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Introduction 

Let S = {Q>&1, jVSuM, <£Jf®0l, J i f f } where 9M is the class 
of all deterministic root-to-frontier tree transformations, J f is the class of all homo-
morphism tree transformations, moreover, for both Q>01 and their linear, non-
deleting and linear-nondeleting subclasses are denoted by prefixing them by J f 
and , respectively. Let [S] be the set of classes of tree transformations gen-
erated by S with composition o: [S]={X1o...oXn\n'^\, XfcS, lS /Sn} . The set 
[S] was introduced and examined in [1] where several equalities and inclusions were 
obtained with respect to elements of [5]. However, the question that whether [S] 
is a finite or an infinite set was only raised and not answered. 

In Section 2 of this paper we show that, in fact, [S] is infinite by proving that 
for each m S l . This infinite proper hier-

archy was already suggested by Theorem 12 of [1]. 
It is well known that JfQ>0l is closed under composition (proof, for example, 

in [1]). Thus we have JfQlSko J i for each m £ l . In the second half 
oo 

of Section 2 we show that the stronger proper inclusion U { <£№¿¡91 o Jr3V)mcz 
m=1 

c / M is also valid. 
The paper, apart from some simple reference to [1], is self-containing. Both 

in [1] and this paper, most of the notions and notations are adopted from [2]. 

1. Notions and notations 

For an arbitrary set Y, we denote by 7* the free monoid generated by Y, with 
empty word L The prefix ordering ^ in Y* is meant as usual: for any a, /?€ Y*, 
aSJ? if and only if a is a prefix of /?, that is, there exists a }>€ Y* such that p=<xy. 
The relation a-= fi is defined by aS/? and a^/?. 



154 S. VSgvolgyi and Z. Fiilop 

The set of nonnegative integers is denoted by N. For each n£N, [n] denotes 
the set {1,..., n). Thus [O]=0. 

By a ranked alphabet we mean an ordered pair (F, v) where F is a finite set 
and v: F—N is the arity function. Elements of F are called function symbols, 
more exactly, if / £ F and v ( / ) = n t h e n / i s an w-ary function symbol. For any 
n£N we put F„= {/£F|v(/)=w}. Hence, for any ranked alphabet (F, v), we 
have the equivalent notation F= (J F„, where F„ are pairwise disjoint finite sets. 

new 
Let F= | J F* be a ranked alphabet and Y be a set, disjoint with F. Then 

n€W 
the set of all terms or trees over Y of type F is defined as the smallest set TF(Y) 
satisfying: 

(a) ygTV(T) and 
( b ) f ( p 1 , . . . , p n ) £ T F ( Y ) whenever fiFn and Pl, ...,p„£TF(Y). 
For / ( ) we write/. If 7 = 0 then TF(Y) is written as TF. 
We shall need a few of the usual functions on the elements of TF(Y): for any 

p£TF(Y) the frontier fr (/?)£ 7*, the set of subtrees or subterms sub (p))=TF(Y), 
the paths path ( p ) ^ N * and for each mdN the m-rank rnm (p)dN o f p are defined 
by induction as follows: 

(a) if p£Y then 

f r O ) = p, sub(>) = {p}, path (p) = {A} and rnm(p) = 0; 

(b) if p =f(pi, -;Pn) forsome n£N, f£F„ and . . . , p n i T P ( Y ) then 

fr(p) = fr(^) ... fr (/>„)> 

sub (p) = ( U subOf))U{p}, 
< 6 in] 

path (p) — {A}U {ia|i£[/i], a6path(#)} and 

m m(p) = 
2 mm(Pi) if n^m 

1 + 2 Tam(Pi) if n = m. 
¡ew 

We mention that rnm (p) means the number of occurrences of the m-ary function 
symbols in p. Moreover we define rn (p)= 2 TDm (JP)• 

miN 
Now let p£TF(Y) and a£path(/?). We introduce the notion of the subtree 

str (p, a) and the symbol lab (p, a) of p determined by a, moreover, the two length 
|a|2 of a in p in the following way: 

(a) if . pe r then 
str (p, a) = p, lab ( p , a ) = p and |a|2 = 0; 

(b) if p=f(pi, ...,p„) for some n£N, f£F„ and Pl, ...,pn£TF(Y) then a 
is either A or of the form /a' forsome i€[n] and a'£ path (/>,). Thus 

3* 
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we define 

S t r ( ' ft, 

L 

p if a = X 
str (/>,-, ar) if a = ia', 

lab (Pi, a') if a = ia', 
/ if a = X 

0 if a = X and n -= 2, 
1 if a = 2 and n S 2 , 
|a'|2 if a = ia,' and « 2, 
l + |a'|2 if a = ia' and « S 2. 

0 

We note that in this latter definition |a'|a is meant in pt. We mention what the 
above three functions informally mean. It is well known that p can be considered 
as an ordered tree labelled by elements of FU Y, moreover a can be thought of as a 
path leading from the root to a node x of p. Now, str (p, a) is the subtree of p 
the root of which is x, lab (p, a) is the symbol in FU Y x is labelled by, finally 
|a|2 is the number of the occurrences of function symbols with arity m S 2 along 
the path a. We also note that a may be in path (q) for some q^p and |a|2 in p 
may differ from |a2| in q. However it will always be clear from the context in what 
p |a|2 is meant. 

The countably infinite set X— {xx, x2, ...} of variable symbols will be kept 
fix throughout this paper. The set of the first m elements xu ..., xm of Z i s denoted 
by Xm. The set TF{XJ will be written as TF m. 

fFi„ is the linear-nondeleting subset of TFtm: for p£TFi„, pdfF,m iff each 
xt appears exactly once in p (i£[m]). 

For p,q£TFim and i€[m], by the i product p • ¡q ofpbyq we mean the tree 
obtained from p by substituting each occurrence of x( in p by q. 

Let p£TP<m and ...,ym£Y. We denote by p(y}, . . . ,ym) the tree obtained 
from p by substituting each occurrence of xt in p by yt for each i£[m}. Of course we 
have p(y1} ...,ym)£TF(Y). 

We introduce one more definition concerning TF>m. For p£TFm and i6[m], 
the set of i paths pathj (p) of p is given as follows: 

(a) if p=Xj for some j(i[m] then 

It is clear that pathj(/>)gpath(p), moreover pathj(/>) consists of all the ele-
ments of path (p) leading from the root to a terminal node of p labelled by xt. 

A tree transformation x is defined as a subset of TFX TG where F and G are 
arbitrary ranked alphabets. In this way, r can alternatively be considered as a rela-
tion from TF to TG. 

For the sake of convenient proofs, we introduce the concept of the extended 
tree transformation. It is a subset i of TF(X)XTG(X). 

(b) if p=f{p1, ...,pn) for some « ^ 0 , fdFn and px,...,}\£TF<m then 
pathj (p) = {j<x\j€[n], aCpathj(p7)}. 

• J 
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Since (extended) tree transformations are in fact relations, for any (extended) 
tree transformations x and a, the domain dom x and the composition TO a of x 
and a are defined as it is usual for relations. Moreover, for any two classes and 

of tree transformations we put: 

= {T1OT2|T1€^ and x2£Jf2} and 

f ^ if » = 1 
1 bfi"-1«)*; if « > i . 

We are interested only in tree transformations which can be induced by deter-
ministic root-to-frontier tree transducers. 

A deterministic root-to-frontier tree transducer (DR transducer in the sequel) 
is a system 

91 = (F, A, G, P, a0) where (1) 
(a) F and G are ranked alphabets; 
(b) A, the state set of 91, is a ranked alphabet consisting of 1-ary function 

symbols, disjoint with F, G and X; 
(c) a0, the initial state of 91, is a distinguished element of A; 
(d) P is a finite set of so called rewriting rules (or simply rules) of the form 

af(x1, ..., xn) - q (2) 

where ad A, n s 0, feFn and q£TG(AXn); 
(e) different rules of P have different left-hand sides. 

We mention that above and in what follows we use the following notations. If A 
is the state set of a DR transducer and Tis a set of terms then AT= {a(t)\a^A, t€_T}. 
Moreover, for any a£A and t£T, a(t) is written as at. 

Then it is clear that each rule (2) of P can also be written in both of the fol-
lowing two forms: 

•••, *„) ¿/OiX.v amxim) (3) 
for some mSO, qifG,m, afiA and xh£Xn (;€[m]); 

xn, ...,a„m x„) (4) 

where m^O, a^A (/'€[«],/ClmJ) and q£fG,m (m-m^ ... + m„). 
Next we show how 91 can be used to rewrite (or transform) terms of TF to 

terms of TG. To this end, we define the relation =>• called direct derivation on the 
set TG{ATF(X)) in the following manner: for p, q£TG(ATF(X)), q if and only 
if q can be obtained from p by replacing an occurrence of a subtree of the form 
af(p1, ...,pn) in p by the tree qfap^, ..., ampin) and the rule (3) is in P. The reflex-
ve-transitive closure of is denoted by =>• and called derivation. The tree trans-
formation induced by 91 with the state a£A is introduced as 

*«(„) = {0> q)\p£TF, qeTG and ap^> q), 

moreover, the tree transformation XM induced by 91 is meant TA I ( A O ): 

Tsn = {(/>. q)\p£TF, qiTG and a0p q). 
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Now we define the extended tree transformation induced by 81. To this end, 
we need the following concept. Let q'£TG(AX). We say that q£TG(X) belongs 
to q' if it satisfies the following conditions: 

(a) if q'=axi for some a£A and i£N then q= 
(b) if q'=g(qi,...,q'„) for some n^O, geG„ and q[, ...,q&T0(AX) then 

q=g(<li> •••» in) where qj belongs to q] for each j£[n\. 
Informally, we say that q belongs to q' if and only if q can be obtained from q' by 
substituting each subtree of the form axt of q' by xt. 

The extended tree transformation Tai(„) induced by 91 with the state a£A is 
given as follows: for any p£TF(X) and q£TG(X), {p, if and only if 

TC(AX) such that ap^ q' and q belongs to q'. The extended tree transforma-
a 

tion Tai induced by 91 is defined as Tat ( i,o). 
We say that a tree transformation r can be induced by some DR transducer 

91 if t=Ta holds. 
The tree transformations which can be induced by DR transducers are in 

fact partial mappings. This follows from (e) of the definition of the DR transducer. 
Next we introduce some restrictions on DR transducers. We say that a DR 

transducer (1) is 
(a) totally defined if for each ad A and /€JF there is a rule (2) in P; 
(b) linear (L) if for each rule (4) of P and /£[«], m^l; 
(c) nondeleting (N) if for each rule (4) of P and /€[«], 1; 
(d) linear-nondeleting (LN) if it is linear and nondeleting; 
(e) uniform (U) if for each rule (4) of P and [n], ah—...=ain^. 
It is obvious that if a DR transducer (1) is a UDR transducer then each rule 

of P can also be written in the form af{xi, ...,x^—q{aixi, ...,anx„) for some 
q_dTG n and a1} ..., a„£A. Any LDR transducer is a UDR transducer, too. 

A DR transducer (1) is an H transducer if it is totally defined and has only 
one state, i.e., A={a0} holds. The LH, NH and LNH subclasses of the class of 
H transducers are defined in a natural way. Each H transducer is a UDR trans-
ducer, by definition. 

The class of all tree transformations which can be induced by K transducers 
is denoted by X where K stands for any of DR, LDR, NDR, LNDR, UDR, H, 
LH, NH and LNH. 

2. The problems and the solutions 

Following [1], let S consist of $>91, X and their linear, nondeleting and linear non-
deleting subclasses, that is, let S= {3s&t, <£3)01, Jf2>9l, <gJfQl9l, tf, <£&e, JfJP}. 
Moreover, define [S] as the set of all the classes of tree transformations which can be 
obtained as compositions of elements of S: [S]= 1, S, l^isn}. 

In [1], it was raised the problem that whether [S] is an infinite set. We shall prove 
that [S] is infinite by showing that [S] contains an infinite proper hierarchy of classes 
of tree transformations. Namely, we prove, in Theorem 3, that {Z£JfQ)0lo jVyf)mcz 
<z( <ej r^3io^ rJif)m + x for each m S l . 

In connection with this hierarchy one more problem can be raised. By defini-
tion, i f Jf3>0l and J f$e are subclasses of JJ"2s9l, moreover it is not difficult to 
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see that JiQlSk is closed under composition (a proof is given, e.g., in [1]). These, 
together with the infinite proper hierarchy mentioned above yield the proper inclusion 
( 2 31OjrxeyaJfSi&t. for each m £ l . In the second half of this section we 

oo 

show that the proper inclusion U o j f j f f c JfS)$/t also holds. Namely, 
m = l 

in Lemma 17, we give an NDR transducer 91 for which there does not exist m 
with 

We set out to solve the first problem. 
First we make a trivial observation on UNDR transducers. Let 21= 

= (F, A, G, P, a0) be a UNDR transducer and the rule af(x x, ..., x„)--q(a1x1, ...,a„x„) 
in P. Then for each j(L[«] and y£pathj(g) the condition 

if n > 1 then |y|2 = 1 

holds, since from |y|2=0 it would follow that 21 is a deleting DR transducer. Our 
•fircfr T p r r i t n g t c P C C P t i t i a l l T / o p / i n c p n i i P n p A n f t l n i e n K c p n i o t i n t i U * UV l ^ V I I I I I i f l 1 J v O j f l i V i U U j U W U h l W « J a v i i V v UX «• > ' " » V k/JWi T m.A\S±Xt 

Lemma 1. Let 2I=(F, A, G, P, a0) be a UNDR transducer, moreover, mSO, 
ptTF,m, giTGim and afA be such that (p, Then 

(a) for each [m] and a£pathj(j>) there exists a /?£pathj (q) for which 
№ 1 1 1 , and 

(b) for each /€[m] and a£path j (q) there exists a /?€path }(p) with |/?|2= 
— Ial2-

Proof. We prove only the part (a) of our statement since (b), as a converse 
of (a), can be shown in a similar way. We follow an induction on p. 

If p—Xi for some z'£[m] then q—xt hence (a) trivially holds. 
Now let p=f(j>i, ..;Pn) for some nSO, f£Fn and px, ...,pn£TPim. By our 

supposition, there exists a rule af(xx, ..., x^)—-q(a1x1, ..., anxn) in P and there 
are qlt ..., q„£TG>m for which (p„ q^x'm^ («'€[«]) and q=q(q1; ..., qn). Since 
the case n=0 is again trivial we may suppose that n^l. Then a = ia' for some 
if [ri\ and a 'gpa th j (p t ) . 

Let y be an arbitrary element of path( (q), which is not empty since 21 is non-
deleting, and let 0'€pathj(qi) be such that |a' |2s|j3' |2. Put P=yP'. We mention 
that P' exists because of the induction hypothesis and, obviously, jS^pathy (q). 
Now we distinguish the cases « = 1 and w> 1. 

If n = l then 

|a|, = |,VI, = |«'|, == \p\ S \y\2 + \P% = \yp\ = \p\2. 

On the other hand, in the case n > 1, by our above note on |y|2 we have 

|«|2 = |ia'|2 = 1 + |a'|2 S |y|2 + \P'\2 = \yp% = \p\2. 

The proof is complete. • 

Now we recall what we mean by the syntactic composition of two DR trans-
ducers. The exact definition can be found in [1]. 

Let <H1=(F°,A1,F1,P1,a1) and %=(F\ A2, Fz, P2, a2) be two arbitrary 
DR transducers. Their syntactic composition is the DR transducer 2t1o2I2= 
—AxXAs, F2, P, (alt a2)) where P is constructed in the following way. When-
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ever bf(xlt ..., x„)-*q(biXil, ...,bmxin) is a rule in Px and it holds that cq=> 
^•q{cllx1,...,civx1,...,cmixm,...,cmvjcj we put the rule (b, c)f(xlt ..., 

c^Xii (¿i, clv)xh,..., (bm,cmi)xim,..., (bm, cmv)xim) in P. It is well known 
that this construction yields the application of 3I2 after in a "step 
by step" way. A very useful property of the syntactic composition is the 
following: if 9I2 is an NDR transducer then ^»JI^T^OT^ (for a proof, see 
Lemma 3 in [1]). 

We shall need the generalisation of the syntactic composition and the above 
equality for any m£2 . Therefore we make the following definition. 

Definition 1. Let m £ 2 and let 2lj be a DR transducer for each id[m]. By the 
syntactic composition of Sli, ..., 9Im we mean the DR transducer defined above if 
m=2 and the D R transducer (2I1o...o9iIB_1)o2I„ if m>2. 

Then, using Lemma 3 of [1] as a basis, the following statement can be verified 
by an induction on m: if 9I2, ..., 5Im are NDR transducers then Tgji0...o<Hm= 
= TaiO...OTg|m. 

The next lemma says that this equality is also valid for extended tree trans-
formations. 

Lemma 2. Let m S 2 and let 9 i ;= (F _ 1 , At, F\ Pt, a^ be a DR transducer 
for each z'€[m] such that 9I2, ..., 2Im are NDR transducers. Then Tajl0...0aim= 
= T«1O ...oTaim. 

Proof. Induction on m. For m=2 it is enough to show that for each nS0 , 
p£TF0>„, qdTF2_n, bxdAx and b2dA2 the following equivalence holds: 

(P»9)eTi loa1(ci1, i l))o(3r6rJF..fB)((p,r)€Ti l№i) and (r, q)dx'Mi(bd). 

This can be verified by an induction on p. The detailed proof is omitted. 
Finally, the induction step of m is shown by the following computation 

Ta,o...o9im = T(al°...oam_1)°am = Ta1o...°9im_l°Tam — Ta,0---0 'ram . • 

At this point we declare our main theorem. 

Theorem 3. For any m S 2 and 1 {SeJTSi^o jV3tff<z{<ejf®g/lo 

Proof. Because the complete proof is rather long we structured it in the fol-
lowing way. First we give a tree transformation xm which is in (¿£ ¥3!0to Jf W)m• 
Then we present Lemma 4 which concers any transducer which induces xm. 
After this we suppose that Jf2>S^o J/" X f for some k ^ m and, during a 
series of lemmas from 5 to 14, show, in Lemma 14, that k ^ m is impossible. 

Take an arbitrary integer m S 2 and keep it fixed in the rest of the proof of 
this theorem. To define rm we introduce an LNDR transducer 91 and an NH trans-
ducer S as follows. 

Let the LNDR transducer 2l=(F, {a, d}, F', P, a) be determined by the fol-
lowing conditions: 

(a) F=F0{JF2UF3, F2={f2} and f 3 ={g 3 }; 
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(b) F' = Fq\JF'2{JF'z, FQ = {#}, F^ = {/2,/2 '} and F^={g3}; 

(c) P consists of the rules (i)—(vi) listed below 

(i) a# - # 

(ii) af2 , x2) -~/2' (dx1, dx2) 

(iii) ag3(*i, x2, x3)-»g3(dxl5 ax2, dx3) 

' (iv) - # 

(v) df2 (xL, x2) -/2 (dxi, dx2) 

(vi) dg3 (*!, x2, x3) - g3 (dXj, dx2, dx3). 

Moreover, introduce the NH transducer SB=(F'. {/>}. F. P ' ; b) with P ' con-
taining the following rules: 

(i) - # 

(ii) 6/2' (*!, x2) - g3 (6*!, bxx, 6x2) 

(iii) b / i f o , x2)"f2(bx1, bx2) 

(iv) bg3(Xi, x2, x3)-*g3(bxl5 bx2, bx3). 

It is not difficult to see how 91 and after that SB works on a tree p£TF. First 
91, with its state a£A, searches for the first occurrence o f / 2 on the path of p leading 
along the "middle branches" of a (possibly empty) sequence of ^ ' s and if it is found 
then rewrites it to / 2 producing a tree p'f TF.. Any other symbol of p stays as it 
was. Then SB looks for this / 2 in p' and duplicates the subtree on the first branch of 
/2' by substituting /2" by g3. The other symbols of p' remain unchanged. 

We put T m = ( T S H o T S ) m . Of course, 
Now, for each / S i , we define a pair of trees Ph Qi^TPti+1 recursively as 

follows: 

(a) Pt = f2(x2,x 1), Q1 = g3(x2, x2, xx), 

(b) Pi —f2 (F , -I (X 2 , ..., X I + 1 ) , Xx), Qi = g3(P¡-i(x2,..., X 1 + 1 ) , Qi-i(x2,..., X I + I ) , 

if i > l . 

To make it clearer, Pm and Qm are visualized in Fig. 1. 
Let us introduce the notation T'm—(ziior'<B)m. By the definitions of Sil and SB, 

it can easily be verified that (Pm, Qm)€i'm moreover, that for each tlt ..., tm+1^TF 
it holds 

(Pm(tlt ..., tm+1), Qm(tlt ..., /m+1))€rm . (5) 

Lemma 4. Let £ = ( F , C, F, P", c0) be an NDR transducer with T £ =r m . Then 
we have (Fm, QmXt's>. 
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*m+l Xm 

f , 

*m + l Xm Xm + l Xm Xm + 1 Xm Xn +1 X„ Xm + X Xm 

f , 

ft 

Y . 

f Xm-x f% 

1 

Ï . ( Xm—i f t 

/*<*-* ft 
j A 

Figure 1. 

Proof. First we note that Pm€dorn té since, among others, 

Pm( # , . . . , # ) £ d o m t m = domzj. 

thus (Pm, Rm) must be in z'a for some Rm£TF-n+1. It is obvious that Rm can be 
Hj times nm + i times 

written in the form Rm(x...,x1,...,xm+1, ...,xm+1) for some n^ 1 (i£[m+1]), 
Rmdfr,n where n=n1+ ...+nm+1. Then it follows_that for each / l5 ..., tm+1£TF the 
tree Tc(Pm(A,...,im+1)) can be written in the form Rm(tlv ...,ti„r..,tm+ll,...,tm+inm+i) 
where for each i€[m+l] and jd[«¡] ¿;,)£?i>(c; ) for some c,,£C. Using these 
notations we have that for each ..., tm + 1dTF 

QmQ 19 •••» *m + l ) — Rm(tli» "-9 h„ 9 •••> m̂ + li9 -"9 tm +, ). 
" 1 m + 1 

We shall use this equality under different choices of i l 5 . . . , tm+1 in the sequel of 
this proof. 

Now suppose that Qm^Rm- This means that for some a£path (Qm)D 
flpath (Rm), lab(<2m, a) lab (R„, a). Then four different cases are possible, each 
of which yields a contradiction : 



162 S. Vagvolgyi and Z. Fiilop 

(a) lab(gm , a)—f, lab(J?m, a)=g for some / , g£F such that f ^ g . But then 

/ = l a b ( g m , a ) = l a b ( 2 m ( # , ..., # ) , a ) = l a b ( R m ( # l l , # v # m + l l , ... 

*m+i„m+i)>a) = lab(i? r a ,a)=g 

which is impossible. 

(b) lab(gm , lab(i?m, a )=g for some t£[m + l] and gfF. Now, on 

the one hand g = # , by # = l a b ( 0 m ( # , ..., # ) , a)=lab(!?„(#!, , . . . , ..., 

#»•+1!» •••» #m+inmti), a)=lab (Rm, a)=g. On the other hand, for any tfTF 

¡ - t h 

t — l a b ( 2 m ( # , •••, t,..., #) , a) = 

= lab( i? m (# l l , ..., #1( i i , ..., th, ..., t„t,..., # m + l l , ..., #m+i,,m+i), a) = 

= lab (Rm, a) = g = # , a contradiction. 
(c) lab (Qm, <*)=/, lab (Rm, oc)—Xi for some f f F and if[m+1]. Then it can 

be seen from the definition of Qm (see Fig. 1) that in this case str (Qm, a) contains 
at least one Xj with j^i whatever i be. But then for any tfTF it holds that t is a 

7 - t h 
subtree of str (Qm(#,..., t, . . . , # ) , a). It also holds that 

;-th 

str(0m , ( # , . . . , r,..., # ) , « ) = 

= ®tr (Rm (# i j , ..., # i n i , ..., th, ..., tj ,..., # m + i j , . . . , #m + i„m + i), a) = #,-, 
for .some /£[«,]. Contradiction since # ( l does not depend on t chosen arbitrarily. 

(d) lab (Qm, a)=xh lab (Rm, oi)=Xj for some i,jf[m+1] such that iVy. Let 
t be an arbitrary element of TF with rn (/)>0. We have that 

y—th 

# = l a b ( £ m ( # , ...,/, ..., #),<*) = 

= l a b ^ i * ^ , ..., #1(ii, ..., th, ..., tJnj, ..., #„+! , , ..., #m + in m + i) , a) = th 

for some If[nj, moreover (t, for some ch£C. Bu t2 is an NDR trans-
ducer hence rn( i 7 l )>0 which is again impossible. • 

Let i S m and assume that xmf (£?Jr@gto This means in a more detailed 
form that for each if [2k] there exists a DR transducer 9 i i =(F i - 1 , Ah F\ Pha¡) 
such that the following conditions hold 

(a) F « = f 2 t = F , 
(b) if i is odd then 91; is an LNDR transducer (6) 
(c) if i is even then 9lj is an NH transducer 
( d ) r « 1 ° . . . o T 3 i I k = T m . 
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Since each 21/ is an NDR transducer too, combining Lemmas 2 and 4 we 
have that 

or in other words, for each id[2k] there exists a pair of trees 7^1-1, m + i and 
r£TF,im+1 for which r0=Pm, r2k= Qm and (r,_i, OCTM,. In fact, (7) is'the rela-
tion which leads us to a contradiction in Lemma 14. 

Lemma 5. For each i'£[2&] it holds that rn0(r i_1)=0, that is, /-¡_i does not 
contain any symbol of arity 0. 

Proof. We observe that if rn0 (r^J^O then rn0 (rJ^O since 2 i s an NDR 
transducer. Now if for some id [2k] rn0 (r.-O^O then we obtain that rn0 (r2k)^0 
which, by the definition of r2k, is a contradiction. • 

Next we make a remark on the paths of r0 and r2k leading to x'jS (jd[m+1]). 
Namely, we observe that whenever jd[m+1] and a is an element of either pathj- (r0) 
or pathj- (r2k), by the definition of r0 and r2k, we have 

This can easily be read from Figure 1. 

Lemma 6. For each i£[2/c], j '€[m+l] and adpathj (>¡-1), |a|2 is the same 
as in (8). 

Proof By part (a) of Lemma 1, for each aÇpathj (rf_x) there exists a 
/Apathy (r,) with |a | 2^ |/?|2. Hence, if for some id[2k] jd[m+1] and aÇpathy (/V-iX 
|a|2>7 when jd[m] and |a|2=»m when j=m+1 holds then we obtain that for 
some /?£pathy (r2k), \fi\2>j if jd[m\ and |jS|2>m if j=m+1. This, however, 
contradicts (8). 

In a similar way, using part (b) of Lemma 1, the condition |a|2</' if jd[m] 
and |a|2<m if j=m+1 yields the existence of a /JÇpath,- (r0) with the same prop-
erty as a has, contradicting again (8). • 

Lemma 7. Let id[2&] and r'idTFi(AiXm+1) be such that 

Suppose that the rule cf(xlt..., x„)-+q(clXl,..., cnxn) was applied in the above 
derivation, where f d F j r 1 for some n s l , c, c l 5 . . . , cndA-t and qdTFi„. Then for 
each jd [n] and y£path j (q) it holds 

(We mention that rt belongs to r[) 

Proof. By the conditions of our lemma, there exist the terms •5,
i_1ç7Y<-iim+2, 

tu ..., tndTFi->,m+i, s£TFi,m+2 and qlt ..., qnd.TFitm+1 such that each of the fol-
lowing conditions is satisfied. 

(7) 

(8) 
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(a) contains exactly one occurrence of xm+2, 

(b) r^x = f(tu ..., t„), 

(c) rt = srm+2q(<h, •••,?„)> 

(d) i . s , ) ^ , (lj,qj)e*ml(cj) (./€[«])• 

Let us suppose that for some [n] and y€path j (q) |y|2 violates the condi-
tion stated by our lemma. By Lemma 5 and (a) we can choose an K[m+1] such 
that for some a£path, (rt-x) a can be written in the form a=a1ja2 where 
a 1 £ p a t h m + 2 ( a n d a26path( (/j). Moreover, by Lemma 1, there exist /31€pathm+2(j i) 
and P2epath, (qj) with l a ^ S l / ? ^ and | a 2 | 2 S | /y 2 . Letting P=PiyP2 we obvi-
ously have that /?£path, (rt). 

First consider the case n— 1. By our indirect assumption, |y|2>0, from which 
we have 

i«ia = WijZzii = l«i|2+ |a2i2 ¡Ai2+iyi2 + |p2i2 = \P1yP2\2 = \Ph 

contradicting Lemma 6. 
Now assume that 1. In this case |y |2=0 is impossible by our observa-

tion made at the beginning of this section hence the indirect assumption is |y|2> 1. 
But then 

M2 = l«i№l2 = |aila+l + l«il« < \Pi\t+\v\t+\Pt\% = \Pi7Pt\t = Ilia, 

a contradiction. • 

Lemma 8. For each if [2k] and «S4 , rn„ (r i_1)=0. 

Proof. Suppose it does not hold. Let if [2k] be the greatest integer for which 
rn„ (/•,_!)>() for some n£4 . Then in the derivation airi_1^>ri(rl£TFt(AiXm+1)) 
it has to be applied at least one rule cf(x1,..., x„)-+q(cx1,..., cxn) for which n £ 4 
and rn, (q)=0 for each / s 4 . Since is an NDR transducer it can be possible 
only if |y | 2 >l for some jf[«] and y£path¡(q). This is a contradiction, by 
Lemma 7. • 

At this point of the proof we can declare that for each if [2k], every function 
symbol of is in Fi~1Ui r

2~1UF^"1. 

Lemma 9. Let and r,'fTF,(AiXm+1) be such that 

Suppose that in the above derivation it was applied a rule cf(xlt ...,xn)-*q where 
n s l , c€A, and q£TFI(AtX„). Then n£[3] and q can be written in one of 

the following three forms, for some.suitable u0, uu u2, u3fTF,x cu c2, c3fAh gfF£ 
and /i€F3': 

(a) if n = 1 then q = u0(ci*i), 

(b) if n = 2 then either 
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q = «„(gOiCc^), u2(c2xit))) where {¿1,i2} = [2] or (9) 

q = u^hiuxicxxj, u2(c2xit), u3(c3xia))) where 

{¿i. k , h } = [2], 

(c) if « = 3 then 

q = M0(ft(M1(c1xil), u2(c2xh), w3(c3 *,-,))) with 

i2, i3} = [3]. 

(We note that in the notation TF1 _ 1, F[ is considered a ranked alphabet. Thus the con-
dition U j r means that every function symbol of Uj is in F j (7=0,1,2,3).) 

Proof. Immediate from Lemmas 5, 7, 8 and from the fact that 91, is an NDR 
transducer. • 

Definition. We say that for some K [2k] has property (10) if 

(a) for some / S F j - 1 and Pi ,P2 ,P3£T F , - i m t i , f (p 1 ,p 2 ,p 3 )£svb(r i - 1 ) 

and (10) 

(b) for each ;'€[3], t i j > 0 where rij = max {|a|2|a6path,(py), Z£[m + 1]}. 

Lemma 10. There exists no j£ [2k] for which r^ has property (10). 

Proof. It is enough to show that whenever has property (10) then so does rt. 
This proves our lemma since r2k, by its definition, does not have property (10). 

To this end, let us suppose that r ^ has property (10) (/£ [2/c]). Then, from 
Lemma 9, it follows that for some suitable si_1dTFt-iim+2, si£TF,_m+i, 

"o> «i> "2» >c> ci> c2> c3dAi and qx, q2, q3dTFtim+1 the following rela-
tions hold: 

(a) r,_! = Sj_1 • m+2/(^1, p2, p3), 

(b) r, = "i • m+2 
(c) c/(xx, x2, x3) - M0(/i(w1(c1xil), w2(c2X;,), «3(c3^8)))£Fi, {¡1, i2, i3}=[3], 

(d) (Sj.i, s^iTffl,, (J>h, qj)£*vl(cj) for each j£[3]. 

Moreover, for each y'£[3], there exist /j£[m+1] and oij€path;j (p^) with \ctj\2=nir 

By Lemma 1, there exist fijdpath,, {q}) such that \ot,j\2^\f}j\2. 1ms shows that rt 
has property (10) with /1(1^ (ft), u2(q2), u3(q3)). • 

Definition. Let i€[2£], We say that r ^ has property (11) if 
(a) for some f c F f 1 and Pi,p2,p3£TF,-lim+1, f(px, p2, p3)£sub (r,^) 

and (11) 
(b) there exists exactly one y£[3] with 0 where rij is the same as in the 

definition of property (10). 

Lemma 11. There exist no i£[2fc] such that r{_x has property (11). 
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Proof. Since r^ does not have property (11), we can use the same technique 
as in the proof of Lemma 10. Assume that rt_t has property (11). Then, using the 
notations of Lemma 10, we again have (a)—(d) as in Lemma 10 and, without loss of 
generality, may suppose that laJj^O, |a2 |2= |a3 |2=0 or, in other words, 

Hence, from Lemmas 1 and 9 it follows that |0i|2>O and 
I2, <Ha€Tftitm+2 meaning that r, has property (11). • 

We shall need one further property. 

Definition. We say that for some if [2k], rt^ has property (12) if there exist 
a, 0£path (r,_i) satisfying the following conditions: 

(a) a $ p and p a, 

(b) str (r ;_1; a) =f(p1,p2,p3) for some ffFi^1, 

Pi>P2,Ps€TF
t-\m,.1, (12) 

(c) s t r ( r l _ 1 , / 0= / ' ( p i , / i , / »D for s o m e f ' £ F L - \ 

P'l,P2,P&TF>-l<m + 1 . 

Lemma 12. There exist no if [2k] for which rt_x has property (12). 

Proof. If has property (12) then, by Lemma 9, so does rf. This proves our 
lemma since r2k does not have property (12). • 

Lemma 13. Let i£[2A:] be an odd integer. Then rn3 (r i_1)=rn3 (r,). 

Proof. It obviously follows from Lemma 9 that rn3 (/-¡.^snia (r,). Let us 
assume that rn3 (r,_1)<rn3 (r,). Then in the derivation a(/•,_!=> r,' (rl€Tr,(AiAr

m+1)) 
it has to be applied at least one rule of the form (9). However, this is impossible 
since, for odd /, 91, is an LNDR transducer. • 

Lemma 14. k=m. 

Proof On the contrary, assume that k<m. Then, since rn 3 ( r 0 )=0 and 
rn3 (r2k)=m, it follows from Lemma 13 that for some even integer if [2k], rn3 
Srn 3 (r,)— 2. It means that there exist a, /?£path (r.-.i) such that a ^ p , str (r.-x, a )= 
= / O i , M st r (r i_ 1 ,p)=f ' (p ' 1 ,p ' 2 ) for some f f ' f F i f 1 , pj,pfj£T„-iwm+1 (jf[2]) 
moreover, in the derivation at r^^ r[ (r[fTFi(AiXm+^)) both / and / ' were Si 
rewritten by applying a rule of the form (9). 

First we claim that either a </? or /?< a. Really, from a < 0 , 0 <fr a and 
it would follow that r, has property (12) contradicting Lemma 12. 

Suppose that a < 0 and that the rule (9) was applied to rewrite/in the deriva-* 
tion a-, r,_i=> r[. Then, without loss of generality, we may assume that the fol-ai 
lowing relations hold for some suitable i,_1€7Vi-i>m+2, s^T F ( m + 2 and 

, m + l * 
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(a) ri-l — m + zfiPliPd' 

(b) Px = ii-l • m + 2 f'(p'l,p'i), 

(c) rt = Si • m + 2u0(h(u1(q1), u2(q2), u3(q3))), 

(d) ( s ^ s i ) ^ , (Pi,, q j e ^ c c j ) for each j€[3]. 

Let us introduce the following notations: 

rrij = max {|a|2|a6path,(p,) for some l£[m+l]} (/€[2]), 

rij — max {|a|2 |a6path,(^) for some Ze[m+1]} (j€[3]). 

We know, by (b), that Wi>0. Moreover m2—0 since from w 2 >0 it would 
follow, by (d) and Lemma 1, that «i>0, n 2 >0 and n3>0. This, however would 
mean that rt has property (10) which is impossible by Lemma 10. Hence we have 

We also know, by (9), that {/ls /2, z3}=[2] which means that 2l4 duplicates 
either px or p2. We show that both cases are impossible. 

First let us suppose that 1 appears once and 2 appears twice in the sequence 
iu i2, i3. Then we obtain, by Lemmas 1 and 9, that for exactly one y'£[3], «^>0, 
contradicting Lemma 11. 

Next assume that 1 appears twice and 2 appears once in the sequence ilt i2, i3. 
But then, s ince/ ' was also rewritten by a rule of type (9) we have that r ; has prop-
erty (12) yielding again a contradiction, by Lemma 12. 

Hence we have k=m. • 

With this we also completed the proof of Theorem 3. • 

Now we present Theorem 3 in an alternative form. It is not difficult to see that 
<ejf®0lojn?e=qur3)0l. Really, for any LNDR transducer 91 and NH trans-

ducer 23, by Lemma 3 of [1], T9Ios='r«HOTs and it can easily be verified that in this 
case 21 o 23 is a UNDR transducer. Conversely, given a UNDR transducer fi, 
with the help of the usual relabeling technique (see, for example, Lemma 3.1 in [2], 
pp. 155) we can construct an LNDR transducer 91 and an NH transducer 23 with 
xc=T3,oTi8. Thus Theorem 3 can be given in the following form as well 

Theorem 15. For any m S l , aUJf9)0lm<^(!lU/'Q>8ft,m+x. 
The first problem, presented at the beginning of this section is answered by 

Theorem 16. [S] is an infinite set. 

Proof. Immediately follows from Theorem 3. • 
Now we deal with the second problem. The following lemma can be proved. 

Lemma 17. There exists an NDR transducer 91=(F, {a, b), F\ P, a) such that 
for any km\. 

4 Acta Cybernetica Vffl/2 



168 S. Vágvölgyiand Z. Fülöp: 

Proof. Let 91 be determined by the following conditions: 
(a) F= F0UF2, F0 = {#}, F2 = {/2}, 
(b) F ' = f í U f í U r „ F'0 = {#}, F'z = {/,}, F'3 = {g3}, 
(c) P is the set of the rules : 

( i ) Ű # - # , £ > # - * - # , 

( i i ) ö / ü C * ! , Xs) - g 3 ( b x l 5 flXx, bx2), bf2(xx, x 2 ) -+f2(bx1,bx2). 
Let Pm and g m be defined in the same way as in the proof of Theorem 3. It is 

not difficult to verify that for each m ^ l , (Pm, 
Moreover, let Qm be written in the form 

m+1 times _ ' 

Qm(x!,x2,x2, ...,xm+1, ...,xm+1) where QmffF,n (n = l + 2 + . . . + m + l). 

Then we can say that for any r l 5 . . . , tm+1fTF m times 

i p m i t 1 , •••> 'm + l ) , Q m ( ' l , ' 2 , h i •••> 'm + l , •••> 'm + l> 'm + l ) ) £ T 2 l 

holds where t'm¥1=r<a(tm+1). Using this notation, the following lemma can be 
proved in a similar way as Lemma 4. Therefore we omit the proof. 

Lemma 18. If 2 is an NDR transducer with T9i=Tfl then for each m S l 
(Pm, Qm)£?'e holds. • 

Now we can complete the proof of Lemma 17. Suppose that 
x^X^jV^SAoJÍXf 

for some k^l. Then for each if [2k] there exists a DR transducer 91— 
=(F'~1, A{, F', Pit at) with properties (a)—(c) of (6) and T ^ T ^ O ...oTffljlt. Let 
m be chosen such that k<m. It follows from Lemmas 2 and 18 that 
(Pm, őm)íTá1° However, if we follow the proof of Theorem 3 from (7) 
then we see in Lemma 14 that this is a contradiction. This ends the proof of 
Lemma 17. • 

The last theorem is an immediate consequence of Lemma 17. 
eo 

Theorem 19. U {J^JfQStoJfXf^JfQ» . 
t=i 
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