
EBE: a language for specifying the expected behavior
of programs during debugging

NGUYEN H U U CHIEN

1. Introduction

In [1] Bruegge B. and Hibbard P. used GPEs (Generalized Path Expression)
for specifying expected behavior of programs. GPEs are slightly extended version
of a BPE (Basic Path Expression) with predicates and counters.

A BPE is a regular expression with operators sequencing(;), exclusive selec-
t i o n ^) and repetition(*). The operands, called PFs (Path Function), are the names
of statements or groups of statements defined in the source program. For each
PF two counters are defined: the counters ACT and TERM. These represent the
activation and termination number of a PF respectively. Predicate is a logical
expression involving the counters and the variables of the program and debugger.
BPE is extended by associating predicates with PFs.

In this paper we extended GPE by adding the operator shuffle (A). This does
not increase the power of GPEs, but we can describe the expected behavior of a
program in a simpler way. In the next sections we define the syntax and semantics
of the extended GPEs, called EBEs (Expected Behavior Expression). The purpose
of EBEs is to specify the order of execution of PFs, the semantics of EBEs there-
fore can be defined by specifying a set of actual behaviors that are valid with respect
to a given EBE. In section IV we discuss some properties of EBEs. According to the
syntax and semantics we introduce the syntactical and semantical equivalence of
EBEs. A sufficient condition for the semantical equivalence of two EBEs is given.
It is shown that the syntactical equivalence is more powerful than the semantical
equivalence. It is also proved that EBEs are not more powerful than GPEs. In
section V we present an implementation of EBEs. The implementation is formally
defined omitting details of actual implementation, and then its semantics is also
defined similarly to that of EBEs, that is, by specifying a set of actual behaviors
that are valid with respect to a given implementation. Correctness of the implementa-
tion is proved by showing a given EBE and its implementation recognize the same
set of actual behaviors.

In order to make an implementation effective it is necessary to reduce EBEs.
We give some rules for reducing EBEs in section VI.

178 N. H. Chien

II. The syntax of EBEs

Assume that the notions {identifier), {integer number) and {arithmetic expres-
sion) are known. The other notions are defined in terms of the above ones.

{path function): := {procedure name)
{procedure name) {identifier)
{counter)::=ACT((j>rocedure name)) | TERM {{procedure name))
{counter exp)::={counter)\{integer variable)|

{integer constant)\({counter exp))|
{counter exp) {binary op) {counter exp)

{binary op): := +1 — | X
{integer variable) {identifier)
{integer constant) ::={integer number)
{counter rel) {counter exp) {rel) {counter exp)
{arithmetic rel) ::={arithmetic expression) {rel)

{arithmetic expression)

(predicate)::={counter rel)\{arithmetic rel)\({predicate))\
(predicate){logic op){predicate)\~\{predicate)

{logic op)::= A | v | —
(operand): :={path function)\{path function)_(predicate)~\
{EBE): (operand)\((EBE))\{EBE); {EBE)\ {EBE)+ {EBE)\

{.EBE>*\{EBE)A{EBE)

Let E be an EBE, we define the language L{E) as follows:
If E=o, where o an operand, then L{E)={o). Let L\ = L{E\), L2=

= L{E2), then

L(El; E2) = LIL2, L(El +E2) = LI +L2, L(El *) = LI*,

L(E\AE2) = L1AL2 = {o1o'1...ono'^o1...on£L\ ando'1...o'„^L2, it may happen

that ot and o'j are e}.

Now we give some examples of EBEs.

Example.

Initstack; (Push [TERM {Push) - TERM {Pop)
Pop [TERM {Push)—TERM {Pop) o]+
Top [TERM {Push) — TERM{Pop)> o]) *.

This EBE specifies an expected behavior of the program which states the operational
constraints on a bounded stack of length N: first the procedure Initstack has to
be called. One of the following can then happen: either procedure Push can be called
if the size of the stack is smaller than N, or Top or Pop can be called if the size of
the stack is larger than o.

Example. The EBE
(p; q)A{r; s)

EBE: a language for specifying the expected behavior of programs during debugging 179

is used to look for activation of the procedure p when p has been called 5 times and
the value of the variable A is 4.

Example. The EBE
p;qAr;s

permits possible sequences of the execution of the procedures p, q, r and s as follows:

pqrs, prqs, prsq, rpsq, rpqs, rspq.

m . The semantics of EBEs

First we define some notions.
Let OB be an arbitrary set (representing a set of all data objects), P a finite set

of procedures, and P'cP.
A state is a pair (S,cou), where SczOB, and cou= {ap, tp\p£P'}(zN+ =

= {0,1,2,. . .} (the numbers ap and tp represent the activation and termination
number of the procedure p), and the "COM" is called counter-state.

A concrete (actual) event is an activation of the procedure p at a state (S, cou).
We denote it by ec— (p, S, cou).

A concrete behavior B is a sequence of concrete events e\... e?c. Let B be the set
of all concrete behaviors.

A computational system is a 5-tuple {OB, P, P',fa,ft), where fa and / , are
maps: B->-{g|g is function, g: P'-*N+} which are defined as follows:

The definition of fa: fa(0)(p)=O for all p£P',
fa(B(p,S,cou))(p')=fa(B)(p) +1 if p'=p

= fa(B)(p') otherwise, p'^P', BeB.
The definition o f f : ft(Q)(p)=0 for all p£P',

ft{B(p,S,cou))(p')=ft(B)(p)+l if p' = p
—f,(B)(p') otherwise, p'£P', B£B (0 is the empty sequence).

Let E be an EBE, then
PE — {P\P is a P a th function in £},
VE = {D|O is variable in E, and v ^ ACT and v ^ TERM},
CE ={c\c is constant in E}, assume that CE<zOB,
ATE = {ACT(p), TERM(p)\peP'},
QE — {L\L is predicate in E}.

An abstract event ea is a 4-tuple (p, q, VE, ATE), where p£PE, qdQE-
An abstract event expression Ea of E is an expression obtained as follows. All

operands p[q] or p in E are substituted by abstract events ea= (p, q, VE, ATE) or
ea=(p, true, VE, ATE) respectively.

Let ec= (p, s, cou), then the counter-state "cou" and the maps fa and f , match
under a concrete behavior B, if ap=fa(Bec)(p), ap,—fa{B)(p'), p'£PE\{p), and
tp,=ft(B)(p'), p'£PE. This fact is denoted by Matchs(cou, fa,f„ B).

180 N. H. Chien

An Interpretation is a function I: VE\JCE\JATE-~OB{JN+ suchthat I(v)£OB
for V£VE, I(C)£OB for c£CE , I(v)£N+ for v£ATB and I preserves constants
and usual arithmetic operators, that is

(1) /(c) = c for all c€C£ ,

(2) I(expl op expl) = I(expl) op I(exp2), where op£{+, - , X , / , t}.

A concrete event ec=(p, S, cou> and an abstract event ea=(p', q, VE, ATE)
match under an interpretation/, if p=p' and {/(u)|u€FE}cS and I(ACT(p'))—ap.,
I(TERM(p'j)=t„. for all p'€PE- This is denoted by Matche(ec, ea, I).

Now we introduce the sets R, BE and EN for Ea. First we supply the abstract
events of Ea with indexes 1,2, ... continuously, in such a manner that any ea should
receive different indexes at different occurrences. If the index of ea is /, then ea(i)
denotes an indexed event of ea, and the resulting expression is called an indexed
expression of Ea and denoted £. Then the sets R(£), BE(£) and EN(£) are defined
as follows.

(1) If £ = ea(k) then R(E) = 0, BE(E) = EN(£) = {ea(k)}.

(2) Assume that Ri = R(Ei), BEi = BE(£i) and ENi = EN(Ei), ¿ = 1,2,

then

R(EUE2) = RlUR2\J(ENlXBE2)- BE(EUE2) = BEI,

BE(E*^E2) = BE 1U BE2,

EN(EUE,2) = EN2, EN(EUE2 *) = EN 1U EN 2,

R(El+E2) = /?1 UR2, BE(E\+E2) = BEI \JBE2,

EN(E1+E2) = ENI UEN2,

R(E1*) = RIU(ENIXBEI), BE (El*) = BEI, EN (El*) = ENI,

R(EIAE2) = RlUR2U(RlXR2)U(R2XRl)

where R=RUR, and # = {a|(a ' ,a)£R} and R= {a|(a, a')€/?},

££(£1AE2) = BEWBE2, EN(E1AE2) = ENWEN2.
In the following if (ea(i), e'a(k))^R(E), then it is written ea(i)>e'a(k).
Let Exp (£)= {ea(i)\ea(i) is an indexed event in £}.
Let ea(;)£Exp (£) and AfcExp (E), then e0(/)= ¥a(k)\ea(i)>e'a(k)}, and

M = U e0(i).
e„€M
From the construction of the sets R(£), EN(E) and BE(E) it is easy to see the

following properties.

EBE: a language for specifying the expected behavior of programs during debugging 181

Statement 1.
a) е0(к)£ВЕ(Ё) iff there is а и such that еа(к)и£Ь(Ё),

ea(k)£EN(E) iff there is а и such that uea(k)dL(E),
ea(k)>e'a(n) iff there are u, v such that uett(k)e'a(ri)v£L(£),

b) е'Лкг)>...>e"a(kn), е1
а(к1)^ВЕ(Ё) iff there is и such that

el(kl)...e»a(kn)u<iL(£).
Example. Let E((p[q]+g[r]);f*)*. Then

Ea = ((el+e%); el*)*,

£ = Ш)+е1(2));е№)*)*,

ВЕ(Ё) = {e\(\), el(2)}, EN(Ё) = K (l) , ej(2), ea
3(3)},

R(E) = {(el(1), 4(3)), (el(2), e3
a(3)), (e\(3), e*a(3)), (e\(\), e\(\)),

(ej(2), el(2j), (e3
a(3), (^(3), e\(2)), (еЦ2), ej(l>), (ej(l), e»(2))},

where e\= (p, q, VE, ATE), e*= (g, r, VE, ATE) e\= </, true, VE, ATE).
Definition. Let R—{OB,P,P',fa,ft> be a computational system and E an

EBE such that P'= PE. The semantics of E is defined by the predicate ValidE: В-»
-•{true, false} with the partial map NextE: B^{M\MczExp (£)}, in such a way
that NextE(B) is defined iff ValidE(B)=true. The ValidE and NextE are defined
recursively as follows.

(1) Let ec= (p, S, cou), then ValidE{ec)—Matchs{cou,/„,/,, 0)&M^0, where

M = {ea{i)\ea{i)dBE{2)h.ea = (p, q, VEATE)& (3 /)(Matche(ec, ea, I)hSat(q, I))

= true} (Sat is defined later). And NextE(ec) is defined iff ValidE(ec) =true,

and then NextE(ec) — M.

(2) Let ec-(p, S,cou) and B£B, then

ValidE(Bec) = ValidE(B)&NextE(B) = N&Matchs(cou,fa, f „ B)&M И 0, where

M = {ea(i)\ea(i)dN &ea = (p, q, VE, ATE)&(3I)(Matche(ec, ea, I)&Sat(q, I)) = true}.

And NextE(Bec) is defined iff ValidE(Bec) =true, and then NextE(Bec)=M.

The definition of the predicate Sat. Sat(q, I) is defined according to the syntax
of the predicate q.

Sat ({counter exp) {rel) {counter exp), I) =

= ¡((counter exp)) {rel) ¡({counter exp))

Sat((arithmetic exp) (rel) (arithmetic exp), I) =
= /«Iarithmetic exp)) (rel) ¡({arithmetic exp))

Sat ({predicate) {logic op) (predicate), I) =
= Sat({predicate), /) {logic op) Sat ({predicate), /)

Sat(~\(predicate), /) = Sat({predicate), I).

182 N. H. Chien

Let and ValidE(B)=true}.

From the definition of the semantics of EBEs it is easy to see the following

fact.

Fact 1. Let Bn=el
c...e"c, el

c—(j>i, Sh cout), i= 1, ..., n, then

ValidE(Bn) = true iff

Matchs(coui,/„,/,, i?,-i), i — 1, n, Ba = 0, and there is a sequence {Afi}"=1

such that

= (Pt, g, VE, ATE)&3¡(Matched, ea, I)&Sat(q, /) = true} ^ 0,

and NextE(Bi) = Mi, i = \,...,n, Mo = BE(E).

IV. Some properties of EBE

Definition. Two EBEs E and E' are syntactically equivalent iff L(E)=L(E').

Definition. Two EBEs E and E' are semantically equivalent iff B(£')=B(£").

Theorem 1. If E and E' are EBEs such that L(E)<zL(E') and for all
u£L(E')\L(E) there are v£L(E) and w for which v=uw then E and E'
semantically equivalent.

Proof. According to the construction of Ea we can identify Ea with E, thus
L{Ea) with L{E). First we prove the following facts.

For any E and Bn=e\...e"c, e j . — S h cout).

Fact 2. If there is a sequence {Mi}"=1 such that

M i = {e 0 (fe) | e a (/c)6M i _ 1 &e a =

= (Pi, q,VE,ATE)h3l{Matche(jc, ea, I)hSat(q, /)) = true} ^ 0,

i=l,...,n, Mo = E(BE),

then there is a sequence {ej, (&,)}?=i> e'a= (pt, qh VE, ATE), for which e'a(ki)£Mi,
i = l , ...,n and (kn).

The existence of the desired sequence is shown by induction as follows.
Since Mn^Q, thus there is an e"a(kn)£Mn, e"a-(pn, q„,VE, ATE). From the

definition of Mn there is an en
a~1(k„_l)^Mn_1 for which i)>e2(fc„), e2 _ 1 =

= (Pn-I> <ln-I> vE, ATE). Assume that the sequence {eJ
a(kj)}"=i, />1 , is con-

structed. Then from the definition of Mi there is an ei~1(ki_1)£Mi_1 for which
So we get the desired sequence.

EBE: a language for specifying the expected behavior of programs during debugging 183

Fact 3. If there is a sequence {4(&;)}"= i> ea=(Pi> <7;> VE, ATE), such that
there is a u for which el(kx) ...e"(kn)u£L(E), and for each Mn there is an I for
which Matche(el

c, e'a, I) and Sat(qh /)= t rue , then el
a(k^Mi, i = l , ..., n (Mi is

defined in Fact 2, /=1 , ..., n).

This can easily be proved by induction on / S n (using Statement 1).
Now we prove Theorem 1.
We have to prove that B(£)=B(£")-
From Fact 1 it is sufficient to prove that for any Bn—e\...en

c, e[— (ph S,-, COM,),
i= 1, ..., n, the following holds.

Matchs(coUi, fa, ft, J9,_i), i = 1, ..., n, Bo = 0, and there is
a sequence {Mi}"=1 such that

(+)<Mi = {ea(fe)|ea(/c)€Mi-1&ea = (Pi, q, VE, ATE)&3l(Matche(e{, ea, /)&
Sat(q, /)) =_true} ^ 0, _ _

and NextE(Bi) = Mi, i= 1, ..., n, Mo = BE(E).
iff

Matchs(couhfa, f „ .8j_i), i = 1, ..., n, Bo = 0, and there is
a sequence {№}"=i such that

(+ = { e a (l) \ e a (l = (Pi, q, VE.,ATE.)&3¡(Matched, ea, /)&
Sat(q, /)) = taie} =¿0, __

and NextE,(Bi) = Ni, i = 1, ..., n, No = BE(E').

This is shown by induction on n.
1) It is easy to show that the statement holds for n= 1.
2) Assume that the statement holds for n. Now we prove that the statement

holds for n+1 too.
(+) = > (+ +) . Assume that (+) holds for n+1. Then (+ +) holds for n.

We have yet to prove that N„+1?zQ and NextE,(Bn+1)=N„+1.
According to Fact 2 there is a sequence e'a= {Pi, qi, VE, ATE), for

which ei(ki)£Mi, i = l , . . . ,«+1 , and eKkJ^ ...>e"a
+1(kn+1). Since el(k^BE(E),

thus, by Statement 1, there is a u for which eKkJ ...e"~1(kn+l)u£L(E) which
implies that there is a v for which el...en

a
+1v^L(Ea). Since L(Ea)(zL(E' a),

thus el...el+1v(LL(E'a) which implies that there are a sequence {/¡}"=i and a u'
for which e1

a(l1)...en
a
+1(ln+1)u'£L(E'). Then, by Fact 3, we have ej,(/f)£M,

i = l , . . . , n+1 . So Nn+1^9. Since (+ +) holds for n, thus NextE.(Bn)=N„ and,
by Fact 1, ValidE,(Bn)=true, therefore ValidE.(Bn+1)—true (by the definition of
Semantics of EBEs) which implies NextE,(Bn+1) is defined and is N„+1.

(++)=>•(+). Assume that (+ +) holds for n+\u Then (+) holds for n. We
have yet to prove that M^^d and NextE(Bn+1)=Mn+1. Similarly to the above
argument we have the sequence {4(&;)}?= 4 = (Pi, <7i, VE>, ATE,), for which
el

a(k^Ni, ¿=1, . . . , n + l , and there is a v such that e\...en
a
+1v£L(E'a). We have

two cases:

either el ... e%+1v£L(Ea)

or el ...<?+xv£L(E'a)\L(Ea).
5 Acta Cybernetics VIII/2

184 N. H. Chien

In the second case there is a v' for which el...e%+1vv'£L(Ea). So in both cases we
have that there are a sequence {/¡}"ii and w for which el(l1)...e^+1(ln+1)w^L(£).
Therefore by Fact3 e^il^Mi, i= 1, ..., n+1. So Again by the same
argument seen above we get that NextE(Bn+1)=Mn+l.

Theorem 2. a) if E and E' are syntactically equivalent then they are seman-
tically equivalent too.

b) There exist two EBEs E and E' which are semantically equivalent but not
syntactically equivalent.

Proof, a) It is a corollary of Theorem 1.
b) In order to prove this we give an example.

Let E=p1+(pi',p2) and E'=px \p2, it is clear that £ and E' satisfy Theorem 1,
therefore E and E' are semantically equivalent but not syntactically equivalent
because L(E)^L(E').

An EBE is a GPE (Generalised Path Expression) if the operator A does not
occur in it.

Theorem 3. For every EBE E there exists a GPE E' such that E and E' are
semantically equivalent.

Proof. First we construct an automaton M for which L(M)=L(E). In order
to do this we define the sets R(E), BE(£) and EN(E) similarly to those of Section
III. The automaton M—(E, St, s0,8, F) is then constructed as follows. Let
E= {ea\ea is in Ea}={el, ..., ety. Let s0 be an arbitrary symbol. Then S(s0,e'a)=
= {ei

a(/c)lei
a(k)^BE(E)j=si. So we have defined states s0, si, sf, ..., ^ of Si. Sup-

pose that a state s of St is defined, then

S(s, e'a) = {eUk)\3ei(m)(4(m)£s& ^(m) > e'a(k)) = true}, i = 1, 2, ..., n.

Finally let

F' = {S\SC\EN(£) 0} and F = F ' U { s 0 } if e£L(Ea) = F,

and F—F', otherwise.
It is easy to see that L(M)=L(Ea). It is known that there is a regular expression
E' over E for which L(M) = L(E'). Thus we have L(Ea) = L(E'). From the con-
struction of Ea we can identify Ea with E, thus L(Ea) with L(E). Therefore, by
Theorem 2, E and E' are semantically equivalent.

V. Implementation of EBE

The implementation of EBE is defined using the concept of automaton.
Let R=(OB, P, P',fa,ft,) be a computational system. Let Q={q\g is predicate,

q-.OB' x{fa(B)(p)\B^,p^PTx{ft(B)(p)\B^,p^P'Y-{^, false},

and M=(E, St, s0,5, F) a deterministic finite automaton, where EczP'xQ. For
all p£P' the set Condition (p)= {(.?, (p, q)) is defined} is called condition
of the procedure p.

EBE: a language for specifying the expected behavior of programs during debugging 185

Definition. An Implementation is a set I(M)= {(/>, Condition(p))\p£ P'}. For
simplicity we often omit the argument M.

Restriction.
It is assumed about the automaton M that if sl=d(si-1,b),bi=(pi,qi),

bi=(Pi,qt), i= 1. 2, ..., n, then there is a u such that b1b2-.-bnu£L(M).
Now we define the semantics of Implementations.

Definition. Let I be an Implementation. The semantics of I is defined by the
predicate Validj with the partial map Next!, where Valid¡: B— {true, false} and
iNfoci,: B--2 s t , in such a way that Next¡(B) is defined iff Validt(B)=true. The ValidI
and Next! are defined recursively as follows.

(1) Let ec=(p, S, cou) be an actual event, then

Valid¡(e^ = Matchs(cou, fa, ft, 0)&3(so, q)((s0, q)^Condition(p)& Sat(q, ec, 0)),

(Sat is defined later).
Next[(ec) is defined iff Validi(ec)=true, and then

Nexti(ec) = { j | j€Si & 3q(q£Q & s=5(s0,(p, q))8iSat(q, ec, 0))=true}.
(2) Let ec=(p,S,cou) and B£ B, then

Validi(Bec) = Valid,(B)& Nextj(B) =

= G&Matchs(cou, fa, ft, £)&3s3?(s<EG& q£Q&(s, q)£Condition(p)&.

Sat((q, ec, B)).

Nextt(Bec) is defined iff Validj(Bec)—true, and then Nexti(Bec)=H, where
H={s\s£St & 3s' 3q(s'£G & q£Q & s=8(s', (p, q)) & Sat(q,e,B))=true}.

The definition of Sat. Sat(q, ec, B) is defined simply as follows.

Sat(<7, ec, B) = q{S,fa(Bec)(p), {fa(B)(p')\p'£P'\{p}}, {f,(B)(p')\p'eP'}).

Similarly to Fact 1 it is easy to see the following fact (from the definition of
the semantics of Implementation).

Fact 4. For any Bn=e1
c...en

c, e'c= (pt, Sh cout), Validi(Bn)=true, iff

Matchs(coUi, fa, f „ J5i_x), i— 1, ..., n, Bo=0, and there is a sequence {//¡}"=1
so that

Hi = {s |3s '3?(s '€.Hi-i&?€2&s = <5(s', (p„ ? »&Sa t ($, 4 , B-^)) = true} ^ 0,

and Nexti(Bi)=Hi, i= 1, . . . ,«, i fo={i 0 }.
Let B (/) = { 5 | 5 € B and Validi(B)=true}.

Definition. An Implementation of an EBE E is an Implementation

I = {{p, Condition(p))\p£P'} such that P' = PE and B (I) = B (E) .

Now we give an algorithm for transforming an EBE E to its Implementation.

5«

186 N. H. Chien

Algorithm.

1. Transforming E to the following: we substitute all operands p[q\ or p of E
by e=(p,q) or e—(p, true) respectively. The resulting expression is denoted
by Ee.

2. From Ee constructing an automaton M=(I, St, s0, <5, F) as that of Theo-
rem 3, where 1= {e\e is in Ee).

3. For all p£PE constructing the set Condition(p), obtaining

/ = {{P, Condition (p))\p£PE}.

Theorem 4. I is an Implementation of E.

Proof. First we prove the following facts. For any implementation / and actual
behavior Bn—e\...e^c, e[={ph Sh couj)

C Tf -if n r o o i i o n f i / i l l fTl/VU +Vinf

r u l i «-»• xx i-iiviv u a l>Cv[uv1ivv j i j i — i buv i i m a x

Hi = {sl3s'3?(s'6// i_1& qeQ&s = 8(s', (Pi, q))h^t(q, e'c, B^)) = true} ^ 0,

i = l, ..., w, Ho = {s0},
then there are sequences {i,}"=o and {e,}"=1, e'= (ph qt), for which s£Hi, si=S(si_1, <?')
and Sat(qi, e'c, B^)—true, i= 1, ..., n.

This can be proved by induction as follows. Since Hn^Q, there is an s„£Hn.
From the definition of Hn there are i„_1€//„_1 and en=(p„, q„) for which
•yn = <5(j„-i, e") and Sat(q„, e", Bn-1) = tme. Assume that the sequences {jj}"=j and
{eJ}j=i+1, are constructed. Then from the definition of Hi there are s^^H^
and el={pi, qt), for which si=8(si_1, e')> and Sat(qh e'c, ^¡_1) = true. So we get
the desired sequences.

Fact 6. If there are sequences {J,}?=0 and {<?'}"= i, <?'=(/>;, qi), for which
•$•¡=¿(>¡-1, e*) and Sat(qh e\ 5 i_ 1)=true, i= 1, ..., n, then s£Hi, i= 0, 1, ..., n
(Hi is defined in Fact 5).

This can easily be proved by induction on z's n.
Now we prove the Theorem. It is easy to see that:
1. The automaton M satisfies the Restriction. .
2. L(M)=L(Ee).
Now we show that B(F)=B(/) . By Fact 1 and Fact 4 it is sufficient to prove

that for any EBE E and Implementation I if Bn—el...e"c, e[= (ph Sh cou^),
i= 1, 2, ..., n, then

Matchs (coui, fa, ft, Bt-]), i = 1, ..., n, Bo = 0, and there is a
sequence {Mi}"=1 such that
Mi = {ea(k)\ea(k)iMi_1&ei

a = (p(, q, VE, ATE)&3 interpretation I
(Matche(ei

c, e„,J)&Sat(q, I)) = true} ^ 0, and NextE(Bi) = Mi,
i=l, ...,«, Mo = BE(E)

EBE: a language for specifying the expected behavior of programs during debugging 187

iff
Matchs(cou^ fa, f , , .5;-i), i — I, •••, n, and there is a
sequence {i/i}?=i s u c h that
Hi = {s | s6St&3s '3i (s '€f l i - i&i€f i&s = <5(s\ <Pi, q))&Sat(q, 4 ,!»,_,))

= true} ^ 0, and Nextj(Bi) = Hi, i = 1, ..., n, Ho = {s0}.

From the construction of Ea and Ee we can identify Ea with Ee and therefore
L(Ea) with L(Ee) too, so L(Ea)—L(Ee)=L(M).

Now we prove that (*) iff (* *) for any Bn. This is shown by induction on n.
(1) It is easy to see that the statement holds for «=1.
(2) Assume that the statement holds for n.
(*)=>(* *). Suppose that (*) holds for n+1. Then (* *) holds for n. We

have yet to prove that Hn+^0, and Next,(Bn+1)=Hn+1.
By Fact 2 we have a sequence {4(^i)}?ii> e'a=(p, qhVE, ATE), such that

eKkJ^-...>-e"a
+1 (k„+1), and el

a(k^Mi, i= 1, ..., n+1. Therefore according to
Statement 1 there is a u for which eKky)...e"+1(k„+1)u£L(E) which implies that
there is a v such that e\...e"a

+1v^L(Ea). Since L(Ea)=L(M) thus there exists a
sequence such that i — 5 e ') , where e'=(pi,qi), i= 1, n+1. It is
easy to see that for all i^n+l, Sat(qh e'c, 5,_1)=true (from the definition of
Matche, Matchs, interpretation I, Sat(q, I) and Sat(q, ec, By). So by Fact 6 we have
sfcHi, i= 1, ..., n+1, that is //„+1^0. Since (* *) holds for n thus Next,(Bn)—Hn
and, by Fact 4, Valid,(Bn)=true. Therefore from the definition of the Semantics
of Implementation Valid,(Bn+j)=true which implies that Next,(Bn+1) is defined
and is Hn+1.

(**)=>(*) . Assume that (* *) holds for n+l .^Then (*) holds for n. We
have yet to prove that Mn+l^Q and NextE(Bn+1)—Mn+1.

According to Fact 5 we have the sequence {j;}"^ and {e'}"^1 for which st£Hi,
s~5(si_1,ei), Sat(qi,ei

c,Bi_1)=tTue, and e'=(pi, qi), i= 1, n+1. Then, by
Restriction, there is a u for which e1...en+1u£L(M)=L(Ea) which implies that
there are a v and a sequence {/c;}"±J for which el(kj) ...en

a
+1(kn+1)v£L(£), el

a=
— {PU 1H VE, ATE). It is easy to see that for each I^N+L there is an interpreta-
tion I for which Matche (e[, el

a, I) and Sat(qh /)= t rue (again from the defini-
tion of Matche, Matchs, Interpretation I, Sat(q,I) and Sat(q,ec, B)). Therefere,
by Fact3, el

a(k^Mi, i=\, ..., n+l. So Since (*) holds for n, thus
NextE(Bn)=Mn and, by Fact 1, ValidE(Bri)=true, therefore according to the defini-
tion of semantics o^EBEs we have ValidE(Bn+=true which implies that Next,(Bn+1)
is defined and is M„+1.

188 N. H. Chien

VI. Reduction of EBEs

Now we give some rules for reducing EBEs.

Statement 2. Let El, E2 and E3 be EBEs. Then

(1) El+El^El

(2) EI+E2 ^ E2+EI

(3) (El+E2)+E3 % El+(E2+E3)

(4) (El;E2); E3 ^ El; (E2;E3)

(5) El;(E2+E3) « El; E2+EI; E3

(6) (¿T1+.E2); E3^El; E3+E2: E3

(7) EIAE2 « E2AEI

(8) (EIAE2)AE3 « EIA(E2AE3)

(9) EIA(E2+E3) % EIAE2+EIAE3

(io) a Pi[qi] « 2 (PiMik •••; PiMd)
i=l i,...i„ is

permutation
of{ l n}

where " « " means semantical equivalence. This is followed from Theorem 2.
Similarly to EBEs we also define the syntactical and semantical equivalence of

Implementions.
Definition. Two Implementations I(M) and I'(M') are syntactically equivalent

if L(M)=L(M'), and semantically equivalent if B(7)=B(7').

Definition. An Implementation I{M) is minimal if the automaton M has a
minimum number of states.

Theorem 5. There exists an algorithm by means of which we can transform
any Implementation I(M) to a minimal Implementation I'(M') so that I(M) and
I'(M') are semantically equivalent.

Proof. It is known that there is an algorithm by means of which we can reduce
any automaton M to a minimal automaton M' such that L(M)=L(M'). The
semantical equivalence of I(M) and I'(M') is then followed from the following
statement.

Statement 3. If I(M) and I'(M') are Implementations such that L(M)<zL(M'),
and for any u£L(M')\L(M) there are v(LL(M) and w for which v=uw, then
I(M) and I'{M') are semantically equivalent.

Proof. Let M=(Z, St, s0, 8, F) and M'=(Z', St', s'0, 8', F').

EBE: a language for specifying the expected behavior of programs during debugging 189

(1)

iff

By Fact 4 it is sufficient to prove that for any Bn—el...e^ the following holds:
Matchs(coUi, /„ , ft, Bi-x), i = 1, . . . , n, and there is a
sequence {Hi}"=1 such that
Hi = {s |3i '3?(s '£ JH i-i& q£Q&s = <5(s', (Pi, q))hSat(q, e'c, = true} * 0,
and Nexti(Bi) = Hi, i = 1 «, Ho = {s„}.

(2)

Matchs (cou„ fa, f , Bi-i), i = 1, ..., n, and there is a sequence {i/'i}"=1

such that
Hi = {s\3s'3q{s'eHU&q£Q&s = <5'(V, (pt, q))bSat(q, e[,B^) = true} ^ 0,
and Nextr(Bi) = Hi, i = 1, ..., n, H'o = {SQ}.
This is proved by induction on n.
1) It is easy to see that the statement holds for « = 1.
2) Assume that the statement holds for n, we prove that it holds for n+1 , too.
(1)=>(2). Suppose that (1) holds for n+1. Then (2) holds for n. We have yet

to prove that and Nextr(Bn+1)—H'n+1. By Fact 5 we have the sequences
{stf+l and {e'lJil for which s£Hi, e% Sat(qh e\., Bt_i)=true, e'=
= {Pi, qt), i= 1, . . . , «+1 . Then according to Restriction there is a u for which
e'...e"+1u£L(M). Since L(M)cL(M') thus there is a sequence {¿,'}"io for which

So by Fact 6 s'^H'i, i'=0, . . . , «+1 , that is Since (2)
holds for n, thus Nextr(Bri)=H'n and, by Fact 4, Valid,. (Bn)=true, so Validr(B„+1)=
true (according to the definition of the semantics of Implementation) which implies
that Nextr(Bn+1) is defined and is H'n+1.

(2)=>(1). Suppose that (2) holds for n+1. Then (1) holds for n. We have yet
to prove that H„+19i& and Nextj(Bn+1)=Hn+1.

By Fact 5 we have the sequences {J,}"^1 and { ^ ¡ ¿ i for whichs fcH' i , s~ <5'(J,, e'),
Sat(qh e[, 5 i _ 1)=true , ex— (ph qi), i= 1, ..., «4-1. Then according to Restriction
there is a u for which e1...en+1u£L(M'). We have two cases:

either e1... eT+1u£L(M)
or e1 . . . ^+1u£L(M')\L(M).

In the second case there is u' for which e1...en+1uu'£L(M). So in both cases, we
have the sequence {jj'}"io f ° r which s! = S(si=l, e1), i= 1, . . . , «+1 . Therefore, by
Fact 6, s '^Hi, /=0 , 1, ..., n+1, that is //„+1T£0. Now by the same argument seen
above we get Next!(Bn + 1)=H„+ 1 .

Abstract
A language, called EBE, for specifying the expected behavior of programs during debugging

is presented. EBE is an extended version of GPE (Generalized Path Expressions) [1] with the operator
shuffle. The syntax and semantics of EBE is formally defined. Some properties of EBEs are dis-
cussed. Then an implementation of EBE is presented. Correctness of implementation is also proved.

DEPARTMENT OF COMPUTER SCIENCE
EÖTVÖS LORANO UNIVERSITY
MÜZEUM KRT. 6—8
BUDAPEST, H U N G A R Y
H—1088

190 N. H. Chien

References

[1] BRUEGGE, B. and HIBBARD, P., Generalized Path Expressions: A High-Level Debugging Mecha-
nism, The J. of Sys. and Soft. 3, 256—276 (1983).

[2] LAVENTHAL, M. S., Synthesis of synchronization code for data abstractions, M.I.T. Laboratory
to Comp. Sci., 1978.

[3] VARGA, L., Rendszerprogramok elmélete és gyakorlata. Akadémiai Kiadó, Budapest 1978 (in
Hungarian).

[4] GÉCSEG, F. and PEAK, I., Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972.
[5] NGUYEN HUU CHIEN, Sequential program debugging with Path Expressions, conference on

Automata, Languages and Programming Systems, Salgótarján, May 1986 (Hungary).
[6] NGUYEN HUU CHIEN, EBE: A Language for Specifying the Expected Behavior of Programs

in Debugging, 2nd conference of Program Designers, Budapest, L. Eötvös University, July,
1986.

(Received Sept. 3, 1986)

