On isomorphic realization of automata with o,-products

Z. Esik

1. Notions and notations

In this section we give a brief summary of some basic concepts to be used in
the sequel.

An automaton is a triplet A=(4, X, §) with finite state set A, finite input set
X and transition 6: AXX—A. The sets A and X are nonempty. The transition is
also treated in the extended sense, i.e., as a mapping AX X*—+4, where X* is the
free monoid generated by X. Take a word p€X*. The transition induced by p is
the state map d8,: A—~A4 with J,(a)=d(a, p) (a€4). The collection of these transi-
tions forms a monoid S(A) under composition of mappings. We call S(A) the char-
acteristic monoid of A.

The concepts as subautomaton, homomorphism, congruence relation and iso-
morphism are used with their usual meaning. Given an automaton A=(4, X, §)
and a state a€d, the subautomaton generated by a has state set {d(a, p)|p€ X*}.
An automaton (B, Y, §’) is an X-subautomaton of an automaton (4, X, §) if BC A4,
YS X and &' is the restriction of dto BXY. The factor automaton of an automaton
A with respect to a congruence relation 6 of A is denoted A/f. We write 0,<06,
to mean that 6, is a refinement of @, and 8,60,. An automaton is called simple
if it has only the trivial congruence relations @ (identity relation) and 1 (total rela-
tion). Thus frivial (i.e., one-state) automata are simple.

Let A;=(4;, X;, §;) (i=1, ..., n, n=0) be automata. Take a finite nonempty set
X and a family of feedback functions @;: AX.. X AXX~X; (i=1, ...,n). By
the product A.X...XA,[X, ¢] we mean the automaton (4,X...X4,; X, 6), where

6((“1’ ey an)’ x) = (51(‘11, xl), seey 5n(am xn))

x=@ay,...,a,,%x) (i=1,..,n

with

for all (ay, ..., a,)EA;X...X 4, and x€X. The integer n is referred to as the length
of the product. If, for every i, ¢; is independent of the state variables a,, ..., a,,
we speak about an oy -product. In an oy-product a feedback function ¢, is alternatively
treated as a mapping A4;X...X4; ;X X—~X;: Moreover, ¢; extends to a mapping
A X . XA X X*~XF¥ in a natural way.
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Let A be a (possibly empty) class of automata. We will use the following
notations:

P, (X"):=all ay-products of automata from ’;
P,,,(4"):=all a)-products with length at most 1 of automata from J&’;
S(o):=all subautomata of automata from ¢;
H () :=all homomorphic images of automata from ;
I(o4"):=all isomorphic images of automata from ¢ ;

X *:=the collection of all automata A=(4, X, §) such that there is an
automaton B=(4, Y, §")€4 with the following properties: (i) B is an X-subauto-
maton of A; (ii) for every sign x€X there is a word p€Y* inducing the same
transition as p, i.e., 8,=9,. (Note that we have S(A)=S(B).)

We call a class P of automata an ap-variety if it is closed under H, S and P,,.
An a,-variety is never empty. An oj-variety is an ay-variety S'with A *S . For
later use we note that HSP, (") (HSP, (™)) is the smallest a,-variety (a-variety)
containing a class . Sxmllarly, ISP, (.9{ ) is the smallest class conta1n1ng A and
closed under i, S and P,,. it is worth noting that SP,, (%) contains ali X-sub-
automata of automata in Ji’

A class X is said to be isomorphically ay-complete for A" if A" SISP, (Ay):
The following statement is a direct consequence of results in [5] (see also [3], [4]):

Proposition 1.1. If A, is isomorphically «,-complete for o and A€ is a
simple automaton then A€ISP,, ().

Thus; any isomorphically «y-complete class for o4 must “essentially** contain
all simple automata in 2. The converse fails in general, yet it holds for some impor-
tant classes: the class of all automata and the classes of permutation automata,
monotone automata and definite automata are equally good examples (see [2], [3],
[6], 7], [9]). Isomorphically o,-complete classes for the class of all commutative
automata essentially consist of automata very close to simple commutative auto-
mata (cf. [7]). In a sense there is a unique nontrivial simple nilpotent automaton.
On the other hand no finite subclass of nilpotent automata is isomorphically ay-com-
plete for the class of all nilpotent automata. Thus, the class of nilpotent automata
is a counterexample. Isomorphically «,-complete classes for nilpotent automata are
studied in [8].

Some more notation. The cardinality of a set A is denoted |4|. The symbol E
denotes the automaton ({0, 1}, {xo, x;},6) with (0, x0)=0, (0, x;)=5(1, xp)=
=4(1, x;)=1. We call E the elevator.

The relation of the oy-product to other product concepts is explained in
[3). The Krohn—Rhodes Decomposition Theorem gives a basis for studying
og-products. For this, see [1], [3], [4].

2. Preliminary results

Let A=(4, X, ) be an automaton. As usual, we say that A is strongly con-
nected if it is generated by any state a€ A. Further, A is called a cone if there is a
state a,€A4 with the following properties:

(i) é(a,, x)=a,, for all xcX,
(i) A—{a,} is nonempty and every state acA4—{a,} generates A.
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Obviously, the state g, with the above properties is unique, whence it will be
referred to as the apex of A. The set A— {a,} constitutes the base of A. It should
be noted that every simple automaton is either a strongly connected automaton or
a cone or an automaton ({a;, a4}, X, 6) with 6(a;, x)=a;, i=1, 2, x€X.

Theorem 2.1. Let A be a class of automata with H(A)E A, S(A)S 4 and
A*So. If E€ then for an arbitrary class ;, A SISP, () if and only
if every strongly connected automaton and every cone belonging to X is in
ISP, ().

Proof. The necessity of the statement is trivial. For the sufficiency let
A=(4, X, 5) be an automaton in 2. We are going to apply induction on |4] to
show that A€ISP, (). Since X ™*So and ISP, (A) is closed under X-sub-
automata, it can be assumed that for every word p€ X™* thereis a sign p€X inducing
the same transition as p, i.e., é(a, p)=4d(a, p) for all acA.

If |4|=1 then A is strongly connected and A€ISP, (#;). Suppose that
|[4]=1. If A is strongly connected or a cone then A€ISP, (#;) by assumption.
Otherwise two cases arise.

Case 1: A contains a nontrivial proper subautomaton B=(B, X, ) generated
by a state by€B. Let ¢ SAX A be the relation defined by agb if and only if a=b
or a,bcB. A straightforward computation proves that ¢ is a congruence relation
of A. For every state b€B fix an x,€X with 6(by, x,)=b. Take the ay-product

C=(C X, ) =AloxBIX, ¢],
where ¢,(x)=x,
_[x, if &(a, x)¢B,
v:({a} x) = {x,, if 8(a,x)=becB

and @,(B, x)=x for every x€X and a€A—B. Set
C’' = {({a}, b(,)laEA—B}U {(B, b)| b€ B}.

It is immediately seen that C'=(C’, X, §’) is a subautomaton of C isomorphic
to A. Since both A/¢ and B are in & and have fewer states than A, we have A/p,
B¢ISP, (Ap) from the induction hypothesis. The result follows by the fact that
ISP, () is closed under I, S and P,.

Case 2: There are distinct states a,, a,€A with d(a;, x)=a;, i=1,2, x€X.
Define ¢S AXA by apb if and only if a=b or g, b€ {a;, a,}: Again, g is a con-
gruence relation of A. Let

C=(C X, ) = AlgXE[X, ¢]
be the «,-product with ¢, (x)=x,

Cfr i 6(a, %) = ay,
os({a}, x) = {x,, otherwise

and @,({a,a.}, x)=x,, where x¢ X and ac A—{a,, a,}. It follows that C'=(C", X, &)
with
C’'= {({a}’ 0) ac4—{ay, az}}U{({an as}, 0), ({01, as}, 1)}

1*
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is a subautomaton of C isomorphic to A. Since X is closed under homomorphic
images and A/g has fewer states than A we have A/g€ISP, () from the induc-
tion hypothesis. On the other hand, E€ and E is a cone. Thus E€ISP, ()
and we conclude A€ISP, (A).

Remark. Let o be a class as in Theorem 2.1, i.e. A*CH, H(H)S 24 and
SNCSH. Assuming E¢ ¢ it follows that 2 consists of permutation automata.
(See the last section for the definition of permutation automata.) Every permuta-
tion automaton is the disjoint sum of strongly connected permutation automata.
Now obviously, if 5 contains a nontrivial strongly connected automaton then
A CISP, (A;) for a class X, if and only if A€ISP, (;) for every strongly con-
nected permutation automaton A€ (Or even, the same holds if «,-product is
replaced by the so-called quasi-direct product.) If in addition 2 is closed under
X-subautomata then, as we shall see later, 4 SISP, (#;) if and only if every
simple strongly connected permutation automaton in 2 is already contained by
ISP, (). Suppose now that every strongly connected automaton in J¢ is trivial.
Then, if A contains a nontrivial automaton, we have % SISP, () if and only if
({0, 1}, {x}, 6)€ISP,, (A;) with 6(0,x)=0 and (1, x)=1. Further, # SISP, (#;)
holds for every X, if 5 consists of trivial automata. .

The following two lemmas establish some simple facts about homomorphic
realization of cones and strongly connected automata in the presence of E.

Lemma 2.2. Let A=(4, X, 8) be a cone in HSP, (¢ U{E}). There exist an
automaton D€EP, (X) and an a,-product DXE[X, ¢] containing a subautomaton
that can be mapped homomorphically onto A.

Proof. Let B=(B, X, 6)=B,X...XB,[X, y] be an «,-product with B,c.#'U
U{E}, t=1,...,n. Let C=(C, X, ) be a subautomaton of B and h: C—4 a
homomorphism of C onto A. We may assume C to be in a sense minimal: no proper
subautomaton of C is mapped homomorphically onto A.

Denote by a, the apex and by 4, the base of A. Set C,=h~1(4,), C,=h"({a,}).
Clearly then C,=(C, X, &) is a subautomaton of C, and C is generated by any
state a€C,.

Let 1=i{<..<i,=n be all the indices ¢=1,...,n with B, If
(@, ..., a,), (by, ..., b,)EC,, we have a,=b, whenever t¢{i, ...,i,} for otherwise
C would not be generated by every state in C,. Let ji, ..., j€{1, ..., n}— {iz, ..., i}
be those indices ¢ such that for any (ay, ..., a,)€Cy, a,=0 if and only if #€{j;, ..., j;}.
Forevery a=(ay, ..., a,)¢B; X ...X B, put a=(@a,, ..., a,)éB with 4, =a,, ..., a;, =
=a,,d;=...=a; =0 and a,=1 otherwise.

To end the proof we give an ay-product B’=B; X...XB; XE[X, §'] and a
subautomaton C’'=(C’, X, ) of B’ such that A is a homomorphic image of C'.
For every a¢B;X...XB,,i=0,1, xc¢X and j=1,...,r, define

!p;'(a’ i; x) = lpij(a’ x),

x, if 6(a, x)eC,,
X, otherwise.

Vinata i x) = {
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Let C’ be the subautomaton generated by the set
Co = {(a, 0)|a€B; X... XB,,, acCp}.

Set Cj=C’—Cj;. It is clear from the construction that states in Cy have 1 as their
last components. Therefore, Cj is the state set of a subautomaton of C’. Moreover,
for every (a, 0), (b, 0)€C; and x€X we have 6”((a, 0), x)=(b, 0) if and only if
8'(a, x)=b, while 6”((a, 0), x)€C; if and only if 6'(@, x)€C;. It follows that A is
a homomorphic image of C’, a homomorphism being the map that takes each state
in Ci to a, and each state (a, 0)€Cy to h(a).

If A were strongly connected we would not need the last factor of the o-product
B’ either. This gives the following: '

Lemma 2.3. Every strongly connected automaton in HSP, (2# U{E}) is con-
tained in HSP, (X").

Let A=(4, X, 5) be a cone with apex g, and base 4,. Suppose that the rela-
tion ¢S AX A defined by agb if and only if a=b=a, or a, b€ A, is a congruence
relation of A, which is to say that for every x€ X either 8(4,, x) S A4, or §(4,, x)=
={a,}. Set X,={x€X|6(4,, x)SA4,}. Assuming X,70, the automaton A,=
=(A4y, X,, ) is a strongly connected X-subautomaton of A, which is guaranteed if
|4,]=>1. By definition, we call A a 0-simple cone if and only if X,=8 and A, is
simple. Thus, E is both a simple cone and a 0-simple cone. Given a strongly con-
nected automaton A,=(A4,, X,, &), there is a natural way to imbed A, into a
O-simple cone A§: define A§=(4U {a,}, X,U {x,}, 5) where a, ¢ 4y, x4 Xy, 6(a, xo)=a,
for every a€A,U{a,} and é&(ay, x)=a,, d(a, x)=38y(a, x) if acA4,, x€X,. Obvi-
ously, A§ is O-simple if and only if A, is simple.

If A is a simple cone (i.e., a simple automaton that is a cone) then A€ISP, ()
for a class & if and only if A€ISP,, (#"). In the next statement we investigate
what can be said about " if ISP, (") contains a O-simple cone.

Lemma 2.4. If a O-simple cone A=A§ is in ISP, () then either A€ISP,, (X")
or E€ISP,, (") and there is an automaton D€ such that A is isomorphic to
a subautomaton of an a,-product of E with D.

Proof. Let A,=(4,, Xy, 8) and A=(4, X, §) so that 4=4,U{a,}, X=X,U
U{xo} where aOQAO’ xOQXm 5((1, xo)zao (aEA)a 5(00, x)=a0 and 5(‘19 x)=50(a, x)
(ac 4y, x€X,). Since A€ISP, (X)) there exist an oy-product B=(B, X, &)=
=B;X...XB,[X, ¢] B,£A, t=1, ...,n) and a subautomaton C=(C, X, ) of B
such that A is isomorphic to C under a mapping h: A—~C. We may assume that »
is minimal, i.e., whenever an a,-product of automata from " contains a subauto-
maton isomorphic to A, the length of that product is at least n.

Suppose that A¢ISP,, (#). We then have n>1. Let a=(a,...,a,) and
b=(b,, ..., b,) be arbitrary states in C. For every t=1, ...,n, put af,b if and only
if a,=b,, ...,a,=b,. Further, let agb if and only if a=b=h(a,) or a, b€h(A4,).
Each of these relations is a congruence relation of C, and since n is minimal,
6,>...>0,(=w) and 0,51. Since A is O-simple this leaves n=2, 6,=¢ and 6,=o.
It then follows that E is isomorphic to a subautomaton of an «,-product of B,
with a single factor and A is isomorphic to a subautomaton of an «,-product of E
with B,.
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Let Af=(4,U{ay}, XoU{x,},d) be a O-simple cone with A,=(4,, Xy, &),
and take an arbitrary automaton B=(B, Y, §"). It is not difficult to give a necessary
and sufficient condition ensuring that A§ is isomorphic to an «,-product of E with B.
Clearly this can happen if and only if there are a pair of functions h: 4,—B,
¢: Xo—~Y, astate bycB and two not necessarily distinct signs y,, y,€Y such that:

(1) h is injective;

(ii) for every al,azer and x€X, we have &,(a;,x)=a, if and only if
&' (h(a), 9 (x))=h(ay)

(i) &’ (h(Ao), J’o) {bo}, 9'(bo,y1)=bhy.

If also b,¢h(A4,) and y,=y, then A§ is isomorphic to an «y-product of B with a
single factor.

3. The main result

An automaton A=(4, X, d) is called permutation automaton if é, is a permuta-
tion of the state set for every x€X. This is equivalent to saying that 5 is a permuta-
tion for every pc¢ X* orthat S(A)is a group. Let X, denote the class of all permuta-
tion automata. It is known that 7}, is an ao-varlety, see [1]. Moreover, from the
Krohn—Rhodes Decomposition Theorem we have o, =HSP, ({A(G)|G is a simple
group)) where the group-like automaton A(G) on *a (ﬁmte) group G is defined
to be the automaton (G, G, ) with 8(g, h)=gh, g, h¢G.

Another class of automata we shall be dealing with is the class 2, of all
monotone automata. By definition, an automaton A=(4, X, ) is monotone if
d(a, pg)=a implies 6(a, p)=a, for all ac4 and p,gcX™* This is equivalent to
requiring the existence of an ordering = on A such that a=§(a, p) for all acA
and pEX* (or a=6(a, x) for all aéA and x€X). The class %, is known to be
an ag-variety. Further, it is the «,-variety generated by E, i.e. Ji” HSP, ({E})
(see [1], [10], [11]).

Having defined the classes 2, and £, put X%,,=HSP, (¥, ,UX,)=
=HSP, (4, U {E})=HSP, ({A(G)IG Is a simple group}U{E}) 1t follows from
Stiffler’s switching rules that A€, if and only if there is an oy-product B of a
permutation automaton with a monotone automaton such that A€ HS({B}). For
this and other characterizations of the class J£,,, see [1] and [10]. It is immediate
from our definition that X, is an «y-variety. Or even, it is an «g -variety.

Lemma 3.1. Let A be a strongly connected automaton. Then ACX,, if and
only if A€,

Proof. Use Lemma 2.3.

Corollary. If A=A§ is a cone in X, then A, a strongly connected permuta-
tion automaton.

Lemma 3.2, Let A=(4, X, §)€.X,, be a cone with apex a, and base 4,. If
é(a, p)=06(b, p)c A4, holds for some a, b¢ 4, and pcX* then a=b.

Proof. From Lemma 2.2 it follows that A is a homomorphic image of a sub-
automaton C=(C, X, 8') of an ay-product BXE[X, ¢] where B is a permutation
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automaton, say B=(B, X;, §,). Denote by h an onto homomorphism C—A. Set
Co,=h"1(4,). We may assume that every state in C, is a generator of C. Each state
in C, must have 0 as its second component since otherwise we would have C S BX {1},
and this would yield that C and A are permutation automata.

Let (ay, 0), (b,, 0)€C, with h(a,, 0)=a, h(b,, 0)=>b. Take a word g€X* with
8(a,pg)=a. We have 6(a, (pq)")=6(b,(pg)")=a, and hence & ((as,0),(pg)"),
&' (b1, 0), (pg)")€C,, for all n= 1. Define r = ¢,(pg). For every integer n=1 we have
5,((‘11: O)’ (PQ)") = (51 (al H r"): O) and 5’((b1’ 0)’ (PQ)") = (51 (blx rn)’ 0)’ Since B is a
permutation automaton, there is an n= 1 with a, = 0,(ay, ¥") and b, = 6,(by, r"). Thus
we obtain a=h(ay, 0)=h(&' ((ay, 0), (pg)"))=h(5'((5r, 0), (pg)))=h(b1, 0)=b]

Theorem 3.3. Let 4 <., be a class containing E, closed under X-subauto-
mata and homomorphic images and such that #™*C . A class J; is isomor-
phically oy-complete for & if and only if the following conditions hold: \

(i) every simple cone and every simple strongly connected permutation auto-
maton belonging to X is in ISPy, (%),

(i) for every O-simple cone A§c o thereis a Be#; such that A§is isomorphic
to a subautomaton of an «,-product of E with B.

Proof. The necessity of (i) comes from Proposition 1.1 while (ii) is necessary
in virtue of Lemma 2.4.

For the converse recall that £ satisfies the assumptions of Theorem 2.1. There-
fore, by Theorem 2.1, it suffices to show that every strongly connected automaton
and every cone belonging to " is contained by ISP, ().

Let A=(4, X, 8)¢4 be a cone with base 4, and apex a,. Since A *CH"
and ISP, (%) is closed under X-subautomata, we may assume that for every p€X*
there is a p€X inducing the same transition as p. If A is simple then A€ISP, (#;)
by (i). If A is O-simple then A is isomorphic to an «,-product A§[X, ¢] with a single
factor where A§eA” is a O-simple cone. (Recall that # is closed under X-sub-
automata.) Therefore, we may assume that A is of the form A§. Now, by (ii), A is
isomorphic to a subautomaton of an «,-product of E with B where B€Jf;. Since
E is a simple cone we have E€ISP,, (/). It follows that A€ISP, (;). Suppose
that A is neither simple nor O-simple. We proceed by induction on |A4|. If |A]=2
our statement holds vacantly. Let ]4|=2. There exists a congruence relation =@
of A such that afb implies a=b or a, b€ A,, and such that 4, contains at least
two blocks of the partition induced by 6.

Let Co={ay}, Cy, -..,C, (n=2, |Cy]=1) be the blocks of 6. Since A is gen-
erated by any state in A4,, from Lemma 3.2 we have the following: for every
i,je{l, ..., n} there exists a word pcX* with &(C;, p)=C;. Consequently, for
every i€{l, ..., n} there is a pair of words (p;, ;) with 6(C,, p,)=C;, 6(C;, g)=C,
and such that p;q; induces the identity map on C, while g;p; induces the identity
map on C;.

Set X' ={x€X|6(Cy, X)) SC,UC,}, C=(CoUC,y, X', §"), where &(c, x)=(c, x)
for all c€CyUC; and x€X’. Obviously, both A/6 and C are cones in . Fix a
sign xp€ X’ with &(Cy, xy)=C,. Take the ay-product

B = (B, X, ") = AJOXC[X, ¢]
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where ¢,(x)=x and

Xo if 6(Ci,x)=Cy

It is easy to check that B'=(B’, X, 6”) is a subautomaton of B where
B’ = {(Cy, ap)}U{(C;,a)li=1,...,n, a€C,).

Further, the map (C,, ap)—a,, (C;, a)—~d(a, p;) (i=1, ...,n, acC,) is an isomor-
phism of B’ onto A. Hence the result follows from the induction hypothesis.

Suppose now that A=(4, X, 6)€4 is a strongly connected automaton. From
Lemma 3.1 we know that A is a permutation automaton. Just as before, we may
assume that for every p€X* there is a sign p€X with §,=d;. If A is simple then
A€ISP,, (#)EISP, (). Otherwise let 6 be a congruence relation of A different
from @ and 1. Denote by C,,...,C, n=2, |C,|>1) the blocks of the partition
induced by 8. Set X’'={x€X|5(C;, x)=C;}. One shows that A is isomorphic to an
o-product of A/8 with C, where C=(C,, X’, &), §(c, x)=04(c, x) (c€C,, x€X’).

We note that a substantial part of the above proof as well as the proofs of
Theorem 2.1 and Lemma 2.2 follow well-known ideas (see [1], [4], [5]).

Corollary. Let S S, be closed under X-subautomata and homomorphic
images and suppose that #™*C . If X contains a nontrivial strongly connected
automaton then a class Jf; is isomorphically «,-complete for 2 if and only if
A€ISP,, () holds for every simple strongly connected automaton A in X"

$2(C;, x) = {

Let 4 be a nonempty class of (finite) simple groups closed under division.
(Recall that G, divides G, for groups G, and G,, written G,|G,, if and only if G,
is a homomorphic image of a subgroup of G,.) Denote by # (%) the class
HSP, ({A(G)IGE%)); (%) is an of-variety contained in . It follows from the
Krohn—Rhodes Decomposition Theorem that every og-variety of permutation auto-
mata is of the form 2" (%) except for the af-variety consisting of all automata (4, X, )
such that 8, is the identity map for each x€X. Moreover, if ¢ contains a nontrivial
simple group then for every permutation automaton A we have A€ (%) if and
only if G|S(A) implies G€¥ for simple groups G. Since X (¥9)E&,, also
Hr($)=HSP, (A (HU A,) S A,,,. We obviously have

A (%) = HSP, (4 (9)U{E}) = HSP,,({A(G)IGEF}U{E)).
Thus, A#,,(¥)is an a,-variety in X, or even, it is an og-variety.
Corollary. £, (9)S1ISP, () if and only if the following hold:

() for every simple cone A€X, (¥) we have ACISP,, (),
(ii) for every O-simple cone A§SEA,, (%) there is a B€X, such that A§ is iso-
morphic to a subautomaton of an ay-product of E with B.

Proof. Use Theorem 3.3 and the following fact: every simple strongly con-
nected (permutation) automaton in (%) is isomorphic to an X-subautomaton of
a O-simple cone A§ in A,,(%).

Corollary [2]. A class o, is isomorphically «,-complete for X%, if and only
if ECISP,, ().



On isomorphic realization of automata with «,-products 127

Proof. Let ¢ be the class of trivial groups. We have X%,=X,(%). On the
other hand, every cone in 4, is similar to E. More exactly, if A€, is a cone then
A is isomorphic to an «,-product in Py, ({E}).

An automaton A=(4, X, ) is called commutative if (a, xy)=06(a, yx) for
all acA4 and x, y€X, ie., if S(A) is commutative. Denote by X the class of all
commutative automata; ) is closed under X-subautomata and homomorphic
images. Moreover, X *S4 and X &A,,. For a prime p>1 let C, be a fixed
automaton of the form A(Z,)¢, where Z,, is the cyclic group of order p. Every simple
commutative automaton is in the class ISP, ({C,lp>1 is a prime}), and every
0-simple commutative cone is in ISP, ({C:|p>1 is a prime}).

Corollary [7]. A class A is isomorphically ay-complete for the class of all com-
mutative automata if and only if the following hold:

(l) EE HSPlao ('%)’

(i) for every prime p=>1 there is an A€, such that C¢ is isomorphic to a
subautomaton of an «,-product of E with A.

Abstract

Every isomorphically a,-complete class for a class £ of auntomata must essentially contain all
simple automata belonging to - In this paper we present some classes J for which also the con-
verse is true, or isomorphically ag-complete classes can be characterized by means of automata
in o close to simple automata.
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