EBE: a language for specifying the expected behavior of programs during debugging

Nguyen Huu Chien

1. Introduction

In [1] Bruegge B. and Hibbard P. used GPEs (Generalized Path Expression) for specifying expected behavior of programs. GPEs are slightly extended version of a BPE (Basic Path Expression) with predicates and counters.

A $B P E$ is a regular expression with operators sequencing(;), exclusive selection(+) and repetition($*$). The operands, called PFs (Path Function), are the names of statements or groups of statements defined in the source program. For each $P F$ two counters are defined: the counters $A C T$ and TERM. These represent the activation and termination number of a $P F$ respectively. Predicate is a logical expression involving the counters and the variables of the program and debugger. $B P E$ is extended by associating predicates with $P F$ s.

In this paper we extended GPE by adding the operator shuffle (4). This does not increase the power of GPEs, but we can describe the expected behavior of a program in a simpler way. In the next sections we define the syntax and semantics of the extended GPEs, called EBEs (Expected Behavior Expression). The purpose of $E B E$ s is to specify the order of execution of $P F \mathrm{~s}$, the semantics of $E B E \mathrm{~s}$ therefore can be defined by specifying a set of actual behaviors that are valid with respect to a given $E B E$. In section IV we discuss some properties of $E B E s$. According to the syntax and semantics we introduce the syntactical and semantical equivalence of $E B E$ s. A sufficient condition for the semantical equivalence of two $E B E s$ is given. It is shown that the syntactical equivalence is more powerful than the semantical equivalence. It is also proved that EBEs are not more powerful than GPEs. In section V we present an implementation of $E B E$. The implementation is formally defined omitting details of actual implementation, and then its semantics is also defined similarly to that of $E B E$ s, that is, by specifying a set of actual behaviors that are valid with respect to a given implementation. Correctness of the implementation is proved by showing a given $E B E$ and its implementation recognize the same set of actual behaviors.

In order to make an implementation effective it is necessary to reduce EBEs. We give some rules for reducing $E B E$ s in section VI.

II．The syntax of EBEs

Assume that the notions〈identifier〉，〈integer number〉 and 〈arithmetic expres－ sion are known．The other notions are defined in terms of the above ones．
＜path function＞：：＝〈procedure name〉

```
〈procedure name)::=<identifier〉
\(\langle\) counter \(\rangle::=A C T(\langle\) procedure name \(\rangle) \mid T E R M(\langle\) procedure name \(\rangle)\)
\(\langle\) counter exp \(\rangle::=\langle\) counter \() \mid\langle\) integer variable \(\rangle \mid\)
                                    <integer constant \(\rangle \mid(\langle\) counter exp \(\rangle) \mid\)
                                    \(\langle\) counter exp \(\rangle\langle\) binary op \(\rangle\langle\) counter exp \(\rangle\)
\(\langle\) binary op \(\rangle::=+|-| \times\)
(integer variable)::=〈identifier〉
\(\langle\) integer constant \(\rangle::=\langle\) integer number〉
\(\langle\) counter rel \(\rangle::=\langle\) counter exp \(\rangle\langle\) rel \(\rangle\langle\) counter exp \(\rangle\)
\(\langle\) arithmetic rel \(\rangle::=\langle\) arithmetic expression \(\rangle\langle r e l\rangle\)
                                    (arithmetic expression)
\(\langle\) rel \(\rangle::=<|>|=|\leqq| \geqq\)
\(\langle\) predicate \(\rangle::=\langle\) counter rel \(\rangle\langle\langle\) arithmetic rel \(\rangle\rangle(\langle\) predicate \(\rangle) \mid\)
                                    \(\langle\) predicate \(\rangle\langle\) logic op \(\rangle\langle\) predicate \(\rangle \mid\urcorner\langle\) predicate \(\rangle\)
\(\langle\) logic op \(\rangle:=\wedge|\vee| \rightarrow\)
\(\langle\) operand \(\rangle::=\langle\) path function \(\rangle\langle\) path function \(\rangle[\langle\) predicate \(\rangle]\)
\(\langle E B E\rangle:==\begin{aligned} & \text { operand }\rangle|(\langle E B E\rangle)|\langle E B E\rangle ;\langle E B E\rangle|\langle E B E\rangle+\langle E B E\rangle| \\ & E B E\rangle * \mid\langle E B E\rangle \Delta\langle E B E\rangle\end{aligned}\)
```

Let E be an $E B E$ ，we define the language $L(E)$ as follows：
If $E=o$ ，where o an operand，then $L(E)=\{o\}$ ．Let $L 1=L(E 1), L 2=$ $=L(E 2)$ ，then
$L(E 1 ; E 2)=L 1 L 2, L(E 1+E 2)=L 1+L 2, L(E 1 *)=L 1 *$,
$L(E 1 \Delta E 2)=L 1 \Delta L 2=\left\{o_{1} o_{1}^{\prime} \ldots o_{n} o_{n}^{\prime} \mid o_{1} \ldots o_{n} \in L 1\right.$ and $o_{1}^{\prime} \ldots o_{n}^{\prime} \in L 2$ ，it may happen that o_{i} and o_{j}^{\prime} are $\left.\varepsilon\right\}$ ．
Now we give some examples of $E B E s$ ．

Example．

Initstack；（Push［TERM（Push）－TERM（Pop）＜N］＋
Pop $[$ TERM $($ Push $)-$ TERM $($ Pop $)>0]+$
Top $[$ TERM $($ Push $)-T E R M(P o p)>o]) *$ ．
This $E B E$ specifies an expected behavior of the program which states the operational constraints on a bounded stack of length N ：first the procedure Initstack has to be called．One of the following can then happen ：either procedure Push can be called if the size of the stack is smaller than N ，or Top or Pop can be called if the size of the stack is larger than o ．

Example．The $E B E$

$$
(p ; q) \Delta(r ; s)
$$

is used to look for activation of the procedure p when p has been called 5 times and the value of the variable A is 4 .

Example. The $E B E$

$$
p ; q \Delta r ; s
$$

permits possible sequences of the execution of the procedures p, q, r and s as follows:
pqrs, prqs, prsq, rpsq, rpqs, rspq.

III. The semantics of EBEs

First we define some notions.
Let $O B$ be an arbitrary set (representing a set of all data objects), P a finite set of procedures, and $P^{\prime} \subset P$.

A state is a pair $\langle S, c o u\rangle$, where $S \subset O B$, and $c o u=\left\{a_{p}, t_{p} \mid p \in P^{\prime}\right\} \subset N+=$ $=\{0,1,2, \ldots\}$ (the numbers a_{p} and t_{p} represent the activation and termination number of the procedure p), and the "cou" is called counter-state.

A concrete (actual) event is an activation of the procedure p at a state $\langle S, c o u\rangle$. We denote it by $e_{c}=\langle p, S, c o u\rangle$.

A concrete behavior B is a sequence of concrete events $e_{c}^{1} \ldots e_{c}^{n}$. Let \mathbf{B} be the set of all concrete behaviors.

A computational system is a 5-tuple $\left\langle O B, P, P^{\prime}, f_{a}, f_{t}\right\rangle$, where f_{a} and f_{t} are maps: $\mathbf{B} \rightarrow\left\{g \mid g\right.$ is function, $\left.g: P^{\prime} \rightarrow N+\right\}$ which are defined as follows:

The definition of $f_{a}: f_{a}(\emptyset)(p)=0$ for all $p \in P^{\prime}$,

$$
\begin{aligned}
f_{a}(B\langle p, S, \operatorname{cou}\rangle)\left(p^{\prime}\right) & =f_{a}(B)(p)+1 \quad \text { if } \quad p^{\prime}=p \\
& =f_{a}(B)\left(p^{\prime}\right) \text { otherwise, } p^{\prime} \in P^{\prime}, B \in \mathbf{B} .
\end{aligned}
$$

The definition of $f_{t}: f_{t}(\emptyset)(p)=0$ for all $p \in P^{\prime}$,

$$
\begin{aligned}
f_{t}(B\langle p, S, \operatorname{cou}\rangle)\left(p^{\prime}\right) & =f_{t}(B)(p)+1 \quad \text { if } \quad p^{\prime}=p \\
& =f_{t}(B)\left(p^{\prime}\right) \text { otherwise, } p^{\prime} \in P^{\prime}, B \in \mathbf{B} \quad(\emptyset \text { is the empty sequence }) .
\end{aligned}
$$

Let E be an $E B E$, then
$P_{E}=\{p \mid p$ is a path function in $E\}$,
$V_{E}=\{v \mid v$ is variable in E, and $v \neq A C T$ and $v \neq T E R M\}$,
$C_{E}=\{c \mid c$ is constant in $E\}$, assume that $C_{E} \subset O B$,
$A T_{E}=\left\{A C T(p), T E R M(p) \mid p \in P^{\prime}\right\}$,
$Q_{E}=\{q \mid q$ is predicate in $E\}$.
An abstract event e_{a} is a 4-tuple $\left\langle p, q, V_{E}, A T_{E}\right\rangle$, where $p \in P_{E}, q \in Q_{E}$.
An abstract event expression $E a$ of E is an expression obtained as follows. All operands $p[q]$ or p in E are substituted by abstract events $e_{a}=\left\langle p, q, V_{E}, A T_{E}\right\rangle$ or $e_{a}=\left\langle p\right.$, true $\left., V_{E}, A T_{E}\right\rangle$ respectively.

Let $e_{c}=\langle p, s, c o u\rangle$, then the counter-state "cou" and the maps f_{a} and f_{t} match under a concrete behavior B, if $a_{p}=f_{a}\left(B e_{c}\right)(p), a_{p^{\prime}}=f_{a}(B)\left(p^{\prime}\right), p^{\prime} \in P_{E} \backslash\{p\}$, and $t_{p^{\prime}}=f_{t}(B)\left(p^{\prime}\right), p^{\prime} \in P_{E}$. This fact is denoted by Matchs $\left(\right.$ cou, $\left.f_{a}, f_{t}, B\right)$.

An Interpretation is a function $I: V_{E} \cup C_{E} \cup A T_{E} \rightarrow O B \cup N+$ such that $I(v) \in O B$ for $v \in V_{E}, I(c) \in O B$ for $c \in C_{E}, I(v) \in N+$ for $v \in A T_{E}$ and I preserves constants and usual arithmetic operators, that is
(1) $I(c)=c$ for all $c \in C_{E}$,
(2) $I(\exp 1$ op $\exp 2)=I(\exp 1)$ op $I(\exp 2)$, where $o p \in\{+,-, \times, /, \uparrow\}$.

A concrete event $e_{c}=\langle p, S, c o u\rangle$ and an abstract event $e_{a}=\left\langle p^{\prime}, q, V_{E}, A T_{E}\right\rangle$ match under an interpretation I, if $p=p^{\prime}$ and $\left\{I(v) \mid v \in V_{E}\right\} \subset S$ and $I\left(A C T\left(p^{\prime}\right)\right)=a_{p^{\prime}}$, $I\left(T E R M\left(p^{\prime}\right)\right)=t_{p^{\prime}}$ for all $p^{\prime} \in P_{E}$. This is denoted by Matche $\left(e_{c}, e_{a}, I\right)$.

Now we introduce the sets $R, B E$ and $E N$ for $E a$. First we supply the abstract events of $E a$ with indexes $1,2, \ldots$ continuously, in such a manner that any e_{a} should receive different indexes at different occurrences. If the index of e_{a} is i, then $e_{a}(i)$ denotes an indexed event of e_{a}, and the resulting expression is called an indexed expression of $E a$ and denoted \hat{E}. Then the sets $R(\hat{E}), B E(\hat{E})$ and $E N(\hat{E})$ are defined as follows.
(1) If $\hat{E}=e_{a}(k)$ then $R(\hat{E})=\emptyset, B E(\hat{E})=E N(\hat{E})=\left\{e_{a}(k)\right\}$.
(2) Assume that $R i=R(\hat{E} i), B E i=B E(\hat{E} i)$ and $E N i=E N(\widehat{E i}), i=1,2$, then

$$
\begin{aligned}
& R(\widehat{E 1 ; E 2})=R 1 \cup R 2 \cup(E N 1 \times B E 2) ; \quad B E(\widehat{E 1 ; E 2})=B E 1, \\
& B E(\widehat{E 1 * ; E 2})=B E 1 \cup B E 2,
\end{aligned}
$$

$E N(\widehat{E 1 ; E 2})=E N 2$,
$\widehat{R(E 1+E 2)}=R 1 \cup R 2$,

$$
E N(\widehat{E 1 ; E 2} *)=E N 1 \cup E N 2
$$

$$
B E(\widehat{(E 1+E 2)}=B E 1 \cup B E 2
$$

$$
E N(\widehat{(E 1+E 2)}=E N 1 \cup E N 2
$$

$$
\begin{aligned}
& R(\widehat{(E 1 *})=R 1 \cup(E N 1 \times B E 1), \quad B E(\widehat{E 1 *})=B E 1, \quad E N(\widehat{E 1 *})=E N 1, \\
& R \widehat{(E 1 \Delta E 2)}=R 1 \cup R 2 \cup(\bar{R} 1 \times \bar{R} 2) \cup(\bar{R} 2 \times \bar{R} 1)
\end{aligned}
$$

where $\vec{R}=\vec{R} \cup \vec{R}$, and $\vec{R}=\left\{a \mid\left(a^{\prime}, a\right) \in R\right\}$ and $\vec{R}=\left\{a \mid\left(a, a^{\prime}\right) \in R\right\}$,

In the following if $\left(e_{a}(i), e_{a}^{\prime}(k)\right) \in R(\hat{E})$, then it is written $e_{a}(i)>e_{a}^{\prime}(k)$.
Let $\operatorname{Exp}(\hat{E})=\left\{e_{a}(i) \mid e_{a}(i)\right.$ is an indexed event in $\left.\hat{E}\right\}$.
Let $e_{a}(i) \in \operatorname{Exp}(\hat{E})$ and $M \subset \operatorname{Exp}(\hat{E})$, then $\dot{e}_{a}(i)=\left\{e_{a}^{\prime}(k) \mid e_{a}(i)>e_{a}^{\prime}(k)\right\}$, and $\vec{M}=\bigcup_{e_{a} \in M} \dot{\vec{e}}_{a}(i)$.

From the construction of the sets $R(\hat{E}), E N(\hat{E})$ and $B E(\hat{E})$ it is easy to see the following properties.

Statement 1.

a) $e_{a}(k) \in B E(\hat{E})$ iff there is a u such that $e_{a}(k) u \in L(\hat{E})$, $e_{a}(k) \in E N(\hat{E})$ iff there is a u such that $u e_{a}(k) \in L(\hat{E})$,
$e_{a}(k)>e_{a}^{\prime}(n)$ iff there are u, v such that $u e_{a}(k) e_{a}^{\prime}(n) v \in L(\hat{E})$,
b) $e_{a}^{\prime}\left(k_{1}\right)>\ldots>e_{a}^{n}\left(k_{n}\right), e_{a}^{1}\left(k_{1}\right) \in B E(\hat{E})$ iff there is u such that $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n}\left(k_{n}\right) u \in L(\hat{E})$.
Example. Let $E((p[q]+g[r]) ; f *) *$. Then

$$
\begin{aligned}
& E a=\left(\left(e_{a}^{1}+e_{a}^{2}\right) ; e_{a}^{3} *\right) * \\
& \hat{E}=\left(\left(e_{a}^{1}(1)+e_{a}^{2}(2)\right) ; e_{a}^{3}(3) *\right) * \\
& B E(\hat{E})=\left\{e_{a}^{1}(1), e_{a}^{2}(2)\right\}, \quad E N(\hat{E})=\left\{e_{a}^{1}(1), e_{a}^{2}(2), e_{a}^{3}(3)\right\}, \\
& R(\hat{E})=\left\{\left(e_{a}^{1}(1), e_{a}^{3}(3)\right),\left(e_{a}^{2}(2), e_{a}^{3}(3)\right),\left(e_{a}^{3}(3), e_{a}^{3}(3)\right),\left(e_{a}^{1}(1), e_{a}^{1}(1)\right),\right. \\
& \left.\quad\left(e_{a}^{2}(2), e_{a}^{2}(2)\right),\left(e_{a}^{3}(3), e_{a}^{1}(1)\right),\left(e_{a}^{3}(3), e_{a}^{2}(2)\right),\left(e_{a}^{2}(2), e_{a}^{1}(1)\right),\left(e_{a}^{1}(1), e_{a}^{2}(2)\right)\right\},
\end{aligned}
$$

where $e_{a}^{1}=\left\langle p, q, V_{E}, A T_{E}\right\rangle, e_{a}^{2}=\left\langle g, r, V_{E}, A T_{E}\right\rangle e_{a}^{3}=\left\langle f\right.$, true, $\left.V_{E}, A T_{E}\right\rangle$.
Definition. Let $R=\left\langle O B, P, P^{\prime}, f_{a}, f_{t}\right\rangle$ be a computational system and E an $E B E$ such that $P^{\prime}=P_{E}$. The semantics of E is defined by the predicate Valid $: \mathbf{B} \rightarrow$ $\rightarrow\{$ true, false $\}$ with the partial map $\operatorname{Next}_{E}: \mathbf{B} \rightarrow\{\vec{M} \mid M \subset \operatorname{Exp}(\hat{E})\}$, in such a way that $\operatorname{Next}_{E}(B)$ is defined iff $\operatorname{Valid}_{E}(B)=$ true. The Valid_{E} and Next_{E} are defined recursively as follows.
(1) Let $e_{c}=\langle p, S$, cou \rangle, then $\operatorname{Valid}_{E}\left(e_{c}\right)=\operatorname{Matchs}\left(\operatorname{cou}, f_{a}, f_{t}, \emptyset\right) \& M \neq \emptyset$, where $M=\left\{e_{a}(i) \mid e_{a}(i) \in B E(\hat{E}) \& e_{a}=\left\langle p, q, V_{E} A T_{E}\right\rangle \&(\exists I)\left(\operatorname{Matche}\left(e_{c}, e_{a}, I\right) \& \operatorname{Sat}(q, I)\right)\right.$
$=t r u e\}$ (Sat is defined later). And $\operatorname{Next}_{E}\left(e_{c}\right)$ is defined iff $\operatorname{Valid}_{E}\left(e_{c}\right)=$ true, and then $\operatorname{Next}_{E}\left(e_{c}\right)=\bar{M}$.
(2) Let $e_{C}=\langle p, S$, cou \rangle and $B \in \mathbf{B}$, then
$\operatorname{Valid}_{E}\left(B e_{c}\right)=\operatorname{Valid}_{E}(B) \& \operatorname{Next}_{E}(B)=\vec{N} \& M a t c h s\left(c o u, f_{a}, f_{t}, B\right) \& M \neq \emptyset$, where $M=\left\{e_{a}(i) \mid e_{a}(i) \in \vec{N} \& e_{a}=\left\langle p, q, V_{E}, A T_{E}\right\rangle \&(\exists I)\left(\operatorname{Matche}\left(e_{c}, e_{a}, I\right) \& \operatorname{Sat}(q, I)\right)=\operatorname{true}\right\}$. And $\operatorname{Next}_{E}\left(B e_{c}\right)$ is defined iff $\operatorname{Valid}_{E}\left(B e_{c}\right)=$ true, and then $\operatorname{Next}_{E}\left(B e_{c}\right)=\vec{M}$.

The definition of the predicate Sat. $\operatorname{Sat}(q, I)$ is defined according to the syntax of the predicate q.

$$
\begin{aligned}
& \text { Sat }(\langle\text { counter exp }\rangle\langle\text { rel }\rangle\langle\text { counter exp }\rangle, I)= \\
& \quad=I(\langle\text { counter exp }\rangle)\langle\text { rel }\rangle I(\langle\text { counter exp }\rangle) \\
& \text { Sat }(\langle\text { arithmetic exp }\rangle\langle\text { rel }\rangle\langle\text { arithmetic exp }\rangle, I)= \\
& \quad=I(\langle\text { arithmetic exp }\rangle)\langle\text { rel }\rangle I(\langle\text { arithmetic exp }\rangle) \\
& \text { Sat }(\langle\text { predicate }\rangle\langle\text { logic op }\rangle\langle\text { predicate }\rangle, I)= \\
& \quad=\text { Sat }(\langle\text { predicate }\rangle, I)\langle\text { logic op }\rangle \text { Sat }(\langle\text { predicate }\rangle, I) \\
& \text { Sat }(7\langle\text { predicate }\rangle, I)=\rceil \text { Sat }(\langle\text { predicate }\rangle, I) .
\end{aligned}
$$

Let $\mathbf{B}(E)=\left\{B \mid B \in \mathbf{B}\right.$ and $\operatorname{Valid}_{E}(B)=$ true $\}$.
From the definition of the semantics of $E B E$ s it is easy to see the following fact.

Fact 1. Let $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, c o u_{i}\right\rangle, i=1, \ldots, n$, then
$\operatorname{Valid}_{E}(B n)=$ true iff
$\operatorname{Matchs}\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B_{0}=\emptyset$, and there is a sequence $\{M i\}_{i=1}^{n}$ such that

$$
\begin{aligned}
M i & =\left\{e_{a}(k) \mid e_{a}(k) \in \vec{M}_{i-1} \& e_{a}=\right. \\
& =\left\langle p_{i}, q, V_{E}, A T_{E}\right\rangle \& \exists I\left(\operatorname{Matche}\left(e_{c}^{i}, e_{a}, I\right) \& \operatorname{Sat}(q, I)=\operatorname{true}\right\} \neq \emptyset \\
\text { and } & \operatorname{Next}_{E}(B i)=\overrightarrow{M i}, i=1, \ldots, n, \overrightarrow{M O}=B E(\hat{E}) .
\end{aligned}
$$

IV. Some properties of EBE

Definition. Two $E B E s E$ and E^{\prime} are syntactically equivalent iff $L(E)=L\left(E^{\prime}\right)$.
Definition. Two $E B E S$, E and E^{\prime} are semantically equivalent iff $\mathbf{B}(E)=\mathbf{B}\left(E^{\prime}\right)$.
Theorem 1. If E and E^{\prime} are $E B E$ such that $L(E) \subset L\left(E^{\prime}\right)$ and for all $u \in L\left(E^{\prime}\right) \backslash L(E)$ there are $v \in L(E)$ and w for which $v=u w$ then E and E^{\prime} semantically equivalent.

Proof. According to the construction of $E a$ we can identify $E a$ with E, thus $L(E a)$ with $L(E)$. First we prove the following facts.

For any E and $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, \operatorname{cou}_{i}\right\rangle$.
Fact 2. If there is a sequence $\{M i\}_{i=1}^{n}$ such that

$$
\begin{gathered}
M i=\left\{e_{a}(k) \mid e_{a}(k) \in \vec{M}_{i-1} \& e_{a}=\right. \\
\left.=\left\langle p_{i}, q, \dot{V}_{E}, A T_{E}\right\rangle \& \exists I\left(\operatorname{Matche}\left(e_{c}^{i}, e_{a}, I\right) \& \operatorname{Sat}(q, I)\right)=\operatorname{true}\right\} \neq \emptyset \\
i=1, \ldots, n, \overrightarrow{M O}=E(B \hat{E}),
\end{gathered}
$$

then there is a sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n}, e_{a}^{i}=\left\langle p_{i}, q_{i}, V_{E}, A T_{E}\right\rangle$, for which $e_{a}^{i}\left(k_{i}\right) \in M i$, $i=1, \ldots, n$ and $e_{a}^{i}\left(k_{1}\right)>\ldots>e_{a}^{n}\left(k_{n}\right)$.

The existence of the desired sequence is shown by induction as follows.
Since $M n \neq \emptyset$, thus there is an $e_{a}^{n}\left(k_{n}\right) \in M n, e_{a}^{n}=\left\langle p_{n}, q_{n}, V_{E}, A T_{E}\right\rangle$. From the definition of $M n$ there is an $e_{a}^{n-1}\left(k_{n-1}\right) \in M_{n-1}$ for which $e_{a}^{n-1}\left(k_{n-1}\right)>e_{a}^{n}\left(k_{n}\right), e_{a}^{n-1}=$ $=\left\langle p_{n-1}, q_{n-1}, V_{E}, A T_{E}\right\rangle$. Assume that the sequence $\left\{e_{a}^{j}\left(k_{j}\right)\right\}_{j=i}^{n}, i>1$, is constructed. Then from the definition of $M i$ there is an $e_{a}^{i-1}\left(k_{i-1}\right) \in M_{i-1}$ for which $e_{a}^{i-1}\left(k_{i-1}\right)>e_{a}^{i}\left(k_{i}\right)$. So we get the desired sequence.

Fact 3. If there is a sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n}, e_{a}^{i}=\left\langle p_{i}, q_{i}, V_{E}, A T_{E}\right\rangle$, such that there is a u for which $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n}\left(k_{n}\right) u \in L(\hat{E})$, and for each $i \leqq n$ there is an I for which Matche $\left(e_{c}^{i}, e_{a}^{i}, I\right)$ and $\operatorname{Sat}\left(q_{i}, I\right)=$ true, then $e_{a}^{i}\left(k_{i}\right) \in M i, i=1, \ldots, n$ (Mi is defined in Fact $2, i=1, \ldots, n$).

This can easily be proved by induction on $i \leqq n$ (using Statement 1).
Now we prove Theorem 1.
We have to prove that $\mathbf{B}(E)=\mathbf{B}\left(E^{\prime}\right)$.
From Fact 1 it is sufficient to prove that for any $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, c o u_{i}\right\rangle$, $i=1, \ldots, n$, the following holds.

$$
(+)\left\{\begin{array}{l}
\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B o=\emptyset, \text { and there is } \\
\text { a sequence }\{M i\}_{i=1}^{n} \text { such that } \\
M i=\left\{e_{a}(k) \mid e_{a}(k) \in \vec{M}_{i-1} \& e_{a}=\left\langle p_{i}, q, V_{E}, A T_{E}\right\rangle \& \exists I\left(\operatorname{Matche}\left(e_{c}^{i}, e_{a}, I\right) \&\right.\right. \\
\quad \operatorname{Sat}(q, I))=\operatorname{true}\} \neq \emptyset, \\
\text { and } \operatorname{Next}_{E}(B i)=\overrightarrow{M i}, i=1, \ldots, n, \overrightarrow{M O}=B E(\hat{E}) .
\end{array}\right.
$$

iff

$$
(++)\left\{\begin{array}{l}
\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B o=\emptyset, \text { and there is } \\
\text { a sequence }\{N i\}_{i=1}^{n} \text { such that } \\
N i=\left\{e_{a}(1) \mid e_{a}(1) \in \vec{N}_{i-1} \& e_{a}=\left\langle p_{i}, q, V_{E^{\prime}}, A T_{E^{\prime}}\right\rangle \& \exists I\left(\text { Matche }\left(e_{c}^{i}, e_{a}, I\right) \&\right.\right. \\
\quad \operatorname{Sat}(q, I))=\text { true }\} \neq \emptyset, \\
\text { and } N \operatorname{Next}_{E^{\prime}}(B i)=\overrightarrow{N i}, i=1, \ldots, n, \overrightarrow{N \mathrm{No}}=B E\left(\hat{E}^{\prime}\right) .
\end{array}\right.
$$

This is shown by induction on n.

1) It is easy to show that the statement holds for $n=1$.
2) Assume that the statement holds for n. Now we prove that the statement holds for $n+1$ too.
$(+) \Rightarrow(++)$. Assume that $(+)$ holds for $n+1$. Then $(++)$ holds for n. We have yet to prove that $N_{n+1} \neq \emptyset$ and $\operatorname{Next}_{E^{\prime}}\left(B_{n+1}\right)=\vec{N}_{n+1}$.

According to Fact 2 there is a sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n+1}, e_{a}^{i}=\left\langle p_{i}, q_{i}, V_{E}, A T_{E}\right\rangle$, for which $e_{a}^{i}\left(k_{i}\right) \in M i, i=1, \ldots, n+1$, and $e_{a}^{1}\left(k_{1}\right)>\ldots>e_{a}^{n+1}\left(k_{n+1}\right)$. Since $e_{a}^{1}\left(k_{1}\right) \in B E(\hat{E})$, thus, by Statement 1 , there is a u for which $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n-1}\left(k_{n+1}\right) u \in L(\hat{E})$ which implies that there is a v for which $e_{a}^{1} \ldots e_{a}^{n+1} v \in L(E a)$. Since $L(E a) \subset L\left(E^{\prime} a\right)$, thus $e_{a}^{1} \ldots e_{a}^{n+1} v \in L\left(E^{\prime} a\right)$ which implies that there are a sequence $\left\{l_{i}\right\}_{i=1}^{n+1}$ and a u^{\prime} for which $e_{a}^{1}\left(l_{1}\right) \ldots e_{a}^{n+1}\left(l_{n+1}\right) u^{\prime} \in L\left(\hat{E}^{\prime}\right)$. Then, by Fact 3 , we have $e_{a}^{i}\left(l_{i}\right) \in N i$, $i=1, \ldots, n+1$. So $N_{n+1} \neq \emptyset$. Since (++) holds for n, thus $\operatorname{Next}_{E^{\prime}}(B n)=N_{n}$ and, by Fact 1, $\operatorname{Valid}_{E^{\prime}}(B n)=$ true, therefore $\operatorname{Valid}_{E^{\prime}}\left(B_{n+1}\right)=$ true (by the definition of Semantics of EBEs) which implies $\operatorname{Next}_{E^{\prime}}\left(B_{n+1}\right)$ is defined and is \vec{N}_{n+1}.
$(++) \Rightarrow(+)$. Assume that $(++)$ holds for $n+1$. Then $(+)$ holds for n. We have yet to prove that $M_{n+1} \neq \emptyset$ and $\operatorname{Next}_{E}\left(B_{n+1}\right)=\dot{\vec{M}}_{n+1}$. Similarly to the above argument we have the sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n+1}, e_{a}^{i}=\left\langle p_{i}, q_{i}, V_{E^{\prime}}, A T_{E^{\prime}}\right\rangle$, for which $e_{a}^{i}\left(k_{i}\right) \in N i, i=1, \ldots, n+1$, and there is a v such that $e_{a}^{1} \ldots e_{a}^{n+1} v \in L\left(E^{\prime} a\right)$. We have two cases:

$$
\begin{array}{ll}
\text { either } & e_{a}^{1} \ldots e_{a}^{n+1} v \in L(E a) \\
\text { or } & e_{a}^{1} \ldots e_{a}^{n+1} v \in L\left(E^{\prime} a\right) \backslash L(E a) .
\end{array}
$$

In the second case there is a v^{\prime} for which $e_{a}^{1} \ldots e_{a}^{n+1} v v^{\prime} \in L(E a)$. So in both cases we have that there are a sequence $\left\{l_{i}\right\}_{i=1}^{M+1}$ and w for which $e_{a}^{1}\left(l_{1}\right) \ldots e_{a}^{n+1}\left(l_{n+1}\right) w \in L(\hat{E})$. Therefore by Fact $3 e_{a}^{i}\left(l_{i}\right) \in M i, i=1, \ldots, n+1$. So $M_{n+1} \neq \emptyset$. Again by the same argument seen above we get that $\operatorname{Next}_{E}\left(B_{n+1}\right)=\vec{M}_{n+1}$.

Theorem 2. a) if E and E^{\prime} are syntactically equivalent then they are semantically equivalent too.
b) There exist two $E B E S E$ and E^{\prime} which are semantically equivalent but not syntactically equivalent.

Proof. a) It is a corollary of Theorem 1.
b) In order to prove this we give an example.

Let $E=p_{1}+\left(p_{1} ; p_{2}\right)$ and $E^{\prime}=p_{1} ; p_{2}$, it is clear that E and E^{\prime} satisfy Theorem 1, therefore E and E^{\prime} are semantically equivalent but not syntactically equivalent because $L(E) \neq L\left(E^{\prime}\right)$.

An EBE is a GPE (Generalised Path Expression) if the operator Δ does not occur in it.

Theorem 3. For every $E B E E$ there exists a $G P E E^{\prime}$ such that E and E^{\prime} are semantically equivalent.

Proof. First we construct an automaton M for which $L(M)=L(E)$. In order to do this we define the sets $R(\hat{E}), B E(\hat{E})$ and $E N(\hat{E})$ similarly to those of Section III. The automaton $M=\left(\Sigma, S t, s_{0}, \delta, F\right)$ is then constructed as follows. Let $\Sigma=\left\{e_{a} \mid e_{a}\right.$ is in $\left.E a\right\}=\left\{e_{a}^{1}, \ldots, e_{a}^{n}\right\}$. Let s_{0} be an arbitrary symbol. Then $\delta\left(s_{0}, e_{a}^{i}\right)=$ $=\left\{e_{a}^{i}(k) \mid e_{a}^{i}(k) \in B E(\hat{E})\right\}=s_{1}^{i}$. So we have defined states $s_{0}, s_{1}^{1}, s_{1}^{2}, \ldots, s_{1}^{n}$ of St. Suppose that a state s of $S t$ is defined, then

$$
\delta\left(s, e_{a}^{i}\right)=\left\{e_{a}^{i}(k) \mid \exists e_{a}^{j}(m)\left(e_{a}^{j}(m) \in s \& e_{a}^{j}(m)>e_{a}^{i}(k)\right)=\text { true }\right\}, \quad i=1,2, \ldots, n .
$$

Finally let

$$
F^{\prime}=\{s \mid s \cap E N(\hat{E}) \neq \emptyset\} \text { and } F=F^{\prime} \cup\left\{s_{0}\right\} \text { if } \varepsilon \in L(E a)=F,
$$

and $F=F^{\prime}$, otherwise.
It is easy to see that $L(M)=L(E a)$. It is known that there is a regular expression E^{\prime} over Σ for which $L(M)=L\left(E^{\prime}\right)$. Thus we have $L(E a)=L\left(E^{\prime}\right)$. From the construction of $E a$ we can identify $E a$ with E, thus $L(E a)$ with $L(E)$. Therefore, by Theorem 2, E and E^{\prime} are semantically equivalent.

V. Implementation of EBE

The implementation of $E B E$ is defined using the concept of automaton.
Let $R=\left\langle O B, P, P^{\prime}, f_{a}, f_{t},\right\rangle$ be a computational system. Let $Q=\{q \mid q$ is predicate, $q: O B^{\prime} \times\left\{f_{a}(B)(p) \mid B \in \mathbf{B}, p \in P^{\prime}\right\}^{m} \times\left\{f_{t}(B)(p) \mid B \in \mathbf{B}, p \in P^{\prime}\right\}^{n} \rightarrow\{$ true, false $\}$, and $M=\left(\Sigma, S t, s_{0}, \delta, F\right)$ a deterministic finite automaton, where $\Sigma \subset P^{\prime} \times Q$. For all $p \in P^{\prime}$ the set Condition $(p)=\{\langle s, q\rangle\rangle \delta(s,\langle p, q\rangle)$ is defined $\}$ is called condition of the procedure p.

Definition. An Implementation is a set $I(M)=\left\{\langle p\right.$, Condition $\left.(p)\rangle \mid p \in P^{\prime}\right\}$. For simplicity we often omit the argument M.

Restriction.

It is assumed about the automaton M that if $s_{i}=\delta\left(s_{i-1}, b\right), b_{i}=\left\langle p_{i}, q_{i}\right\rangle$, $b_{i}=\left\langle p_{i}, q_{i}\right\rangle, i=1,2, \ldots, n$, then there is a u such that $b_{1} b_{2} \ldots b_{n} u \in L(M)$.

Now we define the semantics of Implementations.
Definition. Let I be an Implementation. The semantics of I is defined by the predicate Valid $_{I}$ with the partial map Next $_{I}$, where Valid $_{I}: \mathbf{B} \rightarrow\{$ true, false $\}$ and $\operatorname{Next}_{I}: \mathbf{B} \rightarrow 2^{\text {St }}$, in such a way that $\operatorname{Next}_{I}(B)$ is defined iff Valid $_{I}(B)=$ true. The Valid ${ }_{I}$ and $N e x t_{I}$ are defined recursively as follows.
(1) Let $e_{c}=\langle p, S, c o u\rangle$ be an actual event, then
$\operatorname{Valid}_{I}\left(e_{c}\right)=\operatorname{Matchs}\left(c o u, f_{a}, f_{t}, \emptyset\right) \& \exists\left\langle s_{0}, q\right\rangle\left(\left\langle s_{0}, q\right\rangle \in \operatorname{Condition}(p) \& \operatorname{Sat}\left(q, e_{c}, \emptyset\right)\right)$,
(Sat is defined later).
$\operatorname{Next}_{I}\left(e_{c}\right)$ is defined iff $\operatorname{Valid}_{I}\left(e_{c}\right)=$ true, and then
$\operatorname{Next}_{I}\left(e_{c}\right)=\left\{s \mid s \in S t \& \exists q\left(q \in Q \& s=\delta\left(s_{0},\langle p, q\rangle\right) \& S a t\left(q, e_{c}, \emptyset\right)\right)=\right.$ true $\}$.
(2) Let $e_{c}=\langle p, S, c o u\rangle$ and $B \in B$, then

$$
\operatorname{Valid}_{I}\left(B e_{c}\right)=\operatorname{Valid}_{I}(B) \& \operatorname{Next}_{I}(B)=
$$

$=G \& M a t c h s\left(c o u, f_{a}, f_{i}, B\right) \& \exists s \exists q(s \in G \& q \in Q \&\langle s, q\rangle \in \operatorname{Condition}(p) \&$

$$
\operatorname{Sat}\left(\left(q, e_{c}, B\right)\right)
$$

$\operatorname{Next}_{I}\left(B e_{c}\right)$ is defined iff $\operatorname{Valid}_{I}\left(B e_{c}\right)=$ true, and then $\operatorname{Next}_{I}\left(B e_{c}\right)=H$, where $H=\left\{s \mid s \in S t \quad \& \exists s^{\prime} \exists q\left(s^{\prime} \in G \& q \in Q \& s=\delta\left(s^{\prime},\langle p, q\rangle\right) \& \operatorname{Sat}(q, e, B)\right)=\right.$ true $\}$.

The definition of Sat. $\operatorname{Sat}\left(q, e_{c}, B\right)$ is defined simply as follows.
$\operatorname{Sat}\left(q, e_{c}, B\right)=q\left(S, f_{a}\left(B e_{c}\right)(p),\left\{f_{a}(B)\left(p^{\prime}\right) \mid p^{\prime} \in P^{\prime} \backslash\{p\}\right\},\left\{f_{t}(B)\left(p^{\prime}\right) \mid p^{\prime} \in P^{\prime}\right\}\right)$.
Similarly to Fact 1 it is easy to see the following fact (from the definition of the semantics of Implementation).

Fact 4. For any $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, \operatorname{cou}_{i}\right\rangle, \operatorname{Valid}_{I}(B n)=$ true iff
$\operatorname{Matchs}\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B o=\emptyset$, and there is a sequence $\left\{H_{i}\right\}_{i=1}^{n}$ so that

$$
H i=\left\{s \mid \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1} \& q \in Q \& s=\delta\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)\right)=\operatorname{true}\right\} \neq \emptyset
$$

and $\operatorname{Next}_{I}(B i)=H i, i=1, \ldots, n, H o=\left\{s_{0}\right\}$.
Let $\mathbf{B}(I)=\left\{B \mid B \in \mathbf{B}\right.$ and $\operatorname{Valid}_{1}(B)=$ true $\}$.
Definition. An Implementation of an $E B E E$ is an Implementation

$$
I=\left\{\langle p, \text { Condition }(p)\rangle \mid p \in P^{\prime}\right\} \text { such that } P^{\prime}=P_{E} \quad \text { and } \quad \mathbf{B}(I)=\mathbf{B}(E)
$$

Now we give an algorithm for transforming an $E B E E$ to its Implementation:

Algorithm.

1. Transforming E to the following: we substitute all operands $p[q]$ or p of E by $e=\langle p, q\rangle$ or $e=\langle p$, true \rangle respectively. The resulting expression is denoted by $E e$.
2. From $E e$ constructing an automaton $M=\left\langle\Sigma, S t, s_{0}, \delta, F\right\rangle$ as that of Theorem 3, where $\Sigma=\{e \mid e$ is in $E e\}$.
3. For all $p \in P_{E}$ constructing the set Condition (p), obtaining

$$
I=\left\{\langle P, \text { Condition }(p)\rangle \mid p \in P_{E}\right\} .
$$

Theorem 4. I is an Implementation of E.
Proof. First we prove the following facts. For any implementation I and actual behavior $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, \operatorname{cou}_{i}\right\rangle$

Fact 5. If there is a sequence $\{H i\}_{i=1}^{n}$ such that

$$
\begin{gathered}
H i=\left\{s \mid \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1} \& q \in Q \& s=\delta\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)\right)=\operatorname{true}\right\} \neq \emptyset, \\
i=1, \ldots, n, \quad H o=\left\{s_{0}\right\},
\end{gathered}
$$

then there are sequences $\left\{s_{i}\right\}_{i=0}^{n}$ and $\left\{e_{i}\right\}_{i=1}^{n}, e^{i}=\left\langle p_{i}, q_{i}\right\rangle$, for which $s_{i} \in H i, s_{i}=\delta\left(s_{i-1}, e^{i}\right)$ and $\operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=\operatorname{true}, i=1, \ldots, n$.

This can be proved by induction as follows. Since $H n \neq \emptyset$, there is an $s_{n} \in H n$. From the definition of $H n$ there are $s_{n-1} \in H_{n-1}$ and $e^{n}=\left\langle p_{n}, q_{n}\right\rangle$ for which $s_{n}=\delta\left(s_{n-1}, e^{n}\right)$ and $\operatorname{Sat}\left(q_{n}, e^{n}, B_{n-1}\right)=$ true. Assume that the sequences $\left\{s_{j}\right\}_{j=i}^{n}$ and $\left\{e^{j}\right\}_{j=i+1}^{n}$, are constructed. Then from the definition of Hi there are $s_{i-1} \in H_{i-1}$ and $e^{i}=\left\langle p_{i}, q_{i}\right\rangle$, for which $s_{i}=\delta\left(s_{i-1}, e^{i}\right)$, and $\operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=$ true. So we get the desired sequences.

Fact 6. If there are sequences $\left\{s_{i}\right\}_{i=0}^{n}$ and $\left\{e^{i}\right\}_{i=1}^{n}, e^{i}=\left\langle p_{i}, q_{i}\right\rangle$, for which $s_{i}=\delta\left(s_{i-1}, e^{i}\right)$ and $\operatorname{Sat}\left(q_{i}, e^{i}, B_{i-1}\right)=\operatorname{true}, i=1, \ldots, n$, then $s_{i} \in H i, i=0,1, \ldots, n$ (Hi is defined in Fact 5).

This can easily be proved by induction on $i \leqq n$.
Now we prove the Theorem. It is easy to see that:

1. The automaton M satisfies the Restriction.
2. $L(M)=L(E e)$.

Now we show that $\mathbf{B}(E)=\mathbf{B}(I)$. By Fact 1 and Fact 4 it is sufficient to prove that for any $E B E E$ and Implementation I if $B n=e_{c}^{1} \ldots e_{c}^{n}, e_{c}^{i}=\left\langle p_{i}, S_{i}, \operatorname{cou}\right\rangle_{i}$, $i=1,2, \ldots, n$, then

$$
(*)\left\{\begin{array}{l}
\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, B o=\emptyset, \text { and there is a } \\
\text { sequence }\{M i\}_{i=1}^{n} \text { such that } \\
M i=\left\{e_{a}(k) \mid e_{a}(k) \in \vec{M}_{i-1} \& e_{a}^{i}=\left\langle p_{i}, q, V_{E}, A T_{E}\right\rangle \& \exists \text { interpretation } I\right. \\
\left.\left(M a t c h e\left(e_{c}^{i}, e_{a}, I\right) \& \operatorname{Sat}(q, I)\right)=\operatorname{true}\right\} \neq \emptyset, \text { and } \operatorname{Next}_{E}(B i)=\overrightarrow{M i}, \\
i=1, \ldots, n, \overrightarrow{M 0}=B E(\hat{E})
\end{array}\right.
$$

iff

$$
\text { (**) }\left\{\begin{array}{l}
\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, \text { and there is a } \\
\text { sequence }\{H i\}_{i=1}^{\}_{i=1}} \text { such that } \\
H i=\left\{s \mid s \in S t \& \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1} \& q \in Q \& s=\delta\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)\right)\right. \\
=\operatorname{true}\} \neq \emptyset, \text { and } N e x t_{I}(B i)=H i, \quad i=1, \ldots, n, \quad H o=\left\{s_{0}\right\} .
\end{array}\right.
$$

From the construction of $E a$ and $E e$ we can identify $E a$ with $E e$ and therefore $L(E a)$ with $L(E e)$ too, so $L(E a)=L(E e)=L(M)$.

Now we prove that ($*$) iff $(* *)$ for any $B n$. This is shown by induction on n.
(1) It is easy to see that the statement holds for $n=1$.
(2) Assume that the statement holds for n.
$(*) \Rightarrow(* *)$. Suppose that (*) holds for $n+1$. Then ($*^{*}$) holds for n. We have yet to prove that $H_{n+1} \neq \emptyset$, and $\operatorname{Next}_{I}\left(B_{n+1}\right)=H_{n+1}$.

By Fact 2 we have a sequence $\left\{e_{a}^{i}\left(k_{i}\right)\right\}_{i=1}^{n+1}, e_{a}^{i}=\left\langle p, q_{i}, V_{E}, A T_{E}\right\rangle$, such that $e_{a}^{1}\left(k_{1}\right)>\ldots>e_{a}^{n+1}\left(k_{n+1}\right)$, and $e_{a}^{i}\left(k_{i}\right) \in M i, i=1, \ldots, n+1$. Therefore according to Statement 1 there is a u for which $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n+1}\left(k_{n+1}\right) u \in L(\hat{E})$ which implies that there is a v such that $e_{a}^{1} \ldots e_{a}^{n+1} v \in L(E a)$. Since $L(E a)=L(M)$ thus there exists a sequence $\left\{s_{i}\right\rangle_{i=0}^{n+1}$ such that $s_{i}=\delta\left(s_{i-1}, e^{i}\right)$, where $e^{i}=\left\langle p_{i}, q_{i}\right\rangle, i=1, \ldots n+1$. It is easy to see that for all $i \leqq n+1, \operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=$ true (from the definition of Matche, Matchs, interpretation $I, \operatorname{Sat}(q, I)$ and $\operatorname{Sat}\left(q, e_{c}, B\right)$). So by Fact 6 we have $s_{i} \in H i, i=1, \ldots, n+1$, that is $H_{n+1} \neq \emptyset$. Since (**) holds for n thus $N e x t_{I}(B n)=H n$ and, by Fact 4, Valid $(B n)=$ true. Therefore from the definition of the Semantics of Implementation $\operatorname{Valid}_{I}\left(B_{n+1}\right)=$ true which implies that $\operatorname{Next}_{I}\left(B_{n+1}\right)$ is defined and is H_{n+1}.
($*^{*}$) $\Rightarrow(*)$. Assume that (**) holds for $n+1$. Then (*) holds for n. We have yet to prove that $M_{n+1} \neq \emptyset$ and $\operatorname{Next}_{E}\left(B_{n+1}\right)=\vec{M}_{n+1}$.

According to Fact 5 we have the sequence $\left\{s_{i}\right\}_{i=0}^{n+1}$ and $\left\{e^{i}\right\}_{i=1}^{n+1}$ for which $s_{i} \in H i$, $s_{i}=\delta\left(s_{i-1}, e^{i}\right), \operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=\operatorname{true}$, and $e^{i}=\left\langle p_{i}, q_{i}\right\rangle, i=1, \ldots, n+1$. Then, by Restriction, there is a u for which $e^{1} \ldots e^{n+1} u \in L(M)=L(E a)$ which implies that there are a v and a sequence $\left\{k_{i}\right\}_{i=1}^{n+1}$ for which $e_{a}^{1}\left(k_{1}\right) \ldots e_{a}^{n+1}\left(k_{n+1}\right) v \in L(\hat{E}), e_{a}^{i}=$ $=\left\langle p_{i}, q_{i}, V_{E}, A T_{E}\right\rangle$. It is easy to see that for each $i \leqq n+1$ there is an interpretation I for which $\operatorname{Matche}\left(e_{e}^{i}, e_{a}^{i}, I\right)$ and $\operatorname{Sat}\left(q_{i}, I\right)=$ true (again from the definition of Matche, Matchs, Interpretation I, $\operatorname{Sat}(q, I)$ and $\left.\operatorname{Sat}\left(q, e_{c}, B\right)\right)$. Therefere, by Fact 3, $e_{a}^{i}\left(k_{i}\right) \in M i, i=1, \ldots, n+1$. So $M_{n+1} \neq \emptyset$. Since (*) holds for n, thus $\operatorname{Next}_{E}(B n)=M n$ and, by Fact 1, $\operatorname{Valid}_{E}(B n)=$ true, therefore according to the definition of semantics of $E B E$ s we have $\operatorname{Valid}_{E}\left(B_{n+1}\right)=$ true which implies that $\operatorname{Next}_{I}\left(B_{n+1}\right)$ is defined and is \vec{M}_{n+1}.

VI. Reduction of EBEs

Now we give some rules for reducing EBEs.
Statement 2. Let $E 1, E 2$ and $E 3$ be $E B E$ s. Then
(1) $E 1+E 1 \approx E 1$
(2) $E 1+E 2 \approx E 2+E 1$
(3) $(E 1+E 2)+E 3 \approx E 1+(E 2+E 3)$
(4) $(E 1 ; E 2) ; \quad E 3 \approx E 1 ;(E 2 ; E 3)$
(5) $E 1 ;(E 2+E 3) \approx E 1 ; \quad E 2+E 1 ; \quad E 3$
(6) $(E 1+E 2) ; \quad E 3 \approx E 1 ; \quad E 3+E 2 ; \quad E 3$
(7) $E 1 \Delta E 2 \approx E 2 \Delta E 1$
(8) $(E 1 \Delta E 2) \Delta E 3 \approx E 1 \Delta(E 2 \Delta E 3)$
(9) $E 1 \Delta(E 2+E 3) \approx E 1 \Delta E 2+E 1 \Delta E 3$

where " \approx " means semantical equivalence. This is followed from Theorem 2.
Similarly to EBEs we also define the syntactical and semantical equivalence of Implementions.

Definition. Two Implementations $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ are syntactically equivalent if $L(M)=L\left(M^{\prime}\right)$, and semantically equivalent if $\mathbf{B}(I)=\mathbf{B}\left(I^{\prime}\right)$.

Definition. An Implementation $I(M)$ is minimal if the automaton M has a minimum number of states.

Theorem 5. There exists an algorithm by means of which we can transform any Implementation $I(M)$ to a minimal Implementation $I^{\prime}\left(M^{\prime}\right)$ so that $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ are semantically equivalent.

Proof. It is known that there is an algorithm by means of which we can reduce any automaton M to a minimal automaton M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$. The semantical equivalence of $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ is then followed from the following statement.

Statement 3. If $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ are Implementations such that $L(M) \subset L\left(M^{\prime}\right)$, and for any $u \in L\left(M^{\prime}\right) \backslash L(M)$ there are $v \in L(M)$ and w for which $v=u w$, then $I(M)$ and $I^{\prime}\left(M^{\prime}\right)$ are semantically equivalent.

Proof. Let $M=\left(\Sigma, S t, s_{0}, \delta, F\right)$ and $M^{\prime}=\left(\Sigma^{\prime}, S t^{\prime}, s_{0}^{\prime}, \delta^{\prime}, F^{\prime}\right)$.

By Fact 4 it is sufficient to prove that for any $B n=e_{c}^{1} \ldots e_{c}^{n}$ the following holds:
$\left\{\begin{array}{l}\text { Matchs }\left(\text { cou }_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, \text { and there is a } \\ \text { sequence }\{H i\}_{i=1}^{n} \text { such that } \\ H i=\left\{s \mid \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1} \& q \in Q \& s=\delta\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)=\text { true }\right\} \neq \emptyset,\right. \\ \text { and } \operatorname{Next}_{I}(B i)=H i, \quad i=1, \ldots, n, H o=\left\{s_{0}\right\} .\end{array}\right.$
iff
(2)
$\left\{\begin{array}{l}\text { Matchs }\left(\operatorname{cou}_{i}, f_{a}, f_{t}, B_{i-1}\right), i=1, \ldots, n, \text { and there is a sequence }\left\{H^{\prime} i\right\}_{i=1}^{n} \\ \text { such that }\end{array}\right.$
$\left\{\begin{array}{l}H_{i}^{\prime}=\left\{s \mid \exists s^{\prime} \exists q\left(s^{\prime} \in H_{i-1}^{\prime} \& q \in Q \& s=\delta^{\prime}\left(s^{\prime},\left\langle p_{i}, q\right\rangle\right) \& \operatorname{Sat}\left(q, e_{c}^{i}, B_{i-1}\right)=\operatorname{true}\right\} \neq \emptyset,\right. \\ \text { and } \operatorname{Next}_{I^{\prime}}(B i)=H i, i=1, \ldots, n, H^{\prime} \mathrm{o}=\left\{s_{0}^{\prime}\right\} .\end{array}\right.$
This is proved by induction on n.

1) It is easy to see that the statement holds for $n=1$.
2) Assume that the statement holds for n, we prove that it holds for $n+1$, too.
$(1) \Rightarrow(2)$. Suppose that (1) holds for $n+1$. Then (2) holds for n. We have yet to prove that $H_{n+1}^{\prime} \neq \emptyset$ and $\operatorname{Next}_{I^{\prime}}\left(B_{n+1}\right)=H_{n+1}^{\prime}$. By Fact 5 we have the sequences $\left\{s_{i}\right\}_{i=1}^{n+1}$ and $\left\{e^{i}\right\}_{i=1}^{n+1}$ for which $s_{i} \in H i, s_{i}=\delta\left(s_{i-1}, e^{i}\right)$, $\operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=$ true, $e^{i}=$ $=\left\langle p_{i}, q_{i}\right\rangle, i=1, \ldots, n+1$. Then according to Restriction there is a u for which $e^{\prime} \ldots e^{n+1} u \in L(M)$. Since $L(M) \subset L\left(M^{\prime}\right)$ thus there is a sequence $\left\{s_{i}^{\prime}\right\}_{i=0}^{n+1}$ for which $s_{i}^{\prime}=\delta^{\prime}\left(s_{i-1}^{\prime}, e^{i}\right)$. So by Fact $6 s_{i}^{\prime} \in H^{\prime} i, i=0, \ldots, n+1$, that is $H_{n+1}^{\prime} \neq \emptyset$. Since (2) holds for n, thus $\operatorname{Next}_{I^{\prime}}(B n)=H^{\prime} n$ and, by Fact 4, $\operatorname{Valid}_{I^{\prime}}(B n)=$ true, so $\operatorname{Valid}_{I^{\prime}}\left(B_{n+1}\right)=$ true (according to the definition of the semantics of Implementation) which implies that $N e x t_{I^{\prime}}\left(B_{n+1}\right)$ is defined and is H_{n+1}^{\prime}.
$(2) \Rightarrow(1)$. Suppose that (2) holds for $n+1$. Then (1) holds for n. We have yet to prove that $H_{n+1} \neq \emptyset$ and $\operatorname{Next}_{I}\left(B_{n+1}\right)=H_{n+1}$.

By Fact 5 we have the sequences $\left\{s_{i}\right\}_{i=0}^{n+1}$ and $\left\{e_{i}\right\}_{i=1}^{n+1}$ for which $s_{i} \in H^{\prime} i, s_{i}=\delta^{\prime}\left(s_{i}, e^{i}\right)$, $\operatorname{Sat}\left(q_{i}, e_{c}^{i}, B_{i-1}\right)=$ true, $e^{i}=\left\langle p_{i}, q_{t}\right\rangle, i=1, \ldots, n+1$. Then according to Restriction there is a u for which $e^{1} \ldots e^{n+1} u \in L\left(M^{\prime}\right)$. We have two cases:

$$
\begin{array}{ll}
\text { either } & e^{1} \ldots e^{n+1} u \in L(M) \\
\text { or } & e^{1} \ldots e^{n+1} u \in L\left(M^{\prime}\right) \backslash L(M) .
\end{array}
$$

In the second case there is u^{\prime} for which $e^{1} \ldots e^{n+1} u u^{\prime} \in L(M)$. So in both cases, we have the sequence $\left\{s_{i}^{\prime}\right\}_{i=0}^{n+1}$ for which $s_{i}^{\prime}=\delta\left(s_{i=1}^{\prime}, e^{i}\right), i=1, \ldots, n+1$. Therefore, by Fact $6, s_{i}^{\prime} \in H i, i=0,1, \ldots, n+1$, that is $H_{n+1} \neq \emptyset$. Now by the same argument seen above we get $\operatorname{Next}_{I}\left(B_{n+1}\right)=H_{n+1}$.

Abstract

A language, called $E B E$, for specifying the expected behavior of programs during debugging is presented. EBE is an extended version of GPE (Generalized Path Expressions) [1] with the operator shuffle. The syntax and semantics of $E B E$ is formally defined. Some properties of EBEs are discussed. Then an implementation of $E B E$ is presented. Correctness of implementation is also proved.

References

[1] Bruegge, B. and Hibbard, P., Generalized Path Expressions: A High-Level Debugging Mechanism, The J. of Sys. and Soft. 3, 256-276 (1983).
[2] Laventhal, M. S., Synthesis of synchronization code for data abstractions, M.I.T. Laboratory for Comp. Sci., 1978:
[3] Varga, L., Rendszerprogramok elmélete és gyakorlata. Akadémiai Kiadó, Budapest 1978 (in Hungarian).
[4] Gécseg, F. and Peák, I., Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972.
[5] Nguyen Huu Chien, Sequential program debugging with Path Expressions, conference on Automata, Languages and Programming Systems, Salgotarján, May 1986 (Hungary).
[6] Nguyen Huu chien, EBE: A Language for Specifying the Expected Behavior of Programs in Debugging, 2nd conference of Program Designers, Budapest, L. Eötvös University, July, 1986.
(Received Sept. 3, 1986)

