (p) = {/>}U(sub 0 , ) ; i = 1, . . . , m). 
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Definition 1.4. The root of p, denoted root (p), is given by the following two 
conditions: 

(1) if p£F0UX, then Toot(p)=p-, 

(2) if p=f(pi,...,pm) (f£Fm, m > 0), then root (p) =/. 

Definition 1.5. The height h(j>) of p is defined by 

(1) if pdF0(JX, then h(p) = 0, 

(2) if p =f{pi, ...,Pm) ( /€F 0 , m > 0), then 

h(p) = max {h(j>,y, i = 1,..., m}+1. 

Definition 1.6. Let F be a ranked alphabet, and X a finite set of variables. The 
system A=(9l , X, A') is called an zi-ary F-automaton, where 

(1) 51=(A, F) is a finite F-algebra, 
(2) J5f: X—A is the initial assignment, 
(3) A'QA is the set of final states. 

Let TF(X)^91 denote the homomorphic extension of JS?, where TF(X) is now 
considered to be the absolutely free F-algebra generated by X. The forest recognized 
by A is defined by: 

T(A) = {pdTF(Xy, pJ?£A'}. 

A forest T is called recognizable (regular) if there is an F-automaton A with T(A)= T. 
In defining tree transducers we shall make use of a set Z = {z1, z2, ...} of aux-

iliary variables. We set Z„—{z1, ..., z„} (n»0). Z is supposed to be disjoint with every 
other set. 

Definition 1.7. A system A=(7>(J\rn), A, TG(Ym), A', P) is called a frontier-to-
root tree transducer (F-transducer), where 

(1) F and G are ranked alphabets, 
(2) A is a. ranked set containing only unary operational symbols, the state set of 

A. (It is assumed that A is disjoint with all other sets in the definition of A, expect A'.) 
(3) A'QA is the set of final states, 
(4) P is a finite set of rewriting rules of the following two types: 

(i ( x ^ , ad A, qdTG(Yj) and 

(»)/(ai(zi), ...,ak(zk)) - a(q(z1, ...,zkj) (f£Fk\ fesO; a^ a£A; 

zx,..., zkdZk\ q(z1,..., zk)dTc(Ym{JZk)). 
In what follows, if. a£A and t is a tree, instead of a(t) we shall use the notation at. 
Accordingly, we write AT for the set AT= {at\a£A; T) if T is any forest. 

Let A be the above defined F-transducer. It is said that A is 
— linear, if every z ^ Z occurs at most once on the right side of a rewriting 

rule, 
— nondeleting, if in every rewriting rule, all the variables zt occurring on the 

left side occur on the right side, too, 
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— completely defined, if for every l{=0), f (£ F(), and ...., at(£A) 
there are a rewriting rule with left side xt and a rewriting rule with left the side 

We are now going to define the tree transformation induced by an F-transducer 
A. Let p, q£TF(X„{J ATG(Ym[JZ)) be arbitrary trees, and A the tree transducer 
given in Definition 1.7. We say that p directly derives q in A, if q can be obtained 
from/? 

(i) by substituting oq for an occurrence of Xi in p provided that x^aq is a rew-
riting rule in P, 

(ii) or by substituting aq(plt ...,pk) for an occurrence of a subtree of the form 
f(alp1, ..., akpk), provided that f(a1z1, ..., akzk)^aq(z1, ...,zk) is a rewriting rule 
in P. We use the notation => for direct derivation. The reflexive-transitive closure of 

* * ^ 
=>• is denoted => . If p=> q we say that p derives q in A. 

A A A 

Definition 1.8. The F-transformation induced by the F-transducer A is the fol-
lowing relation Ta : 

= {(P, q)\piTF(Xn), q€TG(Ym), p=> a q, at A'}. 
A 

Definition 1.9. The system A ^ T ^ , , ) , A, TG(Ym), A', P) is called a root-
to-frontier tree transducer, ^-transducer for short, if 

(1) F, G and A are as in Definition 1.7, 
- (2) A ' ^ A is the set of initial states, 

(3) P is a finite set of rewriting rules of one of the following two forms: 

(i) aXi - q (Xi£X„, aeA, q£TG(Ym)) and 

(ii) af(zi,...,zk)+q (feFk; k^ 0; a£A; z1 ? . . . , zk£Zk, q£TG(YmU AZk)). 
Linear, nondeliting and completely defined ^-transducers are defined in a way 
analogous to the F-transducer case. 

To define the transformation induced by the above i?-transducer we define the 
direct derivation => in A for trees p, q£TG(ATF(X„UZ){J Ym) as follows: p=>q 

A A • 
if and only if either 

(i) q is obtained from p by substituting q for an occurrence of a subtree axt in p 
provided that ax^q is a rewriting rule in P, or 

(ii) q is obtained from p by substituting q(pi, •••,pk) for an occurrence of a 
subtree af(Pl, ...,pk)€sub (p) provided that af(z1, ..., zk)-*q is a rewriting rule 
in P. 

* * 

The reflexive transitive closure of => is again denoted => . If p=> q, we say 
that p derives q in A. A A A 

Definition 1.10. The root-to-frontier tree transformation (^-transformation) 
induced by A is the binary relation : 

ta = {(P, q)\p<iTF(Xn)-, q£TG(Ym); ap4 q- a£A')}. 
A 

5 Acta Cybernetica VIII/1 
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Definition 1.11. Let A and B be /^-transducers (F-transducers). It is said that A 
is equivalent to B if Ta=Tb . 

Definition 1.12. An F-transducer A (R-transducer) is called bounded, if xx\q) 
is a finite set for every (p , q)dTa . 

Let A be an arbitrary F-transducer. A state ad A is accessible if there is a tree 
p£TF(X„) with p=>aq for some qdTG(Ym). In this case we also say p leads to a. 

A 

Similarly, we say that a state a'dA is accessible from a state ad A if there are 
/»eiXAr.UZO and q d T d Y ^ Z , ) with p i a z z a ' q . A 

Definition 1.13. An F-transducer is called biaccessible if every state a is acces-
sible, and for every state a there is a final state a' such that a' is accessible from a. 

* 

(In other words, this means that every state occurs in a derivation /?=> aq where 
pdTF(Xn), q€T6(YJ and ad A'.) 

It is easily seen that for every F-transducer A there is an equivalent biaccessible 
F-transducer provided that TA?i 0. 

Let A be an arbitrary R-transducer. A state ad A is called essential if there are 
pdTF(X„) and qdTG(Ym) with ap^>q. A rewriting rule 

af(zt, ..., zk) - r (1) 
* 

is called essential if there are plt • ••, pkdTF(Xn) and qdTG(Ym) with af (/?l5 • • •, pk)=> q 
A 

such that in the course of the derivation the first rule applied is (1). 

Definition 1.14. An ^-transducer A is called biaccessible if its states and rewriting 
* 

rules are essential, further, every state occurs in a derivation ap=>q where 

PZTF{X„), qdT0(Ym) and at A'. 
Again, it is straightforward to prove that for every ^-transducer A there is an 

equivalent biaccessible ^-transducer provided that rA ^ 0. 

Definition 1.15. Let A be an F-transducer. A state ad A is said to be of &-type 
for k = 0 , .... if there are exactly k distinct trees leading to a. 

Lemma 1.16. Let A be a biaccessible F-transducer. There exists a biaccessible 
F-transducer B which is equivalent to A and such that every state of B is either of 
1-type or of oo-type. 

Proof. Since A is biaccessible A does not have 0-type states. If A has only 1-type 
or oo-type states set B=A. Assume that ad A is of /c-type with 1 There are 
Pi,..;Pk(Pi£TF(Xn)^ i= 1, ..., k) and qn, ...,qJtj (qjtdTG(YJ j=l,...,k; 
1= 1, ..., tj) with Pj=>aqji. (The treesPj and qjt can be determined in an effective 
way.) Let A~ [p{,p], ('"=!» k) denote the set of subtrees of pt. In what 
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follows, Pi and p{ will denote states. Take the following sets of rewriting rules P, 
(/=1, ..., k): (Let r be an arbitrary tree in TG(Ym).) 

if Af = {/?,} then v - Piqim£Pi <=• v = pt; vdX„{JF0 

m = 1, ..., ti} 

if Ai ^ {pf} then v - p{rdPi ov=p{; vdX„l)F0; 

fhiPi1 • ••> p{h zh) if and only if fh(p{\...,pi
i
h)=pt 

fh(Pl...,Pihzh)~piqIM£PI if and only if /„(/>/* ...,p{h)=pi 

h =>0; m = 1, ...,jhd{ 1, s£}. 
Let P* consist of all those rules of P not containing an occurrence of the state a as 
well as the rules formed in the following way: If a rule in P contains an occurrence of 
a then substitute Pi(i= 1, ...,k) for a in every possible way. Take the /-"-transducer 
C=(TF(X„), C, TG(YJ, C', P'), where 

It is easy to see that A is equivalent to C and C has fewer states of type k, 1 <)fc< «>, 
than A. In a finite number of steps we arrive at the transducer B with the required 
property. 

We continue by introducing a few concepts to be used later. Let A be an arbi-
trary ¿-"-transducer. A rewriting rule is called jumping provided that it is of the form 

A state ad A is called 
— deleting state, if there is a rule containing azi on the left side but zt does not 

occure on the right side, 
— multiplying state, if there is a rule containing azt on the left side and zt occurs 

at least twice on the right side, 
— jumping state, if there is a jumping rule containing azf on the left side, and the 

right side is of the form bzt for some b, i.e., the right side contains the variable cor-
responding to a on the left side of the rule. 

A chain alt a2, ..., ak (£>0) of states is called a jumping cycle if for every / = 
= 1, .. . , k there is a jumping rule containing at on the left side and such that its right 
side is ai+1Zj where z} is the variable corresponding to a, on the left side of the rule. 
If i—k, ai+1=ay. For the sake of simplifying the treatment, if the left side of a rule 
contains a state a of A:-type, then the auxiliary variable corresponding to a is called of 
/c-type, too. 

Let A be an arbitrary /?-transducer. A rewriting rule is called a jumping rule 
provided that it is of the form a / (z l 5 ..., zk)—a'z{. A state a is said to be i-

— jumping state, if there is a jumping rule whose left side contains a. A chain 
Oj,..., ak is a jumping cycle if for every i there is a jumping rule with left side contain-
ing a, and right side containing ai+1. Again, ak+1=at. 

C = AUA1\J...UAk-{a] 

A', if a$A' 

A'U{Pl,...,pk}-{a}, if adA' 

P' = p^-.yjp^p*. 

f(axzx,..., akzk) - azi (0 < i ^ k). 

5» 
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Later we shall use the following notation: A (a,) is the /^-transducer obtained 
from A by letting a( to be the unique initial state. 

The proof of the next result can be found in [3]. 

Theorem 1.17. For every linear nondeleting /"-transducer there is an equivalent 
linear nondeleting /{-transducer and conversely. 

Definition 1.18. Let A be an arbitrary F-transducer (^-transducer). An F-trans-
ducer (R-transducer) B is called an inverse of A, if T^—^B • 

2. The invertibility of F-transducers 

In what follows we shall always assume that the F-transducers to be considered 
are biaccessible with states 1-type or oo-type. By the previous section this assumption 
does not restrict the generality of the treatment except for the induced transformation 
is the empty relation — however, in this case the inverse is obviously inducable. 

First let us discuss some necessary conditions of invertibility. 

Theorem 2.1. Let A be an arbitrary F-transducer. Then the domain of rA is 
regular and r^ 1 preserves regularity. 

The proof of the above result can be found in [3]. 

Lemma 2.2. Let A be a biaccessible F-transducer. If A is invertible then xA 
preserves regularity. 

Proof. The statement is obvious by Theorem 2.1. 

Lemma 2.3. Let A be a biaccessible F-transducer. If A is invertible then A is 
bounded. 

Proof. If A is not bounded then there are an infinite number of trees mapped to the 
same tree .<7 under Ta. Thus, q has an infinite number of images under T a \ This con-
tradicts the invertibility of A. 

Lemma 2.4. Let A be an arbitrary biaccessible F-transducer. A is bounded if and 
only if 

(1) A has no jumping cycle of states and 
(2) A has no deleting state of «-type. 

Proof. Let A=(TF(Xn), A, TG(Ym), A', P). Assume that a£A is a deleting state 
of oo-type. Let r±,r2, ... be distinct trees in TF(X„) with /•¡=>agJ(i= 1,2, . . .) , 
q£TG(Ym). As A is biaccessible, there are p£Tf(X„), q£Ta(YJ such that 
(p, <7)6ta, and in the derivation of q f romp we go trough the state a at a stage where 
the subtree r belonging to a is deleted. Let us replace the subtree r in p by rlt r2, ..., 
respectively. For the trees pi,p$, .... obtained in this way we have ( p t , q)£rA. 

Suppose now that a1} ..., ak(k>0) is a jumping cycle of states, and let ..., sk 
be the corresponding jumping rules. Put rx=z, where z£Z is an auxiliary variable. 
Having defined rt (/=1, ..., £); form r!+1 in the following way. Let st be the rule 
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/ ( a 1 ^ , ..., atz, ..., auzu)-+al+1z. (Of course, ak+1=aj) Take a tree t'£TF(Xn) 
with /;=>£JV where qi£TG(Ym) for every i—l,...,u. Put 

rl+i=f(t1,...,rl,...,f) l = \,...,k. 

Denote by p* the tree rk+1. Obviously, h(p*)>0. Since A is biaccessible there are 
p£TF(Xn), q£TG(Ym) with (p, q)£rA, and such that a derivation of q from p goes 
through ax. Denote by p that subtree of p leading to . Put 

P o = P, 

Pi +1 =P*'zPi, 

where •z denotes the z-product of trees. Substitute for p in p, and let pt 
(i— 0, 1, ...) be the resulting tree. Obviously (ph <?)6Ta, ending the proof of the 
necessity. 

Conversely, if both (1) and (2) are satisfied by A, then for every (p, q)£rA it 
holds that h(q)>(h(p)—m)/(k+1), where w = max {h(r); r^aq, q£TG(Ym), a£A 
is a deleting state}, and k is the cardinality of the state set. From this, A is easily seen 
to be bounded. 

Next we try to construct an inverse transducer by "inverting the rules", if it is 
possible. 

Definition 2.5. 

—• The inverse of a rule x^aq or f0^aq(f0£ F0) is a finite set of rules ensuring 
* * q=>axi or q=>af0. 

— The inverse of a rule / ( a ^ , ..., akzk)^aq k>0, {q£TG(YmUZft) q^zt 
(i~ 1, ..., k) is a finite set of linear rules in which none of the auxiliary variables 
occure (the auxiliary variables are denoted e.g. by v1, v2, ...), and such that these 
rules realize a derivation qia^, ...,ak zk)=> af(rlf ... ,rk) where the variables zi occure 
with the same multiplicity and with the same states as in the original rules and 

rz; if (¡i is of °=-type 
r ' Ip t if at is of 1-type and Pi leads to 

— Further, we say that some occurrences of the variables zx, ..., zt meet at the 
same vertex in a tree q£TG(Ym\JZ) if q has a vertex such that there is a path in q 
from that vertex to every given occurrence of the variables Zj(j— 1, . . . , / ) and there 
is no edge in q belonging to two different such paths. 

Lemma 2.6. Suppose that the states occuring in the rules are of 1-type or of 
°=-type and none of them is an °°-type deleting state. Then 

(1) all the rules x^aq, f0--aq {fo£F„; q£TG(Ymj) are invertible. 
(2) a linear rule f(a1z1,...,akzk)-~aq(k>0; q£Ta(YmUZk)-, q^z,', /=!,..., k) 

is invertible if and only if all °°-type auxiliary variables in q meet at same vertex, 
(3) a nonlinear rule f(axzx, ..., akzk)-*-aq (/c>0; q£TG(YmUZk)) is invertible 

if and only if each °°-type auxiliary variable in q has an occurrence such that these 
occurrences meet at the same vertex. 
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Proof. Suppose that a rule is invertible. There is a uniquely determined vertex in 
q such that we get back the given occurrence of the symbol / during the derivation 
process. Of the arguments o f / , all °°-type auxiliary variables occur. Since none of the 
auxiliary variables z-t occurs in the rules realizing the inverse of the rule, the vertex 
in question has an outgoing path to an occurrence of every °°-type auxiliary variable 
and no edge belongs to more than one such path. We have proved the necessity in 
case of conditions (2) and (3). 

(1) In the same way as in the proof of Lemma 1.16 we can construct an F-trans-
ducer transforming a given tree to a given tree. Let us replace in this transducer every 
occurrence of the final state by a, the resulting set of rules is the inverse of the rule 
given in (1). 

(2) Further on the symbols z;(/= 1, ..., k) will not be considered to be auxiliary 
variables. The auxiliary variables will be denoted by v. Denote by S= ..., 
the set of all those vertices of q(zt, ..., zk) from which there are paths leading to 
oo-type zf's. Let R= {rl, .../•,} be the set of those subtrees of q(zl, ...,zk) whose 
roots are directly attached to vertices in S and which does not contain vertices of S. 
(Different occurrences are treated separately.) Let t£TF{Xn) be an arbitrary tree. 
For every j(j=l, •••,/) there is an F-transducer BY with T B J — {(FY, 0 } - Let Pj be the 
set of rules of BY. If z; occurs in a rule then replace all occurrences of the state appear-
ing on the right side with a f . Delete those rules containing an occurrence of one of the 
symbols z;. Denote by P' the union of the sets of rules obtained in this way, and let 
cx, ..., c, be the final states. If Sis empty then R={q}. In this case put t=f(p1,...,ph) 
where leads to at, and replace with a everywhere — the proof is done. Otherwise, 
let e denote the vertex where the °°-type zf's meet, if there is only one such zf let e 
be the root. Let us assign to each a state di (i=l, ...,n) as follows: If is the root 
then d~a, otherwise let dt be a new state. Let g(qi, ... qa) be the subtree correspond-
ing to the vertex st. We construct a rule to every vertex J,- in S. If the vertex is differ-
ent from e then the rule is: 

(j— 1, ..., a) and vu is the auxiliary variable corresponding to the unique d occurring 
on the left side. If the vertex coincides with e then 

g ( b i b a va) - di vu where 

f cfi, if qj = rp 

\dk, if <7y has root sk 

Cp, if qj = rp 

dk, if <7y has root sk 

gCfei»!, ..., bava) - dif(rx, ...,rk) where 

jcy,, if qj = rp 

ld„, if qu has root s, 

0 = 1 , - - , « ) 

u 

(Pj, if dj is of 1-type and pj leads to a 
luu, if Zj is of o=>-type and occurs in qu 

0 = I , . . . , f c ) . 
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Take the union of all the sets of rules costructed. Obviously, this set is an inverse of 
the original rule. 

(3) Choose an occurrence of every oo-type z,- in such a way that these occurrences 
meet at the same vertex, and consider these occurrences as oo-type z,'s. The proof is 
finished as in (2). 

The proof of the next two theorems can be found in [4]. 

Theorem 2.7. Let A be an arbitrary F-transducer. rA preserves regularity if a h -
only if A is equivalent to a linear F-transducer. 

Theorem 2.8. Let A be a biaccessible F-transducer. Then A is equivalent to a 
linear F-transducer if and only if A is linear or its multiplying states are of finite type 
(i.e. of ¿-type with fc«»). 

Lemma 2.9. Let A be a biaccessible F-transducer. If A is invertible then its non-
jumping rules are invertible. 

Proof. Assume to the contrary that A is invertible and has a non-jumping rule 
which is not invertible. On the basis of the previous results we may assume that A is 
biacessible, linear, and its states are of 1-type or of °°-type. Denote by B an inverse 
of A. Let 

f(a1z1, ...,akzk) - aq{z1, ...,zk) (1) 

be a non-invertible rule. By Lemma 2.6, the oo-type auxiliary variables do not meet at 
a single vertex. Because of biaccessibihty, there are p£TF(X„) and q(zTa(Ym) such 
that (p , <7)£ta and the rule is used in the course of deriving q from p. Let e denote that 
vertex of p where the rule (1) is used. Let ztl, ..., z{j be all the oo-type auxiliary 
variables in q with corresponding oo-type states ah, ..., atj. Obviously, _/>• 2. Let 
ch, ...ci] denote those verteces in p which are direct descendants of e (i.e. there are 
edges from e to them) and such that in the course of the derivation we obtain oo-type 
states after processing the subtrees belonging to them. The auxiliary variables z f l , . . . , 
. . . ,z{ j correspond to these vertices c i l5 . . . ,c } j . Let dit(t= 1, ...,j) denote the root 
vertex of the image of the subtree belonging to cit. 

Since atl,...tai are of oo-type, for every t there are distinct trees p" 
{u— 1, 2, ...; t= 1, ...,j) leading to ait. Replacing the subtrees belonging to the 
vertices ch, ...,ctj by pll, respectively, the trees pn («—1, 2, . . . ) can be 
transformed to trees q„ "similar" to q:q„ is obtained from q by replacing the subtrees 
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at ..., d^ with images of the trees replacing the subtrees at c( l, ..., ctj in p. 
By Lemma 2.3, the set of these trees q„ is infinite, and (</„,/>„)6 t B by assumption. 
Classify the vertices of the trees qn as follows. The vertices of the subtrees replacing 
the subtrees at dh, ..., dtj in q belong to O l5 ..., Oj, resp. All other vertices form 
a singleton class. It is plain to see that a "similar" classification is obtained for every 
n. Since (q„, pn)£xB for all n, therefore every tree q„ has a unique vertex whose trans-
lation in B gives back that occurrence of the symbol / which is the label of e in p. 
The above classification is finite, therefore, there is a class containing the vertex in 
question for infinitely many q„. With this we have designated an infinite subset of the 
trees pn, as well. It is easily seen that there is a class such that the corresponding trees 
pn satisfy the following: for each c,t there is an infinite number of subtrees at cit. 
In what follows we restrict ourselves to this class. Suppose it is one of the singleton 
classes, i.e. a concrete vertex. If this vertex is not on the paths from the root to one of 
the dit's then the same tree belongs to this vertex in every q„. Consequenly, B should 
translate an infinite number of trees from this very same tree, which is impossible. 
If the vertex is located on a path to one of the vertices dh, ..., dtJ then, by assump-
tion, at most j— 1 edges lead from this vertex in the direction of dh, ..., dtj. Since 
the designated trees pn are such that infinitely many independent trees are at-
tached to each of the vertices ch, ..., C;., this case leads to a contradiction, too. If 
the class in question is one of the classes Ol9 ...,Oj then B is not bounded. This 
derives from the fact that, if e.g. 01 is the particular class, then an infinite number of 
trees may be attached to each of the vertices dh, ..., dtj but the subtree belonging to 
this vertex is already obtained during the translation of the subtree belonging to dix. 
It is also impossible because B has inverse, namely A. 

Lemma 2.10. Let A be a biaceessible, bounded ^-transducer such that Ta pre-
serves regularity. If the non-jumping rules of A are invertible then A is inver-
tible. 

Proof. We may assume that every state of A is of 1-type or of °°-type and that A 
is linear. By boundedness, A does not contain deleting states of °°-type and jumping 
cycles. If P has a jumping rule then form all the state chains a l 5 ...,ak (/:> 1) satis-
fying the following condition: a1, ..., ak_l are jumping states, a unique jumping 
rule leads from at to ai+1 (i— 1, ..., k— 1). In a similar way as we assigned a tree to 
jumping cycle in the proof of Lemma 2.4 let us assign a tree to every chain in question, 
as well. We do this in all possible ways. Of course, it may happen that more then one 
tree is assigned to the same chain (if there are more jumping rules from at to ai+1). 

Let «j, ..., ak be a state chain with corresponding tree r. Choose a non-jumping 
rule leading to ax , say it is 

f(a1z1,...,a'z,) + a1q. (1) 

Of course, it can be of the form Xi -*axq, too. Form the following formal transition 
rule: 

r-Ji^Zi, ...,a'zt) - akq, (2) 

where q is the tree appearing an the right side of (1). Take all possible formal transition 
rules (2). The inverse of a formal transition rule is meant a finite set of linear rules not 
containing the auxiliary variables z1; (the auxiliary variables are denoted by 
v) and such that they realize the derivation q(a1z1, ..., afz,)=>r • : f ( s ± , ..., st), 
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where the z;'s ( i = l , . . . , ' ) occure with the same multiplicity and with the same 
states as in (2), and 

fz, if a' is of °o-type, 
S ' ~ if a' is of 1-type and pt leads to at. 

Obviously, we get a finite set of rules and if (1) is invertible then so is (2). 
Let B=(Ta(YJ, B, TF{Xn), B', P') be the F-transducer where B=A(JA, 
A is the set of the states which are obtained in the inversion process of non-jum-

ping and formal rules, 
B'=A', 
P' is the set of the rules which are obtained in the inversion process of non-

jumping and formal rules. It suffices to show that 

p^aqoq\ap a£A; peTF(X„); q£Tc(Ym). 
A i> 

Proof of =>. If h(p)~0 the implication holds by the invertibility of the rules. 
We proceed by induction of h(p). Suppose the claim for h(p)<m and let h(p)=m. 

* 
If the rule applied for the last time in the derivation p^-aq is not a jumping rule 

A 
then p =f(p1, ..., pk) 0) and 

/ (a jZj , ...,akzk)^ aq£P, q = q(qlt ..., qk), q ^ zf (i = 1, ..., k) 

and p j =>aj<lj 0 ' = 1 , f c ) 

for some states a l 5 ..., akÇ.A. Thus, 

P = /Oi, •-,Pk)=>Lf(.ai<3i, •••,akqk)=^aq(q1, ..., qk) = aq. 

By the induction hypothesis, q}^>a}p} ( /'= 1, ...,k). Since all the non-jumping 
rules of A are invertible, 

q = q{q:, ..., 5(a 1^1, •••> akPù\afiPx, • ;Pk) = ap• 
B J> 

If the rule applied for the last time is a jumping rule then we have "used" a formal 
rule at the end of the derivation. In this case the derivation can be written as 

P = P ( f ( P i P k ) ) =» p(f(aiqu--,akqk)) =• 

p{a'q(ql, ..., qk)) 4 aq(<li, - , 9k) = aq, 
A 

where the rule applied in the second part is non-jumping and all the rules applied in 
the third part are jumping. In this case there is a formal rule H / ( a i z i > ..., akzk))-~ 
- •aq(z i , ..., zk). Formal rules are invertible, therefore, 

q = qk)\q(aiPi> •••, akpk)\ap. 
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Proof of <=. The proof is accomplished by induction on h{q). Suppose h(q)=0. 
Then, by the construction of the rules in P', either h(p)=Q and p—aq£ P, or p= 

=f(j>i, ...,pk) (A:>0) and f{axz^ ..., akzk)~aq£P; p^>a}q}, (j= 1, ...,k) 

where a,• is 1-type. But then p^>aq. Suppose that the proof is done for h(q)<m, and A 
let h(q)=m. Take the graph representation of q. Let us mark those verteces in the 
graph at which the derivation gets into a state belonging to A. Denote it by q*. Denote 
by q' the maximal connected subgraph of q* containing the vertex which corresponds 
to the root of q but not containing any other marked vertex. Let q denote that part of 
q corresponding to q'. We have 

9 = qd\q(fliPi, •••> akpk)\ap(p1, ...,pk) = ap ax, ..., ak,a£A. 
D IS 

After the first part we will not get back to a state in A only at the root. The inversion 
of the rule was done in such a way that we introduced new states at each stage, and 
with the new rules, we could get to a state belonging to A only at the root of the right 
side of the original rule. From this it follows that either p(a1z1, ..., akzk)-^ 
—aq(zx, ...,zk)£P or there is a formal rule with left side p z 1 , ...,akzk) and 
right side aq(zt, ..., zk). This ends the proof. 

The main results of this section easily follows from Lemmas 2.2, 2.3, 2.9, 2.10. 

Theorem 2.11. A biaccessible /-"-transducer A is invertible if and only if A is 
bounded, the non-jumping rules of A are invertible and Ta preserves regularity; 

Theorem 2.12. The invertibility of /"-transducers is decidable. There is an effec-
tive procedure for constructing inverse /"-transducers. 

3. The invertibility of R-transducers 

Again, we only treat biaccessible R-transducers. The proof of the following 
theorem can be found in [3]. 

Theorem 3.1. Let A be an R-transducer. Then the domain of Ta is regular and 
Ta

 1 preserves regularity. 

Lemma 3.2. Let A be a biaccessible R-transducer. If A is invertible then rA pre-
serves regularity. 

Proof. The statement is trivial by Theorem 3.1. 

Lemma 3.3. Let A be a biaccessible R-transducer. If A is invertible then A is 
bounded. 

Proof. Similar to that of Lemma 2.3. 

Lemma 3.4. Let A be an arbitrary biaccessible R-transducer. A is bounded if and 
only if: 

(1) A has no jumping cycle of states, 
(2) A is nondeleting. 
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Proof. The proof is similar to that of Lemma 2.4. 

Theorem 3.5. Let A be an arbitrary biaccassible ^-transducer. A is invertible if 
and only if: 

(1) Ta preserves regularity, 
(2) A is bounded, 
(3) the rewriting rules are of one of the following three types : 

(a) op - q a€A; p£XnU F0\ q£TGoUGi(Ym), 

(b) af(Zl) - q aeA'feF.i q£TGl(AZJ, 

(c) a/(z l 5 ..., zk) - q; a£A;f£Fk (fc > 1); 

q^TG{{v})-vgk(ri, ...,rk), where gk£Gk; rieTCl(AZk) (i = 1, ..., k). 

Proof. The necessity of the first two conditions directly comes from Lemmas 3.2 
and 3.3. Suppose B is an inverse of A. Then both A and B are nondeleting. Let 
(p, q)£xA be arbitrary. Let n(p) (n(q)) denote the number of those vertices of p (q) 
whose label is an operation symbol with arity at least 2. Since A and B are nondelet-
ing and (p, q)£?A, (q,p)€*B> we have n(p)~ n(q). From this it follows that the 
rules of A are of one of the three types as indicated. 

For the converse, suppose that A satisfies all the conditions (1), (2), (3). Observe 
that this assumption implies that A is linear and nondeleting. By Theorem 1.14, there 
is a linear nondeleting F-transducer C equivalent to A. By the assumptions and the 
construction given in the proof of Theorem 1.17 the auxiliary variables meet at the 
same vertex in right side of the rules of C. Therefore, we can consider all the states of 
C and all the auxiliary variables to be of °°-type. Let f(c1z1, ...,ciz{)->q ( />0) be 
a rule in C. Then, again by the construction given in the proof of Theorem 1.17 and 
our assumptions, the frontier of q only consists of auxiliary variables. Thus, C is 
invertible. Let us invert the rules in such a way that every auxiliary variable is taken 
«°-type. The inverse obtained is a linear nondeleting F-transducer. By Theorem 1.17, 
it has an equivalent linear nondeleting R-transducer. This ends the proof. 

To obtain a complete solution we would need to describe ^-transducers equiv-
alent to linear ^-transducers. For our purposes, we may confine ourselves to bounded 
regularity preserving ^-transducers. 

Lemma 3.6. Let A= (TF(Xn), A, TG(Ym), A', P) be a biaccessible R-transducer. 
Suppose that A is nonlinear. Let o f f a , ..., z , ) — . . . , a,Zjni)£F; a¡£A"i, 
( / = 1 , . . . , / ) be a multiplying rule. Especially, a1=(fli, ..., ani). Let T= 
= fl{dom(TA(0())|/= 1 , . . . , t i j } and 7";=TA ( a ( )(F) ( /= 1,..., «0, where d o m ( T A ( A I ) ) is 
the domain of the transformation TA(a(). Thus, to every multipying rule there are cor-
responding forests T and T(. If for every T at most one of the associated T-s is 
infinite then rA preserves regularity. 

Proof. Let A—{alt ...,ak} be the state set of A. Denote by 7" the union of the 
finite Tt's. T' is finite, say T'= {qx, ..., q,} i = l , ..., t. Denote by 
Tij (¡'=1, ..., k \ j - 1, ..., t) the set of those trees p£TF(Xn) with OiP^qj . The 
forests Tij are regular, consequently, there are tree automata A i y = A ' y ) 
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with Ttj— T(Aij). Let V denote the set of all vectors of dimension kt over the set 
{0,1}. Let / /^Z/oU/ZiU ... be a new ranked alphabet where H0=F0; H,=F,XV' 
(/>0). Take the /"-transducer B=(7>(Z„), B, TH(Xn), B', P') with 

B = AnXA12X ... XAklX ... XAkt, where Ai} is the state set of Au, 

B' = B 

P': 

(i) x^(x^11,...,x£Ckt)xeP', x£Xn, 

where i = ( / M & i . ! , . . . , blA), Kb)), and let 0<asA:, 0 
Vij= 1 if and only if b,jdAxp, where j~(a— l)t+p. rB is a linear nondeleting R-
transformation by Theorem 1.17. 

Let C=(T H (X„) , A, TG(Ym), A', P") where A and A' are the same as in A, 
and P" is obtained in the following way. 

In case of nonlinear rules: 

(1) Let af(z1, ..., z,)—r(a1z1, ..., a 'z,)cP be nonlinear. Take all possible rules 
a(f vlt ..., V[)(zx, ..., z,)—f, where v^V (/=1, . . . , / ) and r is obtained from r as 
follows: Let 0 < a S k , 0 I f 1 (7= (a— l)t+0) and z; occurs in r with 
state ax 0 = 1 , ..., /), then substitute qf for aaz{ in r. Let P" contain those rules 
"(/> vi> •••> vi)(zi> •••> which are linear and such that r contains an auxiliary 
variable if and only if it occurs in r. 

In case of linear rules: 

(2) af{z1, ..., z;) — r £ P if and only if 

a(f, Vl, ..., o ^ , . . . , z,) - r€P" ; »¡€K (i = 1, /). 

(3) ap^r£P i fandonlyif ap-*rdP"', pdTFo(Xn).VJe have T A = T B O T c , yielding 
that rA preserves regularity. 

Corollary 3.7. If A is nondeleting then so is C. It is known that the composition 
of linear nondeleting P-transformations is a linear P-transformation. Thus, Ta is 
a linear P-transformation if A is nondeleting, further, one can effectively construct an 
equivalent linear P-transducer. 

Lemma 3.8. Let A be a biaccessible bounded nonlinear P-transducer. Let a non-
linear rule of A be af(z1, ..., z,)-»g(a1zi, ..., a,z?>). Suppose that this rule multiplies 
z1; i.e. K>1. Put a 1—(a1,...;au). Denote by T the forest T— Pi {dom (T A ( A ( ) ) ; 
i= l , . . . , t / } . If t a preserves regularity then T is finite. 

Proof. Since A is bounded so are A (a,) and A(a)(i— 1, ..., u). If t A preserves regu-
larity then TA(0f) preserves regularity as well. Therefore, it is enough to deal with 
the transducer A (a) instead of A. Suppose that T is infinite although the assump-

(ii) 

(iii) fib^!,..., bfr) - b ( f , vu ..., UJXZJ, ..., Z,)€P' 

f€F,-, I > 0; b, bx,..., v£V (i = 1, ..., i); 
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tions are fulfilled. Since T is a finite intersection of domains, T is regular. Let 
TF(Xn U Z,) be a tree in which zx occurs exactly once. Then 

s s • Zls • Z l . . . • Zls. 
/-times 

Since T is infinite and regular, there is an r£T such that r~r1 (r2(r3)) where 
r3£TF(Xn), / • 1 , r 2 e r f ( Z „ U Z 1 ) , h(r2)>0 and for every k, r^=ri{4{r3))£T. Then 
T'= {rm; k= 1, 2, ...} is an infinite regular subset of T. Since T'QT, T—XA^T')^ 

(i '=l, ...,M), and by the boundedness, Ti is infinite. Since Tapreserves regu-
larity by supposition, all the forests T{ are regular. Let p2, ...,pi£TF(Xn) be trees 
with ai}pi=>qij i=2, . . . , / and / = 1, Let p=f(z1,p2,...,pl). It holds 

that ap^qia^,...^^). Set T"=p • ZlT' (={p(rM(r3))),k= 1,2, ...}). T" is 
regular, and so is K=xA(T"). Let B be a tree automaton recognizing K. Since all 
the forests 71; are regular, there is a qdK, q=q(a1,s2, ..., su), with s^Ti (i— 1, ...,u) 
such that /i(Ji), h(st) are greater than the number of states of B. Then (/= 1, 2) 
can be written in the form ^(^(J , - , ) ) such that h(sh)>0 and t[k)=s^sf^s^tTi 
for every k. We have q=q(t[k), t{

2\ s3, ..., su)£K. Let rti denote the number of states 
of A, and n2 the maximum of the heights of the trees occurring on the right side of the 
rules in P. Choose t[k) and tip as follows: 

> n2h(p(r)) +1, 

W ) > " 2 + n2(ni + l ) fc (9(zi . ...,s„)). 

Let q* = q(t[k), s3, ..., su), where t\k\ t[l) are the trees given above. It is obvious 
that q*£K. There is a p„£T" {p„=p(r1(.4(r3)))) with apj>q*. Denote by dx 

and d2 the root of /1
(t) and tP, resp. There are vertices c1, c2 in p„ such that dt (i= 1, 2) 

is obtained when the translation process arrives at c ;. The lengths of the paths from 
the root to c1 and c2 cannot exeed (nx+ l)h(q(zl5 z2, s3, ..., su)) because A does not 
have jumping cycles. Let r; (i— 1, 2) denote the subtree belonging to ct. The subtree 
r3 cannot contain cx and c2, or even, cx and c2 are located on the path to the root of r3. 
(The reason is the height of the trees t(

2
l>.) Thus, either rx is a subtree of f2 or 

conversely. 
Suppose first that r1 £ sub (r2). Then 

h(r2) < h(r1) + (n1+l)h(q(z1, z2, s3, ..., s j ) 

because r1 is a subtree of r2 and that part of r2 not contained by cannot be higher 
than («!+ l)/i(q(z l5 z2, s3, ..., su). Since is translated to t(k) and rx is a subtree of 
r2, an upper bound for the height of the trees that can be translated from f 2 is 

«,(«!+l)(/i(if>) + Mg(zi, z2, s3, ..., s„))). 

However, this is impossible by the choice of the trees and tip. 
If ^ s u b ^ ) then /i(r2)</i(r1). Thus, a tree translated from r1 is at least as 

high as a tree translated from r2 . Since 4° is translated from r2, h(r2)>-h(lP)/n2, 
and a tree translated from ^ is at least h(r2)/(n1+ 1) high. It follows that the trees 
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translated from rx are at least h(t'1k))+h(q(z1, z2, s3,..., su)) high. This contradicts 
the choice of t§K 

From our result we immediately obtain. 

Theorem 3.9. It is decidable for a bounded P-transducer A if A preserves regu-
larity. 

Theorem 3.10. It is decdiable if an Л-transducer is invertible, and the inverse, if 
exists, can be effectively constructed. 

Further results on regularity preserving i?-transducers can be found e.g. in [1]. 
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