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Introduction

Let S={9%, DR, N DR, LNDR, #, LH, NH} where DX is the class
of all deterministic root-to-frontier tree transformations, 4 is the class of all homo-
morphism tree transformations, moreover, for both 92 and ##, their linear, non-
deleting and linear-nondeleting subclasses are denoted by prefixing them by .2, A~
and LA, respectively. Let [S] be the set of classes of tree transformations gen-
erated by S with composition o: [S]={Xjo...ofjn=1, H€S, 1=i=n}. The set
[S] was introduced and examined in [1] where several equalities and inclusions were
obtained with respect to elements of [S]. However, the question that whether [S]
is a finite or an infinite set was only raised and not answered.

In Section 2 of this paper we show that, in fact, [S] is infinite by proving that
(LN DRoN Y (LN DRoNH)"+1 for each m=]1. This infinite proper hier-
archy was already suggested by Theorem 12 of [1]. '

It is well known that A#'22 is closed under composition (proof, for example,
in [1]). Thus we have (LA DRo N H)Y" N DR for each m=1. In the second half

of Section 2 we show that the stronger proper inclusion |J (£ A PR o N H)"C
m=1

CH' DR is also valid.
The paper, apart from some simple reference to [1], is self-containing. Both
in [1] and this paper, most of the notions and notations are adopted from [2].

1. Notions and notations

For an arbitrary set ¥, we denote by Y * the free monoid generated by Y, with
empty word A. The prefix ordering = in ¥* is meant as usual: for any «, f€Y*,
a=p if and only if « is a prefix of B, that is, there exists a y€Y* such that f=ay.
The relation a<p is defined by a=pf and o=p.
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The set of nonnegative integers is denoted by N. For each nEN, [n] denotes
the set {1, ...,n}. Thus [0]=0.

By a ranked alphabet we mean an ordered pair (F,v) where F is a finite set
and v: F—N is the arity function. Elements of F are called function symbols,
more exactly, if f€F and v(f)=n then fis an n-ary function symbol. For any
nEN we put F,={f€F|v(f)=n}. Hence, for any ranked alphabet (F,v), we
have the equivalent notation F= |j F,, where F, are pairwise disjoint finite sets.

neEN
Let F=|J F, be a ranked alphabet and Y be a set, disjoint with F. Then
nEN
the set of all terms or trees over Y of type F is defined as the smallest set T:(Y)
satisfying:

(@) YSTp(Y) and

®) f(p1, ..., P)ETE(Y) whenever f¢F, and py, ..., p,€Tp(Y).

For f() we write /. If Y=0 then Tp(Y) is written as T¢.

We shall need a few of the usual functions on the elements of T(¥): for any
pETe(Y) the frontier fr(p)€Y*, the set of subtrees or subierms sub (p)& T(Y),
the paths path (p) EN* and for each m¢N the m-rank m,, (p)€N of p are defined
by induction as follows:

(@ if peY then
fr(p)=p, sub(p)={p} path(p)={}) and m,(p)=0

) if p=f(ps,...,p,) forsome neEN, feF, and p,,...,p,€Te(Y)then
fr(p) = fr () .. fr (p),
sub(p) = (U sub(p))U{p},

path (p) = {A}U {iali€[n], acpath (p,)} and

2 m,(p) if n#m .

_ Jiem
mn(p) = 1+ > m,(p) if n=m.
i€n]

We mention that rn,, (p) means the number of occurrences of the m-ary function
symbols in p. Moreover we define m (p)= 2’ o, (p).

Now let p€Tp(Y) and acpath (p). We introduce the notion of the subtree
str (p, @) and the symbol lab (p, @) of p determined by a, moreover, the two length
l¢lg of a in p in the following way:

(a) if p€Y then

str(p,0) =p, lab(p,0) =p and |af, = 0;

) if p=f(p1,...,p,) for some néEN, f€F, and p,,...,p,€Tr(Y) then «

is either A or of the form ia’ for some i€[n] and o'€path(p;). Thus

3.
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we define
_Jr if a=2
str (p, @) = {str (pi,o) if a=id,
' _[f if a=24
1ab(p, @) = {lab (g @) if o= id,
0 if a=1 and n<2,
(o], = 1 if a=1 and nx=2,
27 Nole if a=i0’ and n<2,

1+, if a=ia’ and n=2.

We note that in this latter definition [a’[, is meant in p,, We mention what the
above three functions informally mean. It is well known that p can be considered
as an ordered tree labelled by elements of FUY, moreover « can be thought of as a
path leading from the root to a node x of p. Now, str(p, ) is the subtree of p
the root of which is x, lab (p, &) is the symbol in FUY x is labelled by, finally
|of is the number of the occurrences of function symbols with arity m=2 along
the path a. We also note that o may be in path (g) for some g=p and |a}, in p
may differ from |a,] in g. However it will always be clear from the context in what
p la]y is meant.

The countably infinite set X={x;, x,, ...} of variable symbols will be kept
fix throughout this paper. The set of the first m elements x, ..., x,, of X is denoted
by X,,. The set T¢(X,,) will be written as T, ,.

T, is the linear-nondeleting subset of Tg,,: for p€Tg n, p€Ts  iff each
x; appears exactly once in p (i€[m]).

For p, g€Ty,, and i€[m], by thei product p-,g of p by ¢ we mean the tree
obtained from p by substituting each occurrence of x; in p by g¢.

Let peTg,,, and y4, ..., y,€Y. We denote by p(yy, ..., y,,) the tree obtained
from p by substituting each occurrence of x; in p by y; for each i€[m]. Of course we
have p(yla ’ym)eTF(Y)

We introduce one more definition concerning T%,,. For p€Ty, and i€[m],
the set of i paths path;(p) of p is given as follows:

(a) if p=x; for some je€[m] then
Ay if i=j
path"(”)'{ﬂ i i,
) if p=f(py, ..., p,) for some n=0, f€F, and p,, ..., p,€TF,, then
path; (p) = {jal j€[n], «€path, (p))}.

It is clear that path;(p)Spath(p), moreover path,(p) consists of all the ele-
ments of path (p) leading from the root to a terminal node of p labelled by x;.
A tree transformation 7 is defined as a subset of TpXT; where F and G are
arbitrary ranked alphabets. In this way, 7 can alternatively be considered as a rela-
tion from Ty to T§.
For the sake of convenient proofs, we introduce the concept of the extended
tree transformation. It is a subset 7 of Tp(X)X T¢(X).
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Since (extended) tree transformations are in fact relations, for any (extended)
tree transformations 7 and o, the domain dom 7 and the composition oo of
and ¢ are defined as it is usual for relations. Moreover, for any two classes J¢; and
A, of tree transformations we put:

Aoy = {t107,|1,€4, and 1,€4;} and

= {Ji’i if n=1
Ul if > 1.
We are interested only in tree transformations which can be induced by deter-
ministic root-to-frontier tree transducers.
A deterministic root-to-frontier tree transducer (DR transducer in the sequel)
is a system
' A =(F, A4, G, P,a,) where (¢))]
(a) F and G are ranked alphabets;
(b) A, the state set of U, is a ranked alphabet consisting of l-ary function
symbols, disjoint with F, G and X;
(c) a,, the initial state of 2, is a distinguished element of 4;
(d) P is a finite set of so called rewriting rules (or simply rules) of the form

af (X1, .oy X)) > g @)
' where a€Ad, n=0, fcF, and q€T¢(AX,);
(e) different rules of P have different left-hand sides.

We mention that above and in what follows we use the following notations. If A4
is the state set of a DR transducer and T is a set of terms then AT={a(¢)|ac 4, t€T}.
Moreover, for any a€A and :¢T, a(t) is written as at.

Then it is clear that each rule (2) of P can also be written in both of the fol-
lowing two forms:

af(Xy, ..oy X)) =~ q(arx;s .. AmX;,) 3)
for some m=0, g€y, ,, a;€4 and x;€X, (j€[m]);

af(xla R xn) - q(a11x19 At a.lml X1s eees dn,_xna sers a"m,, xn) (4)

where m;=0, a; €4 (i€[n], j€[m;]) and g¢ TG,,,, (m=my+...+m,).
Next we show how U can be used to rewrite (or transform) terms of Ty to
terms of Tg. To this end, we define the relation = called direct derivation on the

set T(AT(X)) in the following manner: for p, g€ Tg(AT¢(X)), p3> q if and only
if g can be obtained from p by replacing an occurrence of a subtree of the form
af(py, ..., p,) in p by the tree §(a,p;,, ..., a,p;,) and the rule (3) is in P. The reflex-
ve-transitive closure of = is denoted by g» and called derivation. The tree trans-

-formation induced by 2 with the state a€ A is introduced as
' *
tu@ = {(p, D)IPETr, €T and ap= g},
moreover, the tree transformation 1y induced by U is meant Ty,,):

*
= {(p, )Ip€Tr, q€Tc and aop q}-
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Now we define the extended tree transformation induced by «”. To this end,
we need the following concept. Let ¢’€ Tg(AX). We say that g€ T¢(X) belongs
to ¢’ if it satisfies the following conditions:

(a) if ¢'=ax; for some acA4 and i€N then g=x;,

®) if ¢g'=glq1, ..., q,) for some n=0, g€G, and g, ..., ¢.€Tc(AX) then

q=g(q1, ..., 4,) where g; belongs to g; for each j¢[n).
Informally, we say that g belongs to ¢’ if and only if ¢ can be obtained from g” by
substituting each subtree of the form ax; of ¢’ by x;.

The extended tree transformation 74, induced by U with the state a€4 is
given as follows: for any p€Tp(X) and ¢€Ts(X), (p, 9)€1q if and only if
3¢’¢ T¢(AX) such that ap;‘& g’ and ¢ belongs to ¢g’. The extended tree transforma-

tion 4 induced by U is defined as éy,,):

We say that a tree transformation 7 can be induced by some DR transducer
A if t=7a holds.

The tree transformations which can be induced by DR transducers are in
fact partial mappings. This follows from (e) of the definition of the DR transducer.

Next we introduce some restrictions on DR transducers. We say that a DR
transducer (1) is

(a) totally defined if for each a€A and f¢F there is a rule (2) in P;

(b) linear (L) if for each rule (4) of P and i€[n), m=1;

(¢) nondeleting (N) if for each rule (4) of P and i€[n], m=1;

(d) linear-nondeleting (LN) if it is linear and nondeleting;

(e) uniform (U) if for each rule (4) of P and i€[n], a4y=...=ay, .

It is obvious that if a DR transducer (1) is a UDR transducer then each rule
of P can also be written in the form af(x,, ..., x,)~g(a,x;, ..., a,x,) for some
gcTg,, and ay, ..., a,€A. Any LDR transducer is a UDR transducer, too.

A DR transducer (1) is an H transducer if it is totally defined and has only
one state, i.e., A={a,} holds. The LH, NH and LNH subclasses of the class of
H transducers are defined in a naturai way. Each H transducer is a UDR trans-
ducer, by definition.

The class of all tree transformations which can be induced by K transducers
is denoted by 2 where K stands for any of DR, LDR, NDR, LNDR, UDR, H,
LH, NH and LNH.

2. The problems and the solutions

Following[1], let S consist of 24, 3# and their linear, nondeleting and linear non-
deleting subclasses, that is, let S={9%, LDR, N DR, LN DR, K, LK, NH}.
Moreover, define [S] as the set of all the classes of tree transformations which can be
obtained as compositions of elements of S: [S]={Hjo...0HIn=1, H€S, 1=i=n}.

In [1), it was raised the problem that whether [S] is an infinite set. We shall prove
that [S] is infinite by showing that [S] contains an infinite proper hierarchy of classes
of tree transformations. Namely, we prove, in Theorem 3, that (LA DRo N H)"C
C(LN DRoNH)"+! for each m=1.

In connection with this hierarchy one more problem can be raised. By defini-
tion, LN DR and NH# are subclasses of /DR, moreover it is not difficult to
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see that /D2 is closed under composition (a proof is given, e.g., in [1]). These,
together with the infinite proper hierarchy mentioned above yield the proper inclusion
(BN DRoN HY " CN DR for each m=1. In the second half of this section we

show that the proper inclusion U (LN DRONFH) C N DR also holds. Namely,

in Lemma 17; we give an NDR transducer A for which there does not exist m
with ta€(L N DRo N H)™.

We set out to solve the first problem.

First we make a trivial observation on UNDR transducers. Let A=
=(F, A, G, P, a,) be a UNDR transducer and the rule af (x,, ..., x,)~q(a; x1, ..., a,x,)
in P. Then for each j€[n] and y€path;(g) the condition

if n=>1 then |y;=1

holds, since from [y],=0 it would follow that U is a deleting DR transducer. Our
first Lemma is essentially a consequence of this observation.

Lemma 1. Let A=(F, A4, G, P,a,) be a UNDR transducer, moreover, m=0,
PETe 1y 9€T6,, and a€A4 be such that (p, g)€ta. Then
(a) for each j¢[m] and acpath;(p) there exists a fcpath;(q) for which
|el.=Bl> and
(b) for each j€[m] and acpath;(q) there exists a pcpath; (p) with |fl,=
=|af,.

Proof. We prove only the part (a) of our statement since (b), as a converse
of (a), can be shown in a similar way. We follow an induction on p.

If p=x; for some i€[m] then g=x; hence (a) trivially holds.

Now let p=f(ps, ..., p,) for some n=0, fcF, and py, ..., p,.€Tp,,. By our
supposition, there exists a rule af(xy, ..., x,)—~q(a;x;, ..., a,x,) in P and there
are gy, ..., anTG m for Wthh (pu q:)etm(a) (IE[n]) and q= 61(41, ceey qn) Slnce
the case n=0 is again trivial we may suppose that n=1. Then a=ix’ for some
i€[n] and a’€path; (p,).

Let y be an arbitrary element of path, (g), which is not empty since U is non-
deleting, and let p’€path; (g;) be such that |o'|,=|p’|,. Put f=yp. We mention
that B exists because of the induction hypothesis and, obviously, Bé&path; (g).
Now we distinguish the cases n=1 and n>1.

If n=1 then

laly =[]y = |o']s = |]5 = [Ple +1Bls = yB']2 = 1Bl
On the other hand, in the case n=1, by our above note on [y], we have
lolz = tio'ls = 1+1e’ly = [yla+1B'le = 178l = |Bls-
The proof is complete. [J

Now we recall what we mean by the syntactic composition of two DR trans-
ducers. The exact definition can be found in [1].

Let WA,=(F° 4,, FY, P;,a,) and U,=(F, 4,, F? P,,a,) be two arbitrary
DR transducers. Their syntactic composition is the DR transducer W, o U,=
—(F A1 X Ay; F?, P, (ay, a;)) where P is constructed in the following way. When-
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ever bf(xy, ..., X,)~q(byxy,, ..., byx;)) isarule in P, and it holds that ccjg:j:»
9=T>q(c11x1, cer €1, X1 +0s CXms 2 Cm, x,) we put the rule (b, c)f(x, -, x,,)_’.
~q((B1, €1)%15 - (Bys €1, Yty -++> B Cmy) Xis -+ (B €, )%3,.) in P. Tt is well known
that this construction yields the application of U, after A, in a *“step
by step” way. A very useful property of the syntactic composition is the
following: if A, is an NDR transducer then 7g .u,=7y,07a, (for a proof, see
Lemma 3 in [1]).

We shall need the generalisation of the syntactic composition and the above
equality for any m=2. Therefore we make the following definition.

Definition 1. Let m=2 and let U; be a DR transducer for each i€[m)]. By the
syntactic composition of 2, ..., A, we mean the DR transducer defined above if
m=2 and the DR transducer (Wo...0A,,_,)o A, if m=>2.

Then, using Lemma 3 of [1] as a basis, the following statement can be verified
by an induction ‘on m: if s, ..., A, are NDR transducers then 7Ty, ..ou, =
=‘Cul0 . .O‘tgm.

The next lemma says that this equality is also valid for extended tree trans-
formations. '

Lemma 2. Let m=2 and let WA,=(F-%, 4,, F}, P;,a;) be a DR transducer
for each i€[m] such that A, ..., A, are NDR transducers. Then 14 ,...00, =
=Tg,0...0T .

Proof. Induction on m. For m=2 it is enough to show that for each n=0,
PETpo,ns € T2, 0, b1€ A, and by€A, the following equivalence holds:

(P, Q)€ Ta 0u, b € Are€Te (P, N€Ta,6p 2nd (1, 9)ETH,0y)-

This can be verified by an induction on p. The detailed proof is omitted.
Finally, the induction step of m is shown by the following computation

’ ’ ’ ’ ’ ’
Tdyo...0%,, = T(Wo...08,_Jod, = Tdo..om, OTy = TgO...0Ty . [
At this point we declare our main theorem.

Theorem 3. For any m=2 and 1=k<m (LN DRo N H)Y (LN DRo NH)",

Proof. Because the complete proof is rather long we structured it in the fol-
lowing way. First we give a tree transformation t,, which is in (& ' @%0 A )™,
Then we present Lemma 4 which concers any 4 2% transducer which induces z,,.
After this we suppose that 7,6(LN DRoN H) for some k=m and, during a
series of lemmas from 5 to 14, show, in Lemma 14, that k<m is impossible.

Take an arbitrary integer m=2 and keep it fixed in the rest of the proof of
this theorem. To define 7,, we introduce an LNDR transducer U« and an NH trans-
ducer B as follows.

Let the LNDR transducer U=(F, {a, d}, F’, P, a) be determined by the fol-
lowing conditions:

(@) F=F,URUF,, F;={%)}, F,={f} and F;={g}; .
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(b) F'=FUFUF;, Fi={#}, F;={f2,f:} and Fg={gs};
(c) P consists of the rules (i)—(vi) listed below
(i) as —~ %
(i) afy(xy, xp)—~f7 (dxy, dxs)
(iil) ags(xy, X2, X3)—~ ga(dxy, ax,, dx,)
C(iv) di—~ #
v) dfy(x1, x9)—fo(dxy, dx)
(i) dgs(xy, x5, X5)~ g5(dxy, dx,, dx;).

Moreover, introduce the NH transducer B=(F’, {b}, F, P’,b) with P’ con-
taining the following rules:

() b#~ #

(i) bfy (x5, X2)— ga(bx,, bxy, bxy)
(iii) bfa(x1, x2)—fa(bx;, bxy)
(iv) bgs(xy, Xa, x3)— g3(bxy, bXs, bxs).

1t is not difficult to see how U and after that B works on a tree p€Tp. First
9, with its state a€ 4, searches for the first occurrence of f; on the path of p leading
along the “middle branches” of a (possibly empty) sequence of g;’s and if it is found
then rewrites it to f; producing a tree p’€Tp.. Any other symbol of p stays as it
was. Then B looks for this f; in p” and duplicates the subtree on the first branch of
/2 by substituting f; by g;. The other symbols of p” remain unchanged.

We put 7,=(tq07g)". Of course, 1,6(FLANDRoN H)".

Now, for each i=1, we define a pair of trees P;, Q;€ T, Tecursively as
follows:

(@) P, =fa(x2,x), Q1 = 8a(x2, X2, X1),
(b) P, =1, (Pi—l(xz’ s Xig1)s xl)’ Qi = ga(Pi—1(x2, cors Xip1)s Qic1 (X5 -0y Xig1),
x) if i=1.

To make it clearer, P, and 0, are visualized in Fig. 1.
Let us introduce the notation 7,,=(t4073)™ By the definitions of U and B,
it can easily be verified that (P,, Q,)€t,, moreover, that for each 1, ..., 1,,,,€T¢

it holds
(Pm(tn voos bt 1)s Oml(trs o tm+1))57m- ®)

Lemma 4. Let 8=(F,C, F, P”, c;) be an NDR transducer with to=1,. Then
we have (P,, Q,)€Te. .
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X,
mi1 Xy Xm+1 Xm Xm+1 Xm Xmi1 Xm Xm+1l Xm Xmsy Xm+1

Xm
fz/xm-x Lo ¥ Zn-1 £l Xn-r fi}f Xe-1f,
&
Xm-1
2V Fmes Lo Fm=2’ L Xm-z folf Xme2
/ /17
A
f/

& O

Figure 1.

Proof. First we note that P,c€dom 7¢ since, among others,
P,(#, ..., #)edom 1, = dom 1
thus (P,, R,) must be in 73 for some R, €Tg i1 It is obvious that R, can be

n, times n,, 4+ times
written in the form R, (X1, ...s X1sec0s X1 +oos Xmsq) fOr some nm=1 (i€[m-+1]),
R,.€ T, where n=n,+...+n,.,. Then it follows that for each t,, ..., #,,.€ Ty the
tree rg(P (t1,---5tm+1)) can be writtenin theform R, (#y,, ... s bmatysenstmes, )
where for each i€[m-+1] and j€[n] (4 t,j)Erg(ci, for some ¢;€C. Using thése
notatlons we have that for each 1, ..., 1,416 Tr

Qm(tl’ cery m+1) - m(tlp veey tlnla RERF] tm+11: seey tm+1,,m+l)°

We shall use this equality under different choices of ¢, ..., ¢,,; in the sequel of

this proof.
Now suppose that Q,#R,. This means that for some a€path(Q,)N

Npath (R,,), 1ab(Q,,, ®)#=lab (R,,, @). Then four different cases are possible, each
of which yields a contradiction:
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(a) lab(Q,,, ®)=f, lab(R,, x)=g for some f, g¢ F such that f>g. But then
f=1ab(Q,, ®)=1ab(Q, (3, ..., #),a)=lab(R,(#,, ..., #1,5 s Fmazgs oo
os Fmas, s a) =lab(R,,a)=g
which is impossible.
(b) 1ab(Q,,, )=x;, lab(R,,, ®)=g for some i€[m+1] and g€F. Now, on
the one hand g= #, by #=1ab(Q,(#, ..., #), ®)=lab(R,(#y,, ..., 1, 5 e
Fmatys oo Fmst, s «)=lab (R,, ®)=g. On the other hand, for any €7}

i— th
t =1ab(Qn(3, ..s by .oy #), ) =
= lab(ﬁm(#ll, veny #1”1’ reey ti1’ reey tn‘, ceey :H:m-i-ll’ cery #m+1"m+1)’ a) =

=lab(R,,a) =g = ¥,
a contradiction.

(c) lab (Q,,, ©)=f, lab (R,,, x)=x; for some SEF and i€[m+1]. Then it can
be seen from the definition of Q,, (see Fig. 1) that in this case str (Q,,, @) contains
at least one x; with j=i whatever i be. But then for any 7€T} it holds that ¢ is a

th
subtree of str (Q,(3, ...J .» %), ). It also holds that

Jj—th
St Qs (35 e by ooy #), ) =
= Str(R_m(#l‘, ey #1" s tjl.’ aaey ""J aey #m+11’ eeey #m+l"m+1)’ a) = 4

for some /¢[n;]. Contradiction since #; does not depend on ¢ chosen arbitrarily.
(d) lab (Q,,, @)=x;, lab (R,, ®)=x; for some i,jc[m+1] such that i) Let
t be an arbitrary element of T with r (t)=0. We have that

j—th
=1ab(Qn(3#, ..n ty ..y #),0) =
= lab (R, (#1,, -+ Fps oo s oes Ly s vovs Fmadgs ooes ity LD @) =t

for some I€[n;], moreover (¢, “)Erg(c ) for some c;€C. But 2 is an NDR trans-
ducer hence rn (;)=0 which is agam impossible. [J

Let k=m and assume that 7,6 (LN DRo N 2#)*. This means in a more detailed
form that for each i€[2k] there exists a DR transducer U;=(F'~%, 4;, F’, P,, a;)
such that the following conditions hold

(a) F*=F*=F,

(b) if i is odd then UA; is an LNDR transducer 6)

{c) if i is even then A; is an NH transducer

(d) 7a,0...0Tq, =Tp.
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Since each ?; is an NDR transducer too, cbmbining Lemmas 2 and 4 we
have that

(P Om)E€T0,0 ...0Ta,, M

or in other words, for each i€[2k] there exists a pair of trees 7;_;€Tpt-1, 41 and
ri€Tr mey for which ry=P,, ry,=0, and (r;_;,r)€tq,. In fact, (7) is the rela-
tion which leads us to a contradiction in Lemma 14.

Lemma 5. For each i€[2k] it holds that rn, (r;—;)=0, that is, r,_; does not
contain any symbol of arity O.

Proof. We observe that if g (r;_,)0 then rn, (r;)#0 since %, is an NDR
transducer. Now if for some i€[2k] rn, (r;_)20 then we obtain that rn, (ry)#0
which, by the definition of ry, is a contradiction. 3

Next we make a remark on the paths of r, and ry; leading to xjs (j€[m+1]).
Namely, we observe that whenever j€[m-+1] and « is an element of either path; (ry)
or path; (ry), by the definition of r, and ry, we have

_fi if jem]
lo‘12—{m if j=m+l. ®

This can easily be read from Figure 1.

Lemma 6. For each i€[2k], jé[m+1] and a€path;(r;~y), |a|; is the same
as in (8).

Proof. By part (a) of Lemma 1, for each a€path;(r;_,) there exists a
pepath; (r) with |a);=]pl.. Hence, if for some i€[2k] je[m+1] and a€path; (r;_,),
|el,=j when jé[m] and |a|,>m when j=m-+1 holds then we obtain that for
some fe€path; (ry), |Ble>j if jé[m] and |Bl;=>m if j=m+1. This, however,
contradicts (8).

In a similar way, using part (b) of Lemma 1, the condition |x|,<j if j€[m]
and |a|,<m if j=m+1 yields the existence of a f€path; (r,) with the same prop-
erty as « has, contradicting again (8). O

Lemma 7. Let i€[2k] and r;{¢Tg(4;X,,4+,) be such that
* 7’
a;Ti-1 ?E Ti.

Suppose that the rule cf(xy, ..., x,)~q(c1 X1, ...;¢,X,) was applied in the above
derivation, where fcF,~! for some n=l, ¢, ¢, ...,c,€4; and g€Ty ,. Then for
each j€[n] and ycpath;(g) it holds

7], = {0 if n=1,
=11 if n>1.
(We mention that r; belongs torf.)

Proof. By the conditions of our lemma, there exist the terms  §;_1€ Tri-1 40,
By woes L€ Tpt-1 s, SE€Tpt mee and Gy, oovs §€ Tht, 1 such that each of the fol-
lowing conditions is satisfied.
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(a) s;_, contains exactly one occurrence of x,,,,,
® rici=Sic1 mee Sty s 1),
(C) = si‘m+2‘1(‘h, sery qn):

d (31—1,51)6741,, (fp‘Ij)ET;J,(c,) (je).

Let us suppose that for some j€[n] and y€path;(q) |yl violates the condi-
tion stated by our lemma. By Lemma 5 and (a) we can choose an /€[m+1] such
that for some a€path;(r;,—) o can be written in the form «=a, ja, where
oy €path,, o (5;_y) and a,€ path, (¢;). Moreover, by Lemma 1, there exist f,€ path,,, ,(5;)
and f.€path;(g;) with |oy[,=[Bil. and |ayo=|Bsl.. Letting B=Pp17B. we obvi-
ously have that S€path, (r).

First consider the case n=1. By our indirect assumption, |y|;=>0, from which
we have

[ale = oy jaiale = {0l +ittale < {Bale+iVie+1Bela = |B17Bel2 = 1Bi2

contradicting Lemma 6. ‘

Now assume that n>1: In this case |y],=0 is impossible by our observa-
tion made at the beginning of this section hence the indirect assumption is [p],> 1.
But then

el = log jorely = lotalz+ 1+ [atelo < |Bale+ ¥l2+1Bele = |B17Bel = 1Bles
a contradiction. O
Lemma 8. For each i€[2k] and n=4, m, (r;_,)=0.
Proof. Suppose it does not hold. Let i€[2k] be the greatest integer for which
rn, (r;_;)=>0 for some n=4. Then in the derivation a,-r,-_I;*w{ (ri€ Tr(4: X0 40)

it has to be applied at least one rule ¢f(x;; ..., x,)—>q(cxy, ..., 'cx,,) for which n=4
and m,; (g)=0 for each /=4. Since U; is an NDR transducer it can be possible
only if |yl;>1 for some j¢[n] and y€path;(g). This is a contradiction, by
Lemma 7. O

At this point of the proof we can declare that for each i€[2k], every function
symbol of r;_, is in Fi-'UFi-*UFi-*,

Lemma 9. Let i€[2k] and r/€ Tn(A4;X,,,) be such that
. .
a‘ri_.1=m>' T

Suppose that in the above derivation it was applied a rule ¢f(x,, ..., x,)~g where
JEFi-1 n=1, ccA; and q€Tr(A;X,). Then n€[3] and ¢ can be written in one of
the following three forms, for some suitable ug, 4, u,, us€ T,y €1, €25 C5€4,;, € F}

and heF}:
(a) if n=1 then g = u(e;xy),
(b) if n =2 then either
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q= uo(g (u(erx1,)s uz(czxi,))) where {i;, i} =[2] or )]

q= uo(h(“1(‘-'1xi1), up(CaX;,)s ua(caxia))) where

{ila iz, i3} = [2]a

(¢) if n =73 then

q= “o(h(lh(cl-"?i1 ’ uz(czxi,), ua(caxi,))) with

{ils i23 13} = [3]'
(We note that in the notation T ,, F} is considered a ranked alphabet. Thus the con-
dition ;€T ; means that every function symbol of u; is in Fi (j=0,1,2,3).

' Fi,1 J

Proof. Immediate from Lemmas 5, 7, 8 and from the fact that U; is an NDR
transducer. [

Definition. We say that for some i€[2k] r;_, has property (10) if
m41? f(pl, Dz, p3)esub (ri—l)
and 10

(a) for some fEFi™' and p,,ps, Ps€Tpi-1

(b) for each j€[3], n; >0 where n;=max {|al,|acpath,(p)), I€[m+1]}.
Lemma 10. There exists no i€[2k] for which r;_; has property (10).

\
Proof. 1t is enough to show that whenever r;_, has property (10) then so does r;.
This proves our lemma since ry, by its definition, does not have property (10).
To this end, let us suppose that r;_, has property (10) (i€[2k]). Then, from
Lemma 9, it follows that for some suitable s _;€Tpi-1mizs Si€TF1, mezs

Up, Uy, Us, UsE TF{,I »Cy C1, Co, C3€4; and gy, ¢o, gs€ Tpt, 4y the following rela-
tions hold:

@) -1 = Si—1* m+2S(P1, Des P2)s

(B) 1y =5i" ms2 uo(h(ul(‘h), ACAN ua(%))),

©) of(x1, Xz, x3) ~ uo(h (“1(C1xi1 s Us(C2x;), u3(c3xi3)))€Pi’ {i1, iz, ia}=[3],
(@) (si-1» $DETa,, (Pyy» 4)€ETw,cp for each je€[3].

Moreover, for each j€[3], there exist /;,€[m+1] and o;cpath; (p;) with |oyl,=n;,.
By Lemma 1, there _exist B;€path,, (g;) such that |o;l,=|B;ls- This shows that 7,
has property (10) Wth h("l(Ql): u:(q2), ua(Qa))- O

Definition. Let i€[2k]. We say that r,_, has property (11) if
. (a) for some f€Fj~' and py, Pa; Pa€Tr-1,m+15 f(P1, Pos Pa)ESUD (ri_1) 1
an

(b) there exists exactly one j€[3] with n;->0 where n; is the same as in the
definition of property (10).

Lemma 11. There exist no i€[2k] such that r;_; has property (11).
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Proof. Since ry does not have property (11), we can use the same technique
as in the proof of Lemma 10. Assume that r;_; has property (11). Then, using the
notations of Lemma 10, we again have (a)—(d) as in Lemma 10 and, without loss of
generality, may suppose that [o4],=>0, [o]s=]as],=0 or, in other words,
Piy» Pi,€ T2,y Hence, from Lemmas 1 and 9 it follows that [B,[,=>0 and

92> 9s€ Trt, 1y, meaning that r; has property (11). O

We shall need one further property.

Definition. We say that for some i€[2k], r;_, has property (12) if there exist
o, fepath (r;_,) satisfying the following conditions:
(@ a%pand B£o,
(b) str(r;_1, @) = f(p1, P2, p5) for some f€FiY,
Py Pes PsETpi-n | (12)

© str(ri_1, B =1 (Pl,Pza p3) for some f'€ Fi~Y,
Pis P2, P3€TF- o
Lemma 12. There exist no i€[2k] for which r;_; has property (12).

Proof. If r;_, has property (12) then, by Lemma 9, so does r;. This proves our
lemma since r,, does not have property (12). 0O

Lemma 13. Let i€[2k] be an odd integer. Then rn, (r;_,)=rn, (r;).

Proof. It obviously follows from Lemma 9 that rmn, (r,_1)<m3 (r;). Let us
assume that rng (7;_,)<rng (r;). Then in the derivation ag;r,_ 1=> F (i€ Tp(4; Xppi1))

it has to be apphed at least one rule of the form (9). However this is impossible
since, for odd 7, A, is an LNDR transducer. [

Lemma 14. k=m.

Proof. On the contrary; assume that k<m: Then, since 1y, (r,)=0 'and
my (rg)=m, it follows from Lemma 13 that for some even integer i€[2k], rn, (r;_;)=
=rn, (r;)— 2. It means that there exist «, f€path (r;_;) such that a=p, str (r;_,, €)=
—f(.plap2) str (rl—19 B)_f’(.plspz) for some ff E 2 s P;’PJETF‘ Im+1 (]6[2])
moreover, in the derivation g; r‘_1=> r{ (r, ETp(A; X, 4 1)) both f and f” were

rewritten by applying a rule of the form (9).

First we claim that either a<pf or f<a. Really, from a<4f; f«« and ax=p
it would follow that r; has property (12) contradicting Lemma 12,

Suppose that a< /3 and that the rule (9) was applied to rewrite f'in the deriva-
tion g r,__1=> r;. Then, without loss of generality, we may assume that the fol-

lowing relatlons hold for some suitable s;_;, ;1€ Tri-1,ms5, S€ Thi,msz and
q1s 92> 95€ TP m+1’
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(@) 7121 = Si~1" m+2 f(D1, Po)s
(®) P = timy v w2 f(PL, DD,
© ri=s- m+2u0(h (11(q0), u2(go), ua(‘]a))),
(d) (Si-1> )E€Tw,» (P1y» 4;)€ 70, for each je[3].
Let us introduce the following notations:
= max (s a€pathy (p,) for some Ie[m+1]} (jeL2D,
n; = max {la|;la€path, (g;) for some I€[m+1]} (j€l3)).

We know, by (b), that m,>0. Moreover m,=0 since from m,>0 it would
follow, by (d) and Lemma 1, that n;>0, n,>0 and n;=>0. This, however would
mean that r; has property (10) which is impossible by Lemma 10. Hence we have
PzETFg'l,mH'

We also know, by (9), that {i, iy, i3}=[2] which means that ; duplicates
either p, or p,. We show that both cases are impossible.

First let us suppose that 1 appears once and 2 appears twice in the sequence
iy, iy, i3. Then we obtain, by Lemmas 1 and 9, that for exactly one j€[3], n;>0,
contradicting Lemma 11.

Next assume that 1 appears twice and 2 appears once in the sequence 7, &, i,.
But then, since f* was also rewritten by a rule of type (9) we have that r; has prop-
erty (12) yielding again a contradiction, by Lemma 12.

Hence we have k=m. O

With this we also completed the proof of Theorem 3. O

Now we present Theorem 3 in an alternative form. It is not difficult to see that
LN DRON H =UN DR. Really, for any LNDR transducer A and NH trans-
ducer B, by Lemma 3 of [1], Tu.s=1y07s and it can easily be verified that in this
case AoB is a UNDR transducer. Conversely, given a UNDR transducer £,
with the help of the usual relabeling technique (see, for example, Lemma 3.1 in [2],
pp. 155) we can construct an LNDR transducer % and an NH transducer 8B with
To=1907y. Thus Theorem 3 can be given in the following form as well

Theorem 15. For any m=1, UN DR"CUN DR™+1,
The first problem, presented at the beginning of this sectxon is answered by

Theorem 16. [S] is an infinite set.

Proof. Immediately follows from Theorem 3. O ]
Now we deal with the second problem. The following lemma can be proved.

Lemma 17. There exists an NDR transducer A=(F, {a, b}, F’, P, a) such that
1w (LN DRo N H) for any k=1.

4 Acta Cybernetica VIII/2
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Proof. Let A be determined by the following conditions:
(@) F= F,UF,, F,= {#}, F.= {3},
(b) F'=FUF;UF;, Fo={%}, F;={f}, F;={gs}
(c) P is the set of the rules;
() a% —~ #, b# - i, .
(i) af(x1,s x2) = galbxy, axy, bxy), bfa(x1, x3) = fo(bx1, bxy).
Let P, and Q,, be defined in the same way as in the proof of Theorem 3. 1t is

not difficult to verify that for each m=1, (P,, Q,)€ .
Moreover, let Q,, be written in the form

m+1 times

O (X105 Xy Xoy coey Xmi1s ooos Xmsr) Where Q,.€Tp, (n=1+2+..+m+1).

Then we can say that for any 7, ..., 1,,4,€TF

m times

—_ e pmmn, ,
(Pm(t19 s tm+])a Qm(tla t2’ t2, (] tm+1, st tm+1’ tm+1))€‘rﬁl
holds where ¢, ,;=7u(f,+1). Using this notation, the following lemma can be
proved in a similar way as Lemma 4. Therefore we omit the proof.

Lemma 18. If £ is an NDR transducer with tq=7 then for each m=1
(P,, 0)ete holds. O

Now we can complete the proof of Lemma 17. Suppose that
Tu€(LN DRo N H)Y

for some k=1. Then for each i€[2k] there exists a DR transducer ;=
=(F'-%, A,, F', P;, a;) with properties (a)—(c) of (6) and Ty=1Ty,0...0Tq,,. Let
m be chosen such that k<m. It follows from Lemmas 2 and 18 that
(P> Om)€19,0...07q, . However, if we follow the proof of Theorem 3 from (7)
then we see in Lemma 14 that this is a contradiction. This ends the proof of
Lemma 17. O

The last theorem is an immediate consequence of Lemma 17.

_ Theorem 19. |J (LN DRoN H)C N DR.
k=1
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