On «-product of tree automata

F. GfcseG and B. IMREH

In the theory of finite automata it is a central problem to represent a given
automaton by composition of — possibly simpler — automata. The composition
of tree automata has received little attention. Namely, the cascade product of tree
automata was studied in [4] and the work [5] contains the investigation of the gen-
eral product of tree automata (see also [1]). In this paper generalizing the notion of
arproduct (cf. [2]), we introduce the a;-product of tree automata, and using the
idea in [3] give necessary and sufficient conditions for a system of tree automata
to be isomorphically complete with respect to the «;-product. From the charac-
terizations of complete systems we obtain the o;-products constitute a proper hier-
archy, '

1. Definitions

By a set of operational symbols we mean the nonempty union £=ZX,UZ,U...
of pairwise disjoint sets of symbols, and for any nonnegative integer m, X,, is called
the set of m-ary operational symbols. It is said that the rank or arity of a symbol
6cX is mif o€ZX,. Now let a set ¥ of operational symbols be given. A set R of
nonnegative integers is called the rank-type of X if for any m, X, if and only
if meR. Next we shall work always under a fixed rank-type R.

Let X be a set of operational symbols with rank-type R. Then by a Z-algebra
& we mean a pair consisting of a nonempty set 4 (of elements of &) and a mapping
that assigns to every operational symbol ¢€X an m-ary operation ¢%: A™—+A4,
where the arity of ¢ is m. The operation ¢ is called the realization of o in /. The
mapping ¢—o“ will not be mentioned explicitly, but we write &/=(4, X). The
Z-algebra 7 is finite if A is finite, and it is of finite type if X is finite. By a tree auto-
maton we mean a finite algebra of finite type. We say that the rank-type of a tree
automaton &/=(4, X) is Rif the rank-type of Z is R. Let us denote by Uy the class
of all tree automata with rank-type R.

Now let i be a fixed nonnegative integer, and let

o = (4, Z)eUp, 'le = (Aj, Z"’)EQ[IC G=1,..,k.
Moreover, take a family  of mappings

Vgt (A1 X XA)"XE, ~ 24, mER, 1=j=k.
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It is said that the tree automaton & is the a-product of &; (j=1, ..., k) with
respect to ¥ if the following conditions are satisfied:

W 4= 4,

(2) for any me€R, je{l,...,k},
((all’ ey alk), LA ] (amly veey amk))E(Alx--- XAk)m
the mapping ¥, is independent of elements g,, (1=r=m, j+i=s),

(3) fOI' any meR, 0'62",, ((alls sy alk)s L] (am1’ LS ] amk))e(Alx"'XAk)m,

ad((alla ceey alk)’ (33} (aml’ bR ] amk)) = (afl(all, [AR3) aml)’ sy dek(alka neey amk)):

where

Gy = ="hmj((all’ ceey alk)’ LA (amla eees amk), 5\ (J’ =1.., k)

For the above product we shall use the notation ]] ; (2 ¥) and sometimes
we shall write only those variables of ¥m; on which |,b,,, j depends

Finally, we shall denote by [Vn] the largest integer less than or equal to Vn

2. Completeness

Let i be a fixed nonnegative integer and BE ;. B is called isomorphically
complete for Ax with respect. to the a-product if any tree automaton from Ay
can be embedded isomorphically into an o;-product of tree automata from 9B.
Furthermore, B is called minimal isomorphically complete system if B is isomor-
phically complete and for arbitrary &€ B, B\ {«/} is not isomorphically complete.

For any natural number n>0 let us denote by %,=({0, ...,n—1}, 6") the
tree automaton where for every m-ary operation ¢: {0, ..., n— 1}"'—»{0 L n—1}
there exists exactly one ¢€8% with o%=p provided that meR

The following statement is obvious.

Lemma. If o/, Uy (j=1,2,3) and &; can be embedded isomorphically into
and a-product of .sz! /;+1 With a smgle factor (j=1,2) then &4 can be embedded
isomorphically into an arproduct of «f; with a single factor.

First we consider the special case R={0}. Then the following statement is
obvious.

Theorem 1. BE A, is isomorphically complete for W, with respect to the
arproduct if and only if there exists an /€% such that &, can be embedded iso-
morphically into an a;-product of & with a single factor.

Now let us suppose R#={0}. Then the results of completeness is based on
the following Theorem.

Theorem 2. If the tree automaton 4, (n=1) can be embedded isomorphically
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into an a;product ]] s£;(6", ¥) of the tree automata ;€W (=1, ...,k) then
.%[ can be embedded isomorphically into an a;-product of «/; with a smgle factor
for some J€{l, ..., k}, where i*=i if i>0 and i*=1 else.

Proof. If k=1 then the statement is obvious. Now let k>1 Assume that
2%, can be embedded isomorphically into the a;-procut o= j]] ;(0",¥) and let

u denote a suitable isomorphism. Let p(2)=(ay, ..., ag) (= —~1). We may
suppose that there exist natural numbers u=p (O<u, v=n— 1) such that a,7#a,,
since otherwise %, can be embedded isomorphically into an eapproduct of &
(j=2, ..., k). Now assume that there exist natural numbers ps=q (0S D, q=n— 15

with a,=a, (s=1, ...,i%). For any t (0=t=n-1) let us denote by a,, the m-ary
operation of 4, for whlch 620, ...: 0,p)=t and o630, ...,0,9)=g, for some
mER. Such operations exist since Rs~{0}. Then for any tE {0, ey B—

(@ns s 80) = () = p(opr(0; .., 0, p) = o3 0), ..., u(0), u(p)) =
= (af"(am, cees Go1s Gp1)s 0¥ (ags, .., Aoz, ay2); e o7 (agy, +.» Aoz au)
holds, and so a,1=a'i°’ Y(@g15 -+e» Gp1> @) Where /
01 = Vm((Gors > Aa)s o5 (@ors +oes Q)5 (@15 oo Apa), O ) =
= Y1 (@o1s ++0r Qoixs Aprs ooy Apit, Op) A >0
and 0,=V,,(o,) if i=0. In the same way we obtain the equality

_of
a = 01 (@15 ---» Aors aql)
where

61 = ll/ml(a(n, coey aOit, aql, cevy aqit, apt) ].f i> 0

01=Ymoy) if i=0.

Since a,=a, (s=1,...,i*) we obtain that ¢,=&; which implies the equality
ay=an for any € {0 ..,n—1}. This contradicts our assumption a,>a,;, there-
fore the elements (a,, ..., ay) (0=t=n—1) are pairwise different: Now we shall
show that in this case %, can be embedded isomorphically into an «;-product

and

-
o= [] ;(0", ¢). Indeed, let us define the family ¢ of mappings as follows: for
j=1

any meR, je{l, ...,i*}, (@, ..., a}), ..., (@, ..., ab))E ]]A,, c€0" elements
(1) if i=0 then
':bmj((aull’ see au,k)a Rhs (aumla B au,,.k)s 0')
if there exist u, ..., #,€{0, ..., n— 1}
Pmi((als ... ab), ..., (ak, ..., aby), 0) =9such that af = a,,,,(t =1,..i%s=1,..,m),
arbitrary operational symbol from
) otherwise,

2.
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(2) if i=0 then ¢,;(6)=y,;(0).

It is clear that ¢,,; is well defined. On the other hand, it is easy to see that
the mapping v(t)=(ay, ..., ap») (=0, ..., n—1) is an isomorphism of 4, into .
Using this isomorphism v we prove that &?[,, /7] ¢an be embedded isomorphically

into an «-product of & with a single factor for some j€{l,...,i*}. If i=0 or
i=1 then this statement obviously holds. Now assume that i>1. Since the elements
@g, ...s @) (2=0,...,n—1) are pairwise different, there exists an s€{l, ..., i*}
such that the number of pairwise different elements among ay, ayg, ..., @,_,, iS
greater than or equal to v=["}n]. Without loos of generality we may assume that
s, ... Ay_q, are pairwise different elements of «7,. For any m€ R, ¢€6?, let us denote
by & an operational symbol from 6}, for which 6%y, ,—yymy=0%. Now let us
define the a-product #,(8°%, ) as follows: for any m¢R, 6€03, (@, ..., a,, )EA™

((pms((auxl’ LR auli*)’ (RS ] (au,,.la cees aumi‘)’ 6) if
Pm(@yss s Ay, 5,0) =10=u, =010 =1,...,m),
arbitrary operational symbol from X%, otherwise.

It can be easily see that the correspondence v': t-a,, (t=0,...,v—1) is an iso-
morphism of &, into &, (6°, $), which completes the proof of Theorem 2.

Theorem 3. BC A, is isomorphically complete for W with respect to the
ag-product if and only if for any natural number n>1 there exists an €3B such
that 4, can be embedded isomorphically into an «,-product of &/ with a single
factor.

Proof. The necessity follows from Theorem 2. To prove the sufficiency let us
observe that any tree automaton /€W, with |4|=n can be embedded isomor-
phically into an «,-product of %, with a single factor. From this fact, by our Lemma,
we obtain the completeness of B.

Now let i>0 be a fixed nonnegative integer, Then in a similar way as above
we obtain the following result.

Theorem 4. BE A, is isomorphically complete for A with respect to the
arproduct if and only if for any natural number n>1 there exists an /€8 such
that %, can be embedded isomorphically into an «;-product of & with a single
factor.

Since an a;product with a single factor is an «,-product with a single factor,
by Theorem 4, we get the next corollary.

Corollary 1. BC A, is isomorphically complete for W, with respect to the
oy -product if and only if B is isomorphically complete for € with respect to the
o-product.

Now let i be a nonnegative integer. Then we have the following result for the
minimal isomorphically complete systems in the case R {0}.

Theorem 5. There exists no system 8BS A which is isomorphically complete
for A with respect to the a;product and minimal.
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Proof. Let BS Ui be isomorphically complete for A, with respect to the
aproduct. Moreover, let /€38 with |4A]=n. It is obvious that &/ can be embedded
isomorphically into an a;-product of %, with a single factor if s=n. Take a natural
number s=>n. By Theorem 3 and Theorem 4, there exists an &/¢®B such that
2, can be embedded isomorphically into an eo;-product of & with a single factor.
Therefore, by our Lemma, & can be embedded isomorphically into an a;-product
of of with a single factor. From this it follows that B\ {«/} is isomorphically
complete for A, with respect to the a;-product, showing that B is not minimal.

3. The hierarchy of «;-products

Let R:={0} be a fixed rank-type. Take a nonempty set M S g, and let i
be an arbitrary nonnegative integer. Let o;(}) denote the class of all tree auto-
mata from Wy which can be embedded isomorphically into an a;-product of tree
automata from M. It is said that the a-product is isomorphically more general
than the «;-product if for any set M S Uy the relation o;(M)ESa;(M) holds
and there exists at least one set MS C A, such that a;(M) is a proper subclass of

o;(M). This notion was introduced in [2].

As far as the hierarchy of the o;products is concerned, we have the following

Theorem.

Theorem 6. For any i, j (i, j€ {0, 1, ...}) the a;-product is isomorphically more
general than the «; product if j<i.

Proof. We shall prove that the o;-product is isomorphically more general than

the o,-product and the o;,,-product is isomorphically more general than the
a-product if i=1.

First let M= {sf,}, where Z,=({l,2}, U {Gm> 6me)) and the operations of

o, are defined as follows: for any O0=m, mER (@15 ... an)e{1, 2}
o, 1 i a,=2,
Omi (al’ ceey am) - {2 if am — 1,
a,","';g’(al, cves Apy) = Gy,
and o5 = 1, ogst = 2 if OCR.

Now let us denote by o£=({1, 2,3}, ) the tree automaton where for any
0#mER 6€Z,, (4y; ..., a,)€{1,2, 3}

and 6% =1 if 0€R and G€Z}.

It is easy to see that o do(M) and Z€a,(M) which yields the required
inclusion ay(M)Coy (M).
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Now let i=1 and M={%,}. Then, by the proof of Theorem 2, we obtain
that By+1§;(M). On the other hand, we shall show that Z.i+:€a;,,(M) which
yields the required inclusion o;(M)cCe;,,(M): To prove the above statement it
is enough to show that Bu€a (M) if i>1. Indeed, let us take the aproduct

A= H @2(62 ) where the family ¢ of mappings is defined as follows: for any
i=
0=m, aEG
if
a1 i i i : @
o (J a2 ., 2 a2 ) =w=a,2"" and G *(ayj, ..., Am) = Gy,
=1 t=1 =1
then

((au, LRE] ali)’ cres (amb eeey amg))E({O, l}l)m

VUni((@115 o5 31y ooy (@mas -5 Q) 0) = 6.

o »

II] the case 0'6831 iI g :— Za,, 2'—' dna O_Q_= Vj Lhell q[m.,(a')___

It is easy to see that .%z can be embedded isomorphically into & under
the 1somorph15m u defined as follows: if w= Z’a,Z"' then pw)=(a,, ..., a;)
w=0,...,2'=1).

4. A decidability result

In this section we show that it is decidable if an algebra can be represented
isomorphically by an a;-product of algebras from a given finite set,

Theorem 7. For any nonnegative integer i, /€W and finite set MCS U,
it can be decided whether or not /€a;(M).

Proof. Let us suppose that o/ with A={a,, ...,q;} can be embedded iso-
morphically into an ayproduct #= .]] o;(Z, ) of tree automata from M. Let

V=max {|4,|: #€M} andlet (a,, ..., a,,_,,) denote the image of a, under a suitable
isomorphism u (u= 1,...,k). We define an equivalence relation z on the set of
indices of the a-product & as follows: for any /, n (1=/, n=5), Ian holds if and
only if o=/, and a,=a,, for all t=1, .., k.

It is easy to see that the partition corresponding to = has at most |M|.V*
blocks. Since u(A) is a subalgebra of 4, if a,=a,, (¢=1, ..., k) then the J-th and
n-th components of u(o(al, ..., a™)are equal, where m¢ R, oE Z.,alcd(j=1, ..., m).
F-om this it follows that .g! can be embedded isomorphically into an a;-product
ot tree automata from M with at most |[M|-V* factors.
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