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1. Introduction

The full family of functional dependencies was first axiomatized by W. W, Arm-
strong [1]. Different kinds of functional dependencies have also been investigated
in relational data base theory. The full family of strong dependencies has been
introduced and axiomatized [2], [3], [4].

In this paper s-semilattices and strong operations are defined. We investigate
connections between full families of strong dependencies, s-semilattices and strong
operations. We prove that there are one-to-one correspondences between them,
and s-semilattices completely determine both full families of strong dependencies
and strong operations. We give a necessary and sufficient condition for an arbitrary
family of sets to be a full family of strong dependencies. A necessary and sufficient
condition for a relation to represent a given full family of strong dependencies
is also given. Finally, we show that for a given s-semilattice I, we can construct a
concrete relation R, the full family of strong dependencies of which is deter-
mined by 1. :

We start with some necessary definitions formulated in [3].

Definition 1.1. Let R={h,, ..., h,} be a relation over the finite set of attributes
Q,and 4, B& Q. We say that B strongly depends on 4 in R (denoted A%—*B) iff

(V i, he R)((Fac A)(h; (a) = hj(a)) > (V€B)(hy(b) = h;(b))).

Let Sg={(4, B): Ax>B}. Sgis called the full family of strong dependencies of R.

Definition 1.2. Let Q be a finite set; and denote by P() its power set. Let
YCS P(R2)X P(R2). We say that Y is a full family of strong dependencies over Q if
forall 4,B,C, DS R, acQ,
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ot

S1 ({a}, {a))eY;

S2 (4, B)CY, (B,C)EY, B#0 (4, C)Y;
S3 (4,B)cY, CS A4, DS B~ (C,D)EY;

S4 (4, B)€Y, (C,D)EY —(4UC, BND)cY;
S5 (4, B)eY, (C,D)€Y —(ANC, BUD)cY.

Definition 1.3. Let /S P(Q). We say that [ is a N-semilattice over  if Q¢
and A4, BeI-ANBcl. Let MC P(2). Denote by M * the set {NM’: M'SM).
Then we say M generates I if M*=1

J. Demetrovics in [3] showed that for a given (M-semilattice I, there is exactly
one family N which generates I and has minimal cardinality.

Lemma 1.4. ([3]). Let IS P(2) be a N-semilattice over Q. Let
N = {d¢I: YB,C€I: A=BNC ~ A= B or A=C}).

Then N generates I and if N’ generates I, then NS N’. N is called the minimal
generator of I. (It is obvious that Q€N.)

It can be seen that if N;(N,) is the minimal generator of I, (l;) and I,=1,,
then N;#N, holds.

2. The results

Definition 2.1. Let IS P(Q). We say that I is an s-semilattice over Q if I
satisfies

(1) Iis a N-semilattice,
(2) for all AeN\Q
(acA)(VBEN\Q)(4 ¢ B) ~ a¢ B),
where N is the minimal generator of 1.

Definition 2.2, The mapping F: P()—P(£2) is called a strong operation over
Q if for every a,beQ and A€ P(R), the following properties hold:

O F@=29,
@ acF({a}),
@) beF({a}) ~ F({b}) S F({a}),
@ F)= aQA F({a}).
It is easy to see that the set {F({a}): acR} determines the set {F(4): A€ P(Q)}.

The following theorem shows that there is an one-to-one correspondence between
s-semilattices and strong operations.
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Theorem 2.3. Let F be a strong operation over Q. Let Ip={F(4): A¢P(2)}.
Then I is an s-semilattice over Q. Conversely, if I is an s-semilattice over £, then
there is exactly one strong operation F so that Irp=1, where F(§)=Q, and for
all acQ,

M A; if 34;: acA4,(N is the minimal generator of I),
acA;

F({a)) = { 46
Q otherwise.

Proof. 1t is clear that for arbitrary strong operation F
VA, BEP(Q): F(AUB) = F(A)NF(B), F(®) = 2

and ASB~F(B)S F(A). Consequently, Ir={F(A): Ac P(Q)} is a N-semilattice

over Q. Denote by Ny the minimal generator of Ip. For all A€ N\ @ if there isno

attribute a such that F ({a})=A, then if A=F(B)(]B|=2) holds, then, according

to the definition of strong operation, A= () F({b;}). This contradicts the defini-
b,€EB

tion of minimal generator. Consequentl);, there is an attribute a€Q so that
F({a})=A. 1t is obvious that a€A4. It is clear that A4, BENy implies A=B, and
by (3) in the definition of strong operation, for all AEN\Q:

(BacA)((VBENAQ)(A ¢ B) ~ a§ B).

Consequently, I is an s-semilattice over Q.
Conversely, we now suppose that I is an s-semilattice over Q. Denote by N
the minimal generator of I. We define the following operation F:

F®) =Q,
and for all b,
m A,- if BAi: bEAi,

b4,

F({b}) =} aienNe
Q otherwise.

It can be seen that for all A€ N\ R, where Jac4: A6 N\Q and Ad¢ A4~
—~a¢ A;, we have F({a})=A. For all different elements 4(4€ N\ Q) it is easy to see
that there is an a€ 4 so that F({a})= 4. Consequently, YA€ N\ Q: JacQ: F({a})=A.
We now show that F is a strong operation over Q. It can be seen that be F({b}),
and if there is an 4,6 N\ such that béd;, then F({b})eN*+. If acF({b})
holds, then

F({a)) = ag 4; bg 4; = F({b}).

A,eNNQ PRI

On the other hand, it can be seen that the set {F({b}): b€ Q} determines the set
{F(A): A¢ P(Q)}. Consequently, F is a strong operation over Q. It is easy to see
that I={F(A): AcP(Q)}. If we suppose that there is a strong operation F’ such
that Ip.=1I then for all a€Q 3b€Q: F({a})=F'({b}). It obvious that a€F’({b}).
Consequently, F’({a})S F({a}). On the other hand, there is an attribute ¢ so that
F'({a))=F({c}). Clearly, F({a}))S F’({a}) by a€F({c}). Consequently, for all
A€ P(Q), F'(A)=F(A). The proof is complete.
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Based on Theorem 2.3, it is easy to see that s-semilattices determine the strong
operations, and for arbitrary s-semilattice / over £, |N|in not greater than | 2|+ 1. Cle-
arly, there is an algorithm to decide for a given family of sets NS P(Q) whether N is
the minimal generator of some s-semilattice or not. The following theorem gives
necessary and sufficient conditions for an arbitrary family of sets to be a full family
of strong dependencies over Q.

Theorem 2.4. Let YC P(2)X P(R). Y is a full family of strong dependencies
over 2 if and only if there is a family {E;: i=1, ..., I; iLiJlE,: 2} of subsets of Q
such that

(i) for all 4 € Q, (B, A)€Y,

(i) for any A, BS |J E;,— (4,B)€Y,
ENA#=O

(ii) ((C, D)€Y, CNE; = #) ~ D C E,.

Proof. First we suppose that Y is a full family of strong dependencies over Q.
Then by (S1), (S3), (S5) for each a€Q we can construct an E; (E;S Q) so that
({a}, E))¢Y, and VE’: ECE’ implies ({a}, E')4Y. It is obvious that a€E,, and we

obtain n such E;’s, where n=|Q|. Thus, we have the set E={E;:i=1, ..., n; Lnj E=0}.
i=1

It is easy to see that for all ASQ we have (0, 4)¢Y. We now assume that
A={ay, ..., a:a;€Q,j=1, ..., k}>P and B, is a set such that (4, B,)¢Y, VB,: B,C B,
implies (4, B,)¢Y. According to the construction of E, it is clear that for each a;

k k
there is an E;€E so that ({a;},E;)€Y. By (S4) we have (U a;, N E;)=
j=1 = j=1

_ HY l]:
hand, by (4, B)EY and by (S3), we have ({a;}, B)EY for all j (j=i, ..., k).
k k
Consequently, B,S () E;, holds, i.e. B;=[) E;,. It is obvious that [\ E;S
j j=1

=1 ENA=D
k
N E,,. Thus, forall B(BS () E;): BSB,. Hence (4, B)EY holds. If (C, D)<Y,
j=1 ENA=g
CNE;#9, then we assume that @,€CNE;. On the other hand, suppose that a
is an attribute such that ({a}, E;)cY, and VE’: E;cE’ implies ({a}, E')¢Y. By
a,€E; and by (S3), ({a}, {a,})€Y holds. By (S3) and a,€C we obtain ({a,}, D)CY.
Consequently, by (S2), ({a}, D)€Y holds: According to the definition of E we
have DCE;. : .

The proof of the reverse direction is easy, and so it is omitted. The proof is
complete.

k k
=(4, N E,I)GY. By the definition of B, we obtain () E;, &B,. On the other
je=1

Based on Theorem 2.4 we prove the following result, which shows that between
full families of strong dependencies and strong operations there exists a one-to-one
correspondence.

Theorem 2.5. Let Y be a full family of strong dependencies over Q. We define
the mapping Fy: P(£2)~P(Q) as follows:
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Fy(A)={acQ: (4, {a})cY}.

Then Fy is a strong operation over Q. Conversely, if F is an arbitrary strong
operation over £, then there is exactly one full family of strong dependencies Y so
that Fy=F, where

= {(4, B): 4, BEP(Q): B C F(4)}.

Proof Suppose that Y is a full family of strong dependenc1es over Q. It is
obvious that Va€Q: a€ Fy({a}). By Theorem 2.4 we have (C, D)cY, CNE;#§
imply DCE,;. It can be seen that in Theorem 2.4, for any ac®,

Fy({a))e{Ei: i=1,..,n; |Q] = n; ‘L_JlEiz Q).

Consequently, ({b}, Fy({b}))€Y, beFr({a}), ie. bNFy({a})=# implies Fy({b})S
S Fy({a}). By (iii) in Theorem 2.4 we obtain (A, Fy(A))€Y, Yac A:ANFy({a})=0
imply Fy(A4)C Fy({a}). Thus, Fy(4)ES ﬂ Fy({a}). On the other hand, by (S5)

in the definition of full family of strong dependenmes we have va€4: ({a}, Fy({a)))eY
implies (4, ﬂ Fy({a}))ey, ie. ﬂ Fy({a}) S Fy(4). Consequently, Fy(4)=

= ﬂ Fy({a}) holds Conversely, assume that F is a strong operation over £, and

Y= {(A B): BCF(4)). We have to show that ¥ is a full family of strong
dependencies. By Theorem 2.4 we set E ={F({a}): acQ, |Q= }. By the
definition of Y and by ﬂ F({a}=SF(A4), it is obvious that BE

S N F({a) 1mp11es (A B)EY On the other hand, if (C, D)€Y and
Fa)N Ao

CNF({a})>0, then we assume that beCNF({a}), hence by (iii) in the definition
of strong operation b€ F({a}) implies F({b})S F({a}). It is obvious that DZ
CF(C)= ﬂ F({d}). By beC, and ﬂ F({d})SF({b}) we obtain DZ F({a}).

It is clear that VYAS Q: (0, A), (A, Q)EY It can be seen that F=Fy. Now, we
suppose that there is a full family of strong dependencies Y’ so that Fy.=F. By
the definition of ¥ and F we obtain Y'SY. If (4, B)€Y holds, then BC F(4)=
= Fy.(A4) holds. By the definition of F, we have (4, B)¢Y’. Consequently, Y'=Y
holds. The proof is complete.

Remark 2.6. Clearly, if F; and F, are strong operations over Q (F; #Fz) then
Y,#Y,, where Y;={(4, B): BCF,(4)},i=1,2

Based on Theorem 2.3 and Theorem 2.5 the next corollary is obvious.

Corollary 2.7, Let Y be a full family of strong dependencies over Q. We define
the mapping F: P(Q)—~P(Q) as follows:

Fy(4): {acQ: (4, {a))eY}.

Let Iy={Fy(A): Ac P(Q)}. Then Iy is an s-semilattice over Q. Conversely, if I is
an arbitrary s-semilattice over Q, then there is exactly one full family of strong
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dependencies Y such that I,=1I, where
Y = {(4,B): A,BEP(Q), A #0,IAEN\Q: 4,N4#0,BS () , Nisthe

ANA=S
A, 6N\

minimalgenerator of 7}U
U{(4, B): 4=9 or TACN\Q: 4N4 =0, BEP(Q)).

Corollary 2.7 shows that between full families of strong dependencies and
s-semilattices there is a one-to-one correspondence and the s-semilattices determine
the full families of strong dependencies.

It is proved (see [2], [3], [4]) that if ¥ is a full family of strong dependencies over
Q, then there exists a relation R over R so that Sp=7Y.

With the aid of the concept of s-semilattice we can construct for a given full
family of strong dependencies Y a simple concrete relation R such that Sz=Y.

The equality sets of the relation are defined in [4] as follows:

Definition 2.8. Let R={h,, ..., h,} be a relation over Q. For 1=i<j=m
denote by E;; the set {a€Q: h,(a)=h;(a)}.

Definition 2.9. Let Y be a full family of strong dependencies over 2. We say
that a relation R represents Y iff Sg=7Y.

We now prove the following theorem which gives a necessary and sufficient
condition for a relation to represent a given full family of strong dependencies:

Theorem 2.10. Let Y be a full family of strong dependencies, and R={h,, ..., h,,}
be a relation over . Then R represents Y iff for each a€Q,

! m E’J if HEU: aEE,-j,
Fy({a}) = 2™ )

Q otherwise,

where Fy(4)={acQ: (4, {a})cY}, and Ej; is the equality set of R.

Proof. By Theorem 2.5, Sg=Y if and only if Fs,=F holds. Consequently,
first we show that Fg ({a})= (O E;; if 3E;; acE;;, andin other case Fy ({a})=Q
ack,

holds. Clearly, Fs ({a})={b¢ Q: {a}=~ {b}}. According to the definition of strong
dependency we know that for any a€ Q,

{a} & B+ {a} %~ B,
where a#®, and {a}—‘I'T»B denotes that B functionally depends on {a} in R, i.e.
(V by, B € R)(hy(a) = h;(a) ~ (VbEB)(hy(b) = h;(b)))
(see [4]). Let us denote by T the set {E;;: acE;;}. It is obvious that if T=0, then
{a}%' Q, ie. Fg ({a))=2 holds. If T0 holds, then we set 4= () Ej;.

acEy,
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If T=E (E s the set of all equality sets of R), then it is obvious that {a}—{r A.
If TCE then for E;: E;¢T we obtain h;(a)=h;(a). Consequently, we have
also {a}Tfp A. Denote by A’ the set with the following properties:

@ {4 4,
(i) A’c A" implies {a} {v A", ie. A” does not functionally depend on {a}.

It can be seen that 4’=A4. According to the definition of F_, we obtain Fg,({a})=
= () E;;. Thus, if Sg=Y then we have (1). Conversely, if Fy satisfies (1), then

acE,
accorclljlng to the above considerations, for any a€Q we have Fy({a})=Fs,({a}).
Because Fy and Fg, are strong operations over £, and by Theorem 2.5 we obtain

VAS Q: Fs5 (A)=F;s,(A4). Consequently, Fy= FSR holds. The proof is complete.

Definition 2.11. Let R be a relation, and F a strong operation over Q. We say
that the relation R represents F iff Fgs =F.

By Theorem 2.10 the next corollary is obvious.

Corollary 2.12. Let F be a strong operation and R a relation over . Then R
represents F iff for all acQ,

Pl ={

Q otherwise.

Clearly, from a relation R we can construct the set of all equality sets of R. Con-
sequently, the following corollary is also obvious.

Corollary 2.13. Let R be a relation and F a strong operation over Q. Then
there is an algorithm which decides whether R represents F or not. This algorithm
requires time polynomial in the number of rows and columns of R.

Based on Theorem 2,10 the next proposition is straightforward and so its proof
will be omitted.

Proposition 2.14. Let Y be a full family of strong dependencies over Q. Denote
N the minimal generator of s-semilattice 7.

Suppose that N—Q={B,, ..., B;}. We set

R={hy, hy, ..., by} as follows:

for all a€Q: hy(a) =0,

0 if a€B;,

for each i (i=1,...,1), h;(a) = {i otherwise.

Then Sz=Y holds.

6*
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Clearly, Proposition 2.14 shows that from a given s-semilattice I we can con-
struct a simple concrete relation R such that /=I5 . Because between ()-semi-
lattices and minimal generators there is a one-to-one correspondence, it can be
seen that (based on Theorem 2.3, Corollary 2.7, and Proposition 2.14) from the
minimal generators of s-semilattices we can construct suitable full families of strong
dependencies, strong operations, and relations.
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