
On a problem of Ádám concerning precodes assigned 
to finite Moore automata 

MASASHI KATSURA 

To investigate the structure of finite Moore automata, the concepts of code, 
precode and complexity are introduced by Ádám [1] and investigated in [1—8]. 
Main motivation is the following. 

Basic Problem [1]. For arbitrary finite X, let a constructive description of 
all reduced finite Moore automata, whose input set equals to X, be given. 

Relating to this problem Ádám raised four open problems, one of which is the 
following. 

Problem 3 [1]. Consider all pairs (D, D') of precodes with finite com-
plexity such that D<D' holds. Either determine the maximal value of fi (£>')— 
— Q(D) (as a function of the cardinality of input set) or prove that the set of 
these differences is unbounded. 

In autonomous case, this problem is solved in [8]. The answer is that the difference 
is unbounded. However, we show in [8] that the quotient Q(D')jfí(D) 

(D < D', Q(D) * 0, £2(2)') < 

is bounded by 2. In this note, it is shown that, in multiple-input case, not only the 
difference but also the quotient is unbounded. 

For the background and fundamental facts concerning codes, precodes and 
complexity, see [1] and [2]. 

1. 

N and N0 mean the sets of positive integers and of nonnegative integers, respec-
tively. For t, &€N0, we denote [í:A:]=(i€N0|í^i'sfe). For n, m£N, we write 
X(n)=(xi,..., x„y and I'(m)=(>'1 ym). A partial automaton is a 5-tuple 
A=([1: v], XM, Y(m), <5, A) where: 

(1) v, n and m are positive integers. [1 :i>], X(n) and Y(m) are called the state set, 
the input set and the output set of A, respectively. 
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(2) 5 is a partial mapping of [1 rwlXA ,̂,) into [1 :v] called a state transition func-
tion (5 is extended as usual to a partial mapping of [1: v]X(A'(n))* into [1:«]). 

(3) X is a mapping of [1 :o] onto F(m) called an output function. 
(4) For any a£[l:v] there exists a p£X* such that 5{\,p)=a. 

If 5 is defined for any element of [1: u]X X(n), then A is said to be an (initially 
connected finite) Moore automaton. 

Let A=([l:v], XM, Y(m), S, X) be a Moore automaton. If X (a, p)) ^ X (S (b, p)) 
holds for a, ¿€[1:»] and pkx*, then we say that p distinguishes between a and b. 
co(a, b) is the minimal length of p which distinguishes between a and b. If there 
is no word which distinguishes between a and b, then we denote to (a, b)= <=°. Espe-
cially, a=b implies co(a, b)= The complexity Q(A) of A is defined by 

£2(A) = min(co(a, b)\a, b£[l:v],a ^ b). 

If v=l then £2(A)=0. 
The notions of codes and precoaes were introduced in [1] as tools to describe 

Moore automata constructively. The following definition is from [6, 7]. It is of 
course essentially equivalent to Ad&m's definition in [1]. 

Let w£N. A 6-tuple D—(r, s, ft, y, <p, n) is said to be an n-input precode if 
the following eight postulates are fulfilled: 

(A) r, s are nonnegative integers. 
(B) P and <p are mappings of [2:r+s+l] into [1 :r+1]. 

y is a mapping of [ 2 : r + j + l ] into [1:«]. 
p. is a mapping of [ l : r + l ] into N. 

(C) P(a)<a for any ai[2:r+Y], 
(D) For: a,b£[2:r+l], if a<b then (P(a),y(a))^(P(b),y(b)) in the lexicographic 

order. 
(E) For a£[r+2:r+s+1], (0(a), y(a)) is the lexicographically smallest element in 

([l:r+l]X[l:n])-<(/i(6),y(i)) |6€[2:fl-l]>. 
(F) For a€[2:r+l] , (p{a)=a. 
(G) For o € [ r + 2 : r + j + l ] , (p(a)=\ or (<?(«))> y{cp(a)))<(P(a), y(a)) in the lexi-

cographic order. 
(H) ^(f l )6<l)U0i(b)+l |b6[ l :a- l ]>. 

We denote /i(D)=max (//(a)la€[l :r+1]). If m=fi(D) then D is said to be an 
m-output precode. 

It can be easily be seen that 1) i.e., s^nr+n—r. If s=nr+n—r, 
then the precode is said to be a code. 

Let D=(r,s,fi,y,(p,p) and D'=(r', s', y', cp', / / ) be «-input precodes. If 
r+s^r'+s' and /?', y', (p\ p.' are extensions of ¡¡, y, cp, p. then we denote D S D ' . 
We denote D<Z>' if D^D' and r+s^r'+s'. If D < D ' and r ' + i ' = r + J + l 
then we write D<D'. 

It can easily be seen that, for any precode D, there exists a code C such that 
D^C. 

Let D= (r, s, P, y, <p, fi) be an n-input m-output precode. Define a partial 
mapping SD of [ l : r+l]XA( n ) into [ l : r + l ] by 

$D{P(a)> Xy{a)) = <p(fl) for any a e [ 2 : r + s + l ] . 
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Define a mapping XD of [ l : r + l ] onto Y(m) by 

¿D( a) = y^a) for any a€ [ l : r + l]. 
Then it is easy to verify that f (D)=([l :r+1], XM, Y(m), SD, 1D) is a partial auto-
maton. f (£>) is an automaton iff D is a code. 

The complexity Q(D) of a precode D is defined by 

Q(D) = min ^ ( ^ ( C ) ) ^ is a code such that D s C>. 

2. 

Let n, w, t be positive integers such that n S 2 and wS2. Define an n-input 
precode D—(r, s, f j , y, q>, ¡i) as follows: 

(1) r = 4t+4w—2 and s = nr+n—r — 1. 

(2) (fl(2b),y(2b),cp{2b)) = (b,\,2b) and (p(2b + l),y(2b+l), <p(2b + l)) = 

= (b,n, 26 + 1) for any be[l:2t+2w~l], 

(3) v(a) = a for any a £ [ l : 3 i + 3 w - l ] . 

n(a) = a — w — t for any a£[3i+3w:4i+4w — 1]. 

(4) For each a£[r+2:r+s+1], the a-th row is determined as follows: 

(a) p(a), y(a) are determined uniquely by Postulate (E). 

(b) If /? (a)€[2i+2w:3i+3w-2]U[3/+3w:4i+4w-2] and y(a) = 1 then 

q>(a) = a + l. 

If (jS(a),y(a)) = ( 3 / + 3 w - l , 1) then <p(a) = 2t+2w. 

If (0(a), y(a)) = (4i+4w — 1, 1) then <p(a) = 3i+3w. 

(c) If /?(a)£[2i+2w:3i+2w — 1] and y(a) = n then <p(a) =3t+ 

+ 3w —1. 

If J?(a)£[3i+3w:4i+3w-2] and y(a) = n then (p(a) = 4t+ 

+4w —1. 

(d) Otherwise, <p(a)— 1. 

It is easy to verify that D satisfies Postulates (A)—(H). 

The state transition function and the output function of the partial automa-
ton !P(D)=([1:4/+4H'— 1], Xw, Y(m), SD, XD) is shown in the following table: 
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a 8D{a, xx) Srfja, xj) SD(a, x„) >•»(0) ( /€[2: n - 1 ] ) 
SD(a, x„) >•»(0) 

1 2 1 3 1 
2 4 1 5 2 
3 6 1 7 3 

2 / + 2 W - 2 4/ + 4w —4 i 4 / + 4 W - 3 2 / + 2 w - 2 
2 / + 2 w - l 4 / + 4 w - 2 1 4/+4h> —1 2/+2w— 1 

2t+2w 2/+2n>+l 1 3 / + 3 W - 1 2t+2w 
2t+2w+\ 2/+2h>+2 1 3 / + 3 w - l 2t+2w+ 1 

3t+2w—2 3/+2H> — 1 i 3/ + 3h> —1 3 /+2w —2 
3/+2H> —1 3/+2w 1 3/+3h>-1 3 /+2w —1 

3i+2w 3 f + 2 w + 1 1 1 3t+2w 
3 / + 2 w + l 3 / + 2 w + 2 1 1 3t+2w+1 

3/ + 2 w - 2 3/+3w —1 i i 3 / + 3 w - 2 
3 /+3w —1 2t+2w 1 1 3/+3H—1 

3 /+3w 3/+3M>+1 1 4/+4>v —1 2t+2w 
3/ + 3 w + l 3 i + 3 w + 2 1 4/+4w —1 2t+2w + l 

4 / + 3 w - 2 4 / + 3 w - l i 4 /+4w —1 3t+2w-2 
4 / + 3 w - l 4f+3h> 1 1 3t+2w-l 

4 /+3w 4* + 3M>+1 1 1 3t+2w 
4/+3W+1 4/+3w>+2 1 1 3 /+2w + l 

4 i + 4 w - 2 4 / + 4 w - l i i 3 /+3w—2 
4/ + 4H> — 1 3t+3w 1 — 3 / + 3 w - l 

Let D'= (r, 1, fi, y, q>, fx) be a precode such that D<D'. Then D' is a code, 
i.e., T(D') is a Moore automaton. We have (p(r+s+ 2), y ( r + 5+ 2) )= (4 / + 4w-1 , n) 
and D' is determined only by the value <p(r+s+2). It can easily be seen that arbi-
trary choice of <p(r+j+2)€[l:4w+4i— 1] makes D' to satisfy the postulates for 
codes. We shall show that <p(r+J+2)^l implies Q(D')=w, and <p(r+.y+2)= 1 
implies Q{D')=t+w. 

Case I: (p(r+s+2)^1, i.e., <5D.(4f+4w-l, 
Let a, &£[l:4f+4w—1] such that a<b. We have co(a, iff XD,(a)= 

= XD'(b) iS a=2t+2w+i,b=3t+3w+ifor some i ' e [0 : i+w- l ] . Let i € [ 0 : i + w - l ] . 
Since 

XD.(2t+2w+i) = XD.(3t+3w + i), 

SD.(2t+2w+i, Xj) = V ( 3 ' + 3 w + i , X ]) for any je[2:n-l], 
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we have 
<o(2t+2w+i, 3 i+3w+i) = 

= min (co(dD. (2t+2w+i, Xl), SD,(3f+3w + i, x j ) +1, 

co(5D>(2t+2w + i, xn), 6D.(3t+3w+i, xn))+l). 

Thus we have 

a>(3t+2w — l, 4f+3w —1) = 

= min(co(3i+2w, 4t+3w) + l, G)(3i+3w— 1, 1) + 1 ) = 1. 

co(3i-|-3w —1, 4i+4w —1) = 

= min(e>(2i+2w, 3i+3w) + l, co( 1, 5 D , ( 4 /+4w- l , x„))+l> = 1. 

For i£[0:i—2], 

ct)(2i+2w+i, 3/+3w + i) = 

= min<oj(2i+2w+i + l, 3f+3w + i + l ) + l , co(3 i+3w- l , 4 i + 4 w - l ) + l > = 2. 

For i£[0:w—2], 
fi)(3i+2w + i, 4/+3w + i) = co(3t+2w + i+l, 4 i + 3 w + i +1 )+1 . 

Hence, 

co(3i+3w-2, 4i+4w—2) = 2, 

co(3i+3w-3,4i+4w—3) = 3, 

co(3i+2w, 4i+3w) = w. 

Consequently, i2(X>')=rnax <0, 1, 2, ..., w)=w. 

Case 2: (p(r+s+ 2)=\, i.e., ¿ D . ( 4 i + 4 w - l , x„)=l . 

Let a, ¿€[1:4i+4w— 1] such that a<b. Just as in Case 1, we have 

(o(a,b)r± 0 iff a = 2t+2w+i, b = 3t+3w+i for some i e [ 0 : i + w - l ] . 

co(3t+2w — l, 4t+3w-l) = min(a)(3i+2w, 4i+3w) + l, eo(3i+2w-l , 1)+1> = 1. 

co(3t+2w+i, 4i-f 3w-H) = <B(3i+2w + i+1 , 4/ + 3w-f i + 1 ) + 1 for any ¿6[0:w-2]. 
We have 

co(3i+3w —1,4i-f 4w —1) = 0)(2t+2w, 3 i+3w)+ l . 

For /e[0:i—2], 

co(2t+2w+i, 3 i+3w+i) = 

= min(ft)(2i+2w-f i +1, 3i+3w + i + l ) + l , ( » ( 3 i + 3 w - l , 4 / + 4 w - l ) + l ) = 

= min(ca(2i+2w + i-f 1, 3i+3w + i + l ) + l , <o(2t+2w, 3i+3w)+2>. 
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It follows that 

<a(3/+2w —1, 4 / + 3 w - l ) = 1, 

cű(3Í+2W-2, 4 / + 3 w - 2 ) = 2, 

cű(3/+2W—3, 4/+3w —3) = 3, 

£ö(2/+2W, 3í+3w) = 

(ü(3í+3w —1, 4í+4w — 1) = t+1, 

co(3t+3w—2, 4 / + 4 w - 2 ) = t+2, 

co(3/+2w, 4<+3w) = t+w. 

Consequently, Í2(i)')=max <0, 1, 2, ..., í + w ) = f + w . 
We have shown that q>(r+s+ 2 ) ^ 1 implies Q(D')=w and q>(r+s+2)= i 

implies Q(D')=w+t. It follows that Í2(Z))= min (w, w+/)=vv. We have shown 
the following. 

Theorem 1. For any n, w, with n^2 and there exist /l-input pre-
codes D and D' such that D<D', Q{D)=w and Q(D')=t+w. • 

In autonomous case, Problem 3 of Ádám is solved in [8] as follows: 

Proposition 1. The set 

(QiD^-QiD^D and D' are 1-input precodes such that D<D' and Í2(Z)')<°°> 

coincides with all nonnegative integers. • 

In multiple-input case, we have the following similar result which is an immediate 
consequence of Theorem 1. 

Corollary 1. For any w£N with ws2, the set 

(Q(D')-Q(D)\D and D' are «-input precodes such that D<D' and fí(D')<«>) 

coincides with all nonnegative integers. • 

Consider the quotient Q(D')/Q(D) instead of the difference Q(D')-Q(D). 
In autonomous case, we have the following result [8]. 

Proposition 2. The set 

(Q(DyQ(D)\D and D' are 1-input precodes such that D<D\ and 

fl(Z>')<00) 

coincides with all rational numbers between 1 and 2. • 

Though the quotient is bounded in autonomous case, it is unbounded in multi-
ple-input case. The following is also immediate from Theorem 1. 
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Corollary 2. For any n£N with n s 2 , the set 

(Q(D')/Q(D)\D and D' are n-input precodes such that D<D', 0 and 

0(2)0^ °°> 
coincides with all rational numbers not less than 1. • 

Contrary to expectation, the solution of the problem does not contribute to 
our investigation, especially to the Basic Problem. If we wish to proceed further in 
this line, we should make refinements of the problem, e.g., not only n but also r, s 
and/or m should be taken into account. 

3. 

In this section, we consider a modification of our problem in the sense that, 
instead of the cardinality n of the input set, the cardinality m of the output set is 
taken into account. Analogous to Theorem 1, we have the following result: 

Theorem 2. For any m, w, N with m S 2 and there exist m-output 
precodes D and D' such that D<D', Q(D)=w, Q(D')=t+w. 

Proof. Define a (2i+2w)-input precode D=(r, s, /?, y, cp, /i) as follows: 

(1) r = 2t+2w+m-2 and s = ( 2 i + 2 w ) r + ( 2 i + 2 w ) - r - l . 

(2) (P(a), y(a), <p(a)) = (a — 1, 1, a) for any a€[2:m- l ] , 

(3) (j?(a), y(a), (p(a)) = (m —1, a —m + 1, a) for any ai[m:2t+2w+m-l]. 

(4) fi(a) = a for any a£[l:m — 1]. 

n(a) = m for any a^[m:2t+2w + m — 1]. 

(5) For each a£[r->c2, r + j + 1 ] , the a-th row is determined as follows: 

(a) (1(a), y(a) are determined uniquely by Postulate (E). 

(b) If /? (a) £ [m: /+w + m—2] U [f + w+m: 2i + 2w + 7M — 2] and 

y(a) = 1 then (p(a) = a +1. 

If (P(a), y(a)) = (i+w + m - 1 , 1) then cp(a) = m. 

If (/?(a),y(a)) = ( 2 i + 2 w + m - l , 1) then cp(a) = t+w+m. 

(c) If J5(fl)-(m-2) = y(a)€[2:/+w + l] then <p(a) = p(a). 

If P(a)—(t+w+m—2) = y(a)6[2: /+w+l] then q>(a) = P(a). 

(d) If P(a)£[m:t+m — l] and y(a) = 2t+2w then (p(a) = t+w 

+ m-1. 

If P(a)£[t+w+m:2t+w+m—2] and y(a) = 2t+2w then 

<p(a) = 2 i + 2 w + m - 1 . 
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(e) Otherwise, <p(a)= 1. 
Let D'=(r, 1, P, y, q>, //) be a precode such that D<D'. Let 

a, ¿>6[1:2f+2w+m— 1] 

such that If a£[l :m— 1] then and thus co(a,b)=0. If 
a€[/H:2/+2M>+m-l] then there exist /,./£[0: i + w - 1 ] such that 

a = m + i or a = f + w + m + i, 

b = m + j or b = t+w+m+j. 

If jV j then AD.(a)=wj=Afl.(t) and 

XD,(8D.(a, xi+2)) = Aj>,(a) = m ^ 1 = XD.(\) = XD'(8D.(b, x1+2)). 

Hence (o(a,b)= 1. Consequently co(a,b)^2 implies that a=m+i and b=t+ 
+w+m+i. 

Similarly as in Theorem 1, we have, for any i£[0:f+H>— 1], 

co(m + i, /+w+m + i) -

= min <co(5d,(m + i, x j , dD.(t+w+m + i, Xl)) +1, 

co(SD.(m+i, xn), dD.(t+w+m+i, * n ) )+l ) . 

Since 8jy(t+m~ \,x2t+Zv)=t+w+m— 1 and 8iy(t+w+m— 1, x2i+2w)= 1> we have 
co(i+/M—1, t+w+m— 1)= 1. In a similar way as in Theorem 1, we can verify the 
following: 

If <p(r+s+2) 1 then i2(D0 = co(/+m, 2t+w+m) = w. 

If <p(r+s+2) = l then Q(D') = co(t+m, 2t+w + m) — t+w. • 

The followings results are immediate from the above theorem. 

Corollary 3. For any with mS2, the set 

(Q(DR)—Q(D)\D andD' are m-output precodes such tha tDxD' and i2(ZX)< «,) 

coincides with all nonnegative integers. • 

Corollary 4. For any m£N with m£2, the set 

{Q(DR)JQ(D)\D and D' are m-output precodes such that D<D', Q(D)^0 and 

coincides with all rational numbers not less than 1. • 
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