A note on the generalized v,-product

B. IM};}_EH

A hierarchy of products was introduced in [1}. This hierarchy contains one kind
of product, the v;-product, for every positive integer i, and the work [1] deals with
the isomorphic completeness with respect to the v;-products. As regards another
representations, the metric representation was studied in [6], [8]. The work [6] con-
tains the characterization of the metrically complete systems with respect to the v;-
products. In [8] it is shown that the v,-product is metrically equivalent to the general
product. The works [2], [3], [4], [5] are devoted to the investigation of the homomor-
phic representation. In [3] and [4] some special compositions of the «y-product and
v;-products was studied and it is proved that these compositions are just as strong as
the general product with respect to the homomorphic representation. The work [5]
deals with the commutative automata. It is shown that there are finite homomorphi-
cally complete systems with respect to the v,-product for this class. In [2] the hier-
archy of the v;-products was investigated. It is proved that this hierarchy is proper
as regards-the homomorphic representations. Finally, the work [7] compares the iso-
morphic and homomorphlc representation powers of a;-products and v;-products.

In this paper, connecting with the work [1]), we give a sufficient condltlon for
a system of automata to be isomorphically ‘S-complete with respect to the generalized
v, -product. This condition is a special case of condition (2) of Theorem 2 in [1], but
the construction of the automata from these systems is simpler than the general
construction given in [1]. Since our work is closely related to [1], we shall use its no-
tions and notations. :

Our result is the following statement.

Theorem. A system X of automata is isomorphically S-complete with respect to
the generalized v, -product if X contains an automaton which has a state a and input
word g such that the states a, ag, ..., ag°~! are pairwise different and ag*=a for
some integer s> 1. )

Proof. Let us assume that X satisfies the condition. Then without loss of general-
ity we may suppose that 2 contains an automaton A which has a state a and input
word g such that a, ag, ..., agP~! are pairwise different, aq =a, and p is a prime
number. Let us denote by 0,1, ..., p—1 the states a, ag, ..., ag”~ 1. respectively.
Depending on p, we shall dlstmgulsh two cases.
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Case 1. Let us suppose that p=2. By the proof of Theorem 2 in {1}, it is enough
to prove that for any n=3 the automaton T; can be simulated isomorphically by
a generalized v, -product of automata from Z, where T,=({t,, t,, ts}, {0, ..., n—1},8;)
and

thk)=k+1(modn) (k=0,...,n-1),

$,0) =1, ,(1) =0, () =k (k=2, ..., n—1),
1,0) = t,(1) =0, t;(k) =k (k=2, ..., n—1).

Now let n=3 be an arbitrary fixed integer. Let us take an integer k for which
2%+ 1=n holds and denote by m the number 2*+ 1. Form the generalized v,-prod-
uct A"(X, ¢,y) where

X={x;, %, x}U{y: 0=t =m—1}
and the mappings y and ¢ are defined in the following way:
y()={t—-1(modm)} (t=0,...,m—1),
0,0, x)=q, 0,1, x)=¢* (t=0,..,m-1),
0,0, x)=0,(1,x))=¢q* If 0=t=m-3,
¢,0,x) =0 (L, x5)=q if m=3<t=m-1,
0,0, %) =¢% o,(1, x;)=¢q if t#=m-2,
Pm-2(0, X3) = ¢, @m-2(1, X3) = ¢,
g if 1=},

0.0, y)=¢% o,(1,y) = {q2 otherwise (j=0, ym—1; t=_ 0,...m-1)

Take the mappings:
: 0 —(0,0,..1),
proot
m—1-(1,0, ..., 0),
tl - xin—2, .

T by > Xo V1o Ym—-3Vm-1Vm—2-+-Y1Vm-1»
I3 > YoY1-+-Ym-3Xs-
Now we show that T, can be simulated isomorphically by A™(X, ¢,y) under
p and 7. Indeed, the validity of the equations u(6;,(J, 1))="0an(u(j), ©(1))
(=2,3;j=0,...,m—1) follows from the definitions. To prove the validity. of
the equations u(5,,(J, 1,))=0am(u(/), t(t)) (j=0,...,m—1) let us observe the
following connection. If

(45 --os Uy_1)E{0, 1} and
Sam ((Uos «vs Upm—1)s X1) = (Vgs « vy Upmey)
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then
U = 5A(un (pt(ul-l(modm), xl)) =
= Uy Gle-1tmoam 310D = gty 0qmy+1 (mod 2)

holds for any O=t=m—1. Now let us denote by (v§°,...,v( ;) the state
Sam((to ..., Um_1), x}). Then using the above connection, by induction on s, it can
be proved that

s
o = 1-|-Jé'J (j] U j(moam(mod 2) (1=0,...,m—1).

‘ k
On the other hand, it is known that [[; ) =0(mod p)(j=1, ..., p*—1) holds for any
prime p=>1 and integer k= 1. Using this, by induction on j, one can show that

1y, . .
; (-1 =1(modp) (j=0,..,p*=1).
From this, by p=2, we obtain
k—
(2 i I]E 1 (mod 2) (G=0,..2*~1.

Now let 0=i=m—1 be an arbitrary integer and let us denote by (cq, ...s Cp—1)
the state pu(i). Then : .

{l if t=m—i-1,
¢ =

) t=0,..,m-=1.
0 otherwise, ( 0 m—1)

Let (cg, ..., Cy—1) denote the state Sam((c, ..., Cp—i), X' ~2). Then, by the above
equality for v{®, we obtain that .

2k—1

2k—1
C" = l"l‘ 2' l j ]ct—j(modm) (mod 2) (t = 0, veey m—I).
j=0 .

If t=m—i—2(mod m) then from the definition of ¢, it follows that ¢,_ ,imeamy=0

(j=0, ..., 2*—1), and 50, Cp—i-s(moam=1. If tm—i—2 (mod m) then among the

elements ¢, jimoam (/=0, ..., 2¥—1) one and only one is different from 0, and so,
k .

k_
2 . I)El (mod 2) this

c,’=1+[2 Tl (mod2) for some O0=j=2—1. Since J

implies the equality ¢, =0. Summarizing, we obtained that

« ={(1) ;fth:rwisr:, i=2 (modm), . (t=0,..,m=1).
Now let us observe that (cj, ..., cj—)=pu(i+1(mod m)) and so,
2 (05 G, 1)) = p(i+1(mod m)) = (c§, ..., Clpy) = Sam((Cos -+vs Cpr)s X7~ =
= Sam((u(@), T(t)

which completes the proof of the Case 1.
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Case 2. Let us suppose that p>2 and let n=3 be an arbitrary fixed integer
again. Let k be an integer such that p*+1=2n and, let s=p*+1 and m=s/2.
Form the generalized v,-product A’(X, ¢, y) where

X={x,..xJU{: 0=r=s-2}U{y,,z: 0=r=s5-4}U{w,: 0=r=5-1}

and the mappings y and ¢ are defined in the following way: for any t€{0, ..., s—1},
Jje{o, ...,p—1}, r€{0, ..., s—1}

(1) = {t—1(mod 5)},
e, x) =g if 0=j<p-1, o(p—1,x)=g"

0,y x2) = q?=1 if t€{s=3,5-2,5—1},0,(j, %) = q° if O=t=<s=3,
¢5-3(0, x3) = ¢ @,(J, x3) = ¢° otherwise, |
0s—o©, x) = ¢, 9,{j, %) = g° otherwise,

olp—1,x)=¢q if t#0 and ¢, x;) =qg? otherwise,
o(p—1,x)=¢q if t€{s—2,s—1} and ¢,(j, xs) = g° otherwise,
@0, x)=¢g""t if t= s—3 and 0,(j, x;) = q° otherwise,

if t=s-1,
¢, (p—2,x5) = {q

& i ts—1 and ¢,(j, xs) = g¢° otherwise,

0,y = {Z:_lot;iwéi;r and j=p=L o . s-2),
0. (j, v) = {gi i;h::vi:e’ and j=p=2, (r=0,..5-4),
Catha=fh, Lo I o,
.G, w) = {g:—zotlilirvii:,r and j=p=2, (r=0,..,s5-1).

Take the mappings:
0 ~(,0,0,..00,p-1),
"1 =(0,0,0, ..., p—1,0,0),
m—1-(0,p—1,0, ..., 0,0,0),
tl - x%(?k—l)’

T Iy~ Xp Yoo Ys—aWoe - Wy g X3Xq Us—q.-. Vg X5 Vo2 X
t3 - yo...ys_4x7‘vs_.2“’ _1W0...Ws_4zs_4...20xs.
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Now we shall show that the automaton T,, can be simulated isomorphically by
AS(X, ¢, y) under g and .

The validity of u(8,,(J, 1))=0as(uC/), (1)) (I=2,3;j=0,...,m—1) can be
checked by a simple computation. To prove the validity of u(6,(J, &)=
=6as(1(j), (1)) let (uy, ..., ts_1)€{0, ..., p—1}° be arbitrary and let us denote by
@, ..., u,) the state Sas((up, ..., Us—y), x]) for arbitrary integer r=1. Then.

ut(l) = 5A(il,, (pt(ut—l(mods)a xl)) = utq(p—l—u"“}“"d'))(mc’dp) = ut_ut-;l(mods)'— 1 (mOd p)'

Using this, by induction on r, it can be proved that

r

uN =—14 3 ](— 1) ty jtmoasy(mod p) (¢t =0, ...,5—1)

j=oYJ

Now let i€ {0, ..., m— 1} be arbitrary and let us denote by (¢y, ..., €5—1), (€55 -+-5Co-1)s

(Co» -..» Cs—_y) the states pu(i), Sas(u(@), xF*~D), das(u(), x}#*-V), respectively.
Then from the definition of u,

¢ = {p—l if t=s-2i—-1,

0 otherwise. (t=0,...,s—1).

Consider the state (¢}, ..., ¢._;). By the above equality for u{”, we obtain that

’ PGl pk—l - ‘
o =—1+ Z(') ( j ](— 1) ¢,- jmoasy (mod p) (¢ =0,...,s—1).
J=

If t=5—2i—2 (mods) then from the definition of ¢, it follows that ¢,_jimean=0
(j=0, ..., p*—1), and s0, € _si—s(measy=P— 1. If t##5—2i—2 (mod s) then.among
the elements ¢, jimoas) (=0, ..., p*— 1) exactly one element is different from 0 and

k_
this element is equal to p—1, and so, c;=—l+(p j IJ(— 1)/ (p—1) for some

k__
0=j=p*—1, From this, by (p j 1] (=1Y=1(mod p) (j=0, ..., p*—1), we obtain
that ¢;=p—2. Therefore

, (p—1 if t=s5-2i-2,

“= {p—2 otherwise, (t=0,...,s-1).

Now consider the state (G, ..., Cs—1)-

=143 (P ye =0,..,5—1
G = + 2; ] ( ) ct—j(mods) (mOd P) (t =Y., )‘
=

If t=5—2(i+1)—1(mod s), then ¢,_;measy=P—2 (j=0, ..., p*—1). On the other
k__
hand [p j-1] (=1)=1(mod p), and so, we obtain that &_s;+1)—1(moasy=2— 1.

If t#s—2(@i+1)—1(mods) then among the elements ¢;_jmoas) (/=O0, ..., p*—1)
exactly one element is different from p—2 and this element is equal to p—1. From
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k—- .
this, by [p j 1)(— 1Y=1 (mod p) (j=0, ..., p*—1), we get that ¢=0. Therefore,

) ={p_1 if t=s5-2(i+1)—1 (mods), (t=0,..,5-1)

0 otherwise,

~ Observe that (&, ..., &_;)=u(i+1(mod m)), and so,

1(0m(i, 1) = p(i+1(mod m)) = (&, ..., E—y) = Sas(u(i), x3¢*-V) =
= as(u(@), t(1y))

which completes the proof of Case 2. This ends the proof of our Theorem.
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