
Syntactic pattern recognition in the HLP/PAS system

T . GYIM6THY AND J . TOCZKI

Abstract

In this paper a syntactic pattern recognition application of the HLP/PAS sys-
tem is presented. The system has originally been developed for compiler generation.
It can generate both one-pass and multi-pass compilers from attribute grammar spe-
cifications. The generated compilers use LL (1) or LALR (1) parsing methods. How-
ever, in many cases, patterns can be described only with ambiguous grammars. For
this reason the HLP/PAS system was extended with a backtrack parser generator.
The generated backtrack parsers use the LL (1) parsing tables to eliminate some of the
unnecessary backtracks. Another characteristic of these parsers is that the parsing can
be controled by the evaluated attributes. As an illustration, an attribute grammar
description is presented for normal ECG waveforms.
key words: attribute grammars, syntactic pattern recognition, attribute evaluation.

1. Introduction

So far there have been several attempts for describing patterns by attribute
grammars [8], [9], [11]. It is not surprising as both the context-free and the context-
sensitive characteristics of the patterns can be described by attribute grammars. The
numerical data of the patterns can conveniently be computed by semantic rules so
attribute grammars can create a connection between syntactic and statistic methods of
the pattern recognition.

While there are several complete compiler generator systems based on attribute
grammars [4], [7], to our knowledge, there is no such a system for pattern recognition
tasks. In a complete system a metalanguage is needed for the specification of the at-
tribute grammars. It is practical if the primitives of the patterns can be described as
lexical tokens in this metalanguage. The parser of the metalanguage has to check the
formal correctness of the specifications e.g. the consistent using of the attributes. The
system must generate a parser and an attribute evaluator, too. In contrary to the
usual complier generators, in a pattern recognition system, the construction of back-
track parsers is needed. Therefore, the HLP/PAS system [5], [10], which has origi-
nally been developed for compiler generation, was extended with a backtrack parser
generator. In this paper we give a description of this extended system. In more detail,

\

50 T. Gyimothy—J. Toczki

section 2 gives a short description of the original system, section 3 contains the spec-
ification of the ECG grammar. In section 4 the structure of the generated backtrack
parsers is described, while section 5 contains some observation about further research
of this topics. Finally we give a short summary of the paper.

2. The HLP/PAS system

As it was already mentioned, the HLP/PAS system was originally developed for
•compiler generation. There are two metalanguages in the system for the lexical and
syntactic-semantic descriptions of grammars. The lexical units (tokens) can be de-
fined by regular expressions in the lexical metalanguage. In programming languages
the usual tokens are identifiers, numbers etc. In the pattern descriptions the "primi-
tives" [2] are the lexical units. The system generates finite automata to recognize these
tokens. The generated lexical analyzer is a procedure of the complete compiler. The
specification of an attribute grammar can be described in the syntactic-semantic met-
alanguage of the system. The semantic assignments in the description of an attribute
grammar are Pascal-like expressions and procedure callings as the generated compil-
ers are complete Pascal programs. An attribute grammar definition in the HLP/PAS
system begins with the declaration of these procedures. After this the names and the
types of the synthesized and inherited attributes can be defined. Both standard Pascal
and user defined types can be used as the types of these attributes. Then the nonter-
minal declaration part follows, in which the nonterminals and the names of the
attributes associated with them are described. After this the tokens and the terminals
of the grammar are defined. Finally, in the last part of the specification, the syntactic
rules and the semantic assignments are described. There are conditional statements
which can be associated with the rules of the grammar. These statements can be ap-
plied to send messages during the compilation by means of evaluted attributes and are
also used to control the generated backtrack parsers (see 4). The code generator state-
ments generate the target code in the constructed compilers. Of course these state-
ments also use the evaluated attributes. The evaluation time of a conditional state-
ment is determined only by attribute dependencies while the evaluation sequence of
the code-generator statements can be prescribed by the user. The system contains
a simple error-recovery method which can be influenced by the definition of the
grammar. If a set of terminal or token symbols (SKIP-set) is connected to a nonter-
minal and there is a syntactic error in the "subtree" rooted in this nonterminal during
the parsing then the parser reads the input until it finds an element of the SKIP set.
This symbol will be the next input symbol and the corresponding subtree is deleted
(Panic method). The parser of the metalanguage always checks the formal correctness
of a specification e.g. the name conflicts, the existence of superflous nonterminals,
the consistence of the attribute assignments etc. The system can automatically gener-
ate so called copy rules for the simple transport of attribute values if the assignment
is determined unambiguously. Finally, from a correct specification the parser of the
metalanguage constructs files for other moduls of the system. As we mentioned earlier,
both one-pass and multi-pass compliers can be generated. The one-pass compilers
use LL (1) parsing method and L-attribute evaluation strategy [1]. In the multi-pass
compilers LALR (1) parsing method and a modified version, MOAG [4] of the OAG
[6] attribute evaluation method are applied.

Syntactic pattern recognition in the HLP/PAS system 81

3. An attribute grammar for normal ECG waveforms

On the basis of [9] an attribute grammar is presented for the description of nor-
mal ECG waveforms in the HLP/PAS system. TTiis grammar is used to illustrate the
backtrack parsing in the system. The first step in a description of a pattern is to
determine the set of the primitives. These primitives are the terminal symbols of the
grammar. First an ECG waveform is approximated with line segments [3]. The line
segments are partitioned into pieces nearly of the same size (these are the primitives).
This partition is carried out by using a UNIT segment (see Figure 1). A slope symbol
is associated with each primitive as follows:

were (¡i>P is the angle of the line segment SP with the horizontal axis and vH, vS) v, are
predefined constant angles. Each primitive in a segment has the same size and if the
UNIT not too large then there is not large difference between the size of the prim-
itives of different segments. Moreover each primitive has a duration which is the pro-
jection of the primitive to the time axis (Figure 1.).

if vfl < (pp =S v s

if vs < <pP S VJ

if (pP = - VJ

then SP
then IP
then LP
then SN
then IN
then LN
then HP

i f - v H = - < p P S = T - V S

if — v s > (pp = - V /

if <pP < —V/

time
Figure 1

6 Acta Cybernetics v n i / 1

50
T. Gyimothy—J. Toczki

In Figure 1 the dashed lines indicate the pieces of a waveform and the solid lines
are the segments. We can see that the duration of the primitives Sn, S12 is 1 and
3/4 of the primitives S21, S22, S23, S2i. If the vH=10°, v s=30° angle constants are
used then the waveform can be coded as follows

(SP, 1)(SP, 1)(IP, 0.75)(IP, 0.75)(IP, 0.75)(IP, 0.75).

In Appendix A a grammar is given for the description of normal ECG. In the de-
scription X" denotes X...Xn times. The grammar is ambiguous. For example consider
the rules

11. T — FGH; 12. F - K 4 | K 3 | K 2 ; 13. G - I 3 | I 2 | I | e ;

16. K — IP ^ DIG| SP DIG| ^ HP DIG and

17. I — ^ HP ^ DIG| ^ S P ^ DIG| SN 7i DIG;

Starting from the nonterminal T both the

T - FGH — K4 GH — K 4 I H . . . and the

T — FGH — K3 GH — K 3 I 2 H ...

derivation leads to the (^ HP DIG)5 string. The grammar in Appendix A is aug-
mented with attributes and semantic assignments. These assignments compute the
durations of the cardiac cycles from that of the primitives and determine the maximal

durations of cycles (maxdur, mindur). An ECG is normal if m a x < ^ u r raindur >0.1.
maxdur

In Appendix B the description of the augmented ECG grammar is presented in the
metalanguage of the HLP/PAS system. The description does not contain the complete
grammar, only the most important parts of the specification are given. Of course
using more attributes in the description further characterictics of ECG waveforms
can be analysed.

4. The generated backtrack parsers

As it was already mentioned, the one-pass compiler generator part of the HLP/
PAS was extended with a backtrack parser generator. First the structure of the one-
pass compilers generated originally is outlined. For each nonterminal of the grammar
a Pascal procedure is constructed. The inherited and synthesized attributes of a non-
terminal are the input and output parameters of the procedure corresponding to this
nonterminal. For example consider the following rules:

•^0 Xu X,2... X^-

•^0 _>" Xq2 • • • Xqilii

Syntactic pattern recognition in the HLP/PAS system 83

The structure of the generated procedure is:
procedure X0$(/(X0); var S(X0));

record Xn declaration of A(Xn); end

record Xq„q declaration of A (XqnJ; end
begin
if SY$€ Si then begin

eval (I(ZU)); Xlt S(I(ZU); S(Xn));

S(/(Xlai); S(XUl)); end else

if SYSe Sq then begin
eval (/(Z s l)); Xql $ (l(Xql); S(Xql));

eval (l(Xq„q)); Xq„9$ (l(Xqn^; S(Xq„^));

end else error;

eval(S(A-0));

end of procedure ZQS;

where-I(X t J), S(Xij), A^Xy) denote the inherited, synthesized and the all attributes
of the nonterminal Xi}, respectively. For each different right-hand side nonterminal
a record structure is generated. The variable SYS contains the current input symbol.
The corresponding alternative is determined by the condition SY$£Si, where S ~
=FIRST1(A r

i l, ...,Z in ()©1FOLLOW1(A r
0). In the blocks of the alternativies, eval

(/(Zy)) denotes the evalution of the inherited attributes of the nonterminal Xi}.
The places of the conditional and code generator statements in the alternativies are
determined by attribute dependencies and the prescriptions of the user (see 2. sec-
tion). The callings of the lexical procedure are also in the blocks of the alternatives.
Instead of building the parse tree, only recursive procedure callings are executed
during the parsing.

In the backtrack version of the generated compilers the instances of the proce-

6*

50
T. Gyimothy—J. Toczki

The greatest sequence number of the instances is stored in the global variable
NUMS. In each procedure there is a local variable (NUMX) to store the number of
the actual instance in the calling sequence. The TRUE value of the global Boolean
variable BTRACK denotes that the parser is in backtracking mode. During the
parsing a global stack is handled. The /-th element of this stack gives the number of
the alternative chosen in the 7-th instance. A flag denotes if another alternative with
greater number can be chosen in this instance. Of course only those alternatives are
considered for which the condition SY$£ Si is true. In the global variable LPOINT
the number of an instance is stored. In backtracking mode the new alternative will be
chosen from this instance. Finally in each procedure there is a pointer (PT) to denote
the position of the current input symbol at the entry of the corresponding instance.
If there is an error in the K-th instance then BTRACK=TRUE and this instance
is terminated. In the recursive calling structure the procedure instances are terminated
until the condition NUMX> LPOINT is true. If NUMX< LPOINT then using
the NUMX, NUMX+1, LPOINT-1 elements of the stack and the pointers PT
the necessary part of the parsing is reconstructed. In the instance indicated by
LPOINT the new alternative is chosen. The assignments NUM$=NUMX,
BTRACK= FALSE are executed and in the variable LPOINT the new backtracking
point is stored. In [8] a backtrack parser was presented for pattern recognition. The
main advance of the parser presented in this paper against that of [8] is that using
the LL (1) conditions a lot of useless backtracks can be eliminated. Of course there is
a cost of the computation of the LL(1) tables but this computation happens only
ones in meta-compiling time.

To illustrate the backtrack parser consider the following structure of the ECG
grammar: ST-I10|I9|I8|I7|I6.

It can be described with the following three rules:

i) ST=I_LIST;
DO
I _ LIST. length :=0;
END

ii) I_LIST=I I_LIST;
DO
dur :=I. dur+I_LIST: dur;
I_LIST. length :=length+1;
COND
if I_LIST.lengths10 then BACKTRACK;
END

iii) I_LIST=I;
COND
if lengths6 then BACKTRACK;
END

The inherited attribute length is used to count the I elements. The backtrack is
controled by this attribute. For example if the rule ii) was applied ten times then
a backtrack is executed for the nonterminal I_LIST and the alternative iii) is chosen
instead of ii). On the other hand if in the rule iii) the condition length < 6 is true then
after several backtracks the instance öf the nonterminal ST is terminated in back-

Syntactic pattern recognition in the HLP/PAS system 85

tracking mode. These redundant steps can also be eliminated if the number of I
elements is stored in a synthesized attribute of ST and the condition length is
applied in the rule i). This solution can be seen in Appendix C.

5. Further research

The backtrack parsers presented in this paper use L-attribute evaluation method.
This method can be applied to languages the elements of which depend on their left-
hand side environments. It often holds in the case of programming languages but not
in the case of pattern descriptions. A subpattern usually depends on both its left- and
right hand side environments. Hence multi-pass attribute evaluators are needed. In
such type parsers, attributed parsing trees are constructed to store the value of the
evaluated attributes and the structure of the parsing. As we mentioned it earlier,
in many cases the patterns can conveniently be described only by ambiguous grammars.
Therefore the development of a multi-pass, backtrack parser generator in the HLP/
PAS system would be needful. Because such type parsers work usually very slowly,
in our opinion, a combination of the pass-directed and the dinamic attribute evalu-
ation strategies is needed. When backtrack, some attribute values have to recom-
pute. In these cases the appliement of the dinamic attribute evaluation method is
efficient. Only those attributes must be recomputed the values of which are changed
during the backtrack. In the other part of the grammar (and usually it is the larger
part) a pass-directed evaluation method can be used e.g. MO AG [4].

6. Conclusions

In this paper a syntactic pattern recognition system was presented. The input
of the system is a complete description of a pattern by attribute grammar. From this
specification the recognizer of the pattern is generated. In the description of patterns
ambiguous grammars can also be used. The generated parsers use the LL (1) tables so
a lot of redundant backtracks can be eliminated. Further characteristic of the gen-
erated parsers is that the parsing can be influenced by the evaluated attributes. Calling
the start symbol of an ambiguous grammar repeatedly the all possible derivations of
the grammar can be constructed for a given input. The complete system was imple-
mented on Pascal language on IBM—370 and IBM XT compatible computers.

Acknowledgements

We wish to thank Árpád Makay and Zoltán Fülöp for their constructive com-
ments on this paper.

Appendix A

1. S=NORMAL_ECG
2. NORMAL_ECG=CARDIAC_CYCLE NORMAL.ECG
3. NORMAL_ECG=R
4. CARDIAC_CYCLE=RS ST T TP P PR Q

50
T. Gyimothy—J. Toczki

5. R = C D
6. R S = C D E
7. C = ? i L I V DIG C M L P ^ D I G
8. D = ^ L M ^ DIG D|?iLM?i DIG
9. E= ^LP^ DIG E l ^ n v DIG E I ^ L P ^ D I G M I P ^ DIG|s

10. ST=I10|I9|I8|I7|I6

11. T = F G H
12. F=K 4 |K 3 |K 2

13. G=I3 | I2 | I |e
14. H=M4 |M3 |M2 |M|e
15. D I G M S M ^ DIG
16. K = ^ I P j t DIGMSP?5 D I G I ^ H P ^ D I G
17. I = ^ H P D I G I ^ S P ; * DIGI^SMt^DIG
18. TP=I14|I13|I12|I11|I10|I9|I8

19. P = T
20. PR=I4 |I3 |I2 |I|£
30. Q=L3|L2|L|fi
31. L=?iIM?iDIG |7 iLM?iDIG
32. DIG=NUMBER

Appendix B

ATTRIBUTE GRAMMAR ECG
(* B + BACKTRACK OPTION IS ON *)
PASCAL DECLARATIONS ARE

PROCEDURE BF (a, b: INTEGER; VAR c: BOOLEAN);
BEGIN
I F (a - b) / a > 0.1 THEN c :=TRUEELSE c:=FALSE;
END;
PROCEDURE MAXF (VAR a: INTEGER; c, b: INTEGER);
BEGIN IF b > c THEN a : = b ELSE a : = c ; END;
PROCEDURE MIN (VAR a: INTEGER; b, c: INTEGER);
BEGIN
IF b > c THEN a : = c ELSE a: = b;
END;

SYNTHESIZED ATTRIBUTES ARE
maxdur, mindur, dur :INTEGER;
fl: BOOLEAN; val:INTEGER;

INHERITED ATTRIBUTES ARE
length: INTEGER;

NONTERMINALS ARE
ECG HAS fl;
NORMAL_ECG HAS maxdur, mindur;
CARDIAC_CYCLE, R, RS, ST,T,TP, P, PR, Q, C, D, E, DIG, F, G, H HAVE
dur;
LP_PAIR, LM_PAIR, IP_PAIR, IM.PAIR, HP_PAIR, SP.PAIR, SM-PAIR

HAVE dur;

Syntactic pattern recognition in the HLP/PAS system 89

I_SET, K_SET, M.SET, L_SET HAVE dur;
Il _LIST, I2_LIST, I3_LIST, I4_LIST, L_LIST, K_LIST, M_LIST HAVE

length, dur;
TOKENS ARE
NUMBER HAS val;
TERMINALS ARE

"LP", "LM", "IP", "IM", "HP", "SP", "SM";
PRODUCTIONS ARE
ECG= NORMAL_ECG ;

DO
fl< — BF (NORMAL_ECG. maxdur, NORMAL_ECG. mindur, fl);
END

NORMAL_ECG=CARDIAC_CYCLE NORMAL_ECG ;
DO

maxdur < - M A X F (maxdur, CARDIAC_CYCLE. dur, NORMAL_ECG.
maxdur) ;
mindur < - M I N F (mindur, CARDIAC_CYCLE. dur, NORMAL_ECG.
mindur) ;

END
NORMAL_ECG=R ;

DO
maxdur :=0;
mindur :=0;

END
CARDIAC_CYCLE= RS ST T TP P PR Q;

DO
dur := RS. dur + ST. dur+T. dur+TP. dur + P. dur + PR. dur + Q. dur ;

END

Appendix C

i) ST=I_LIST
DO
I_LIST. length :=0;
COND
IF I_LIST.slength < 6 THEN BACKTRACK;
END

ii) I_LIST=II_LIST;
DO
dur:= I. dur+1 _ LIST. dur;
I_LIST. length :=length+1;
slength=I_LIST. slength-f 1;
COND
IF I_LIST.length > 10 THEN BACKTRACK;
END

88 T. Gyimóthy—J. Toczki: Syntactic pattern recognition in the HLP/PAS system

iii) I_LIST=I;
DO
slength := 1;
END

RESEARCH GROUP ON THEORY OF AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGYI U. 7.
SZEGED, HUNGARY
H—6720

References

[1] BOCHMANN, G. V., Semantic evaluation from left to right, Commun. Ass. Comput. Mach., vol
19, pp. 55—62, Feb. 1976.

[2] Fu, K. S., (ed), Syntactic pattern recognition, applications, Springer-Verlag, Hew York/Berlin
1977.

[3] GRITZALI, F. and G. PAPAKONSTANTINOU, A fast piecewise linear approximation algorithm,
Signal Processing, vol. 5, pp. 221—227, 1983.

[4] GYIMÓTHY, T., E. SIMON and A. MAKAY, An implementation of the HLP, Acta Cybernetica,
Tom 6, Fasc. 3, pp. 315—327.

[5] GYIMÓTHY, T . , K o c s i s , F . , MAKAY, Á . , SIMON, E . a n d TOCZKI, J., T h e c o m p i l e r g e n e r a t o r
HLP/PAS, Computer and Automation Institute, Hungarian Academy of Sciences, Report, to
be published.

[6] KASTENS, U., Ordered Attribute Grammars, Acta Informática 13, 229—256, 1980.
[7] KoSKiMtES, K. and PAAKKI, J., HLP84~Semantic metalanguage and its implementation, Univer-

sity of Helsinki, Report C—1983—69.
[8] PAPAKONSTANTINOU, G., An interpreter of attribute grammars and its application to the wave-

form analysis, IEEE Transactions on Software Engineering, vol. SE-7, No. 3, pp. 279—283,
May 1981.

[9] SKORDALAKIS, E. and PAPAKONSTANTINOU, G., Toward an attribute grammar for the description
of ECG waveforms, 7-th International Conference on Pattern Recognition, 1984.

[10] TOCZKI, J., et al., On the Pascal implementation of the HLP, Proc. of 4th Hungarian Computer
Science Conference, Gyór, 1985, 12 pp.

[11] You, K. C. and Fu, K. S., A syntactic approach to shape recognition using attributed grammars,
IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-9, Ño. 6, pp. 334—345, 1979.

(Received May 6,1986)

