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, 1. Introduction 

In [3] we have proved that 3>(№=$&3%n for every where is the class 
of all deterministic root-to-frontier tree transformations. This result motivated us 
for examining whether the set S= JfQiSk, ¡ejf3)0t, , J f t f , i f ^ f } 
generates, with composition o, a finite or infinite set of tree transformation classes. 
Here JF is the class of all homomorphism tree transformations, moreover the linear, 
nondeleting and linear-nondeleting subclasses of a class are denoted by prefixing the 
class by jSf, Jf and J r £ J f , respectively. We note that the enlargement of S by 
has no effect on the generated set [S]= {^o...ojfjn^l, cf^S for l s / ^ « } 
since, for each W^S, 

In Theorem 12 of [3] we obtained a characterization for the set [S], by means 
of which we proved that [S] is infinite if and only if the hierarchy {{£?JfQi3ftoJ/'yf)n} 
is proper, which was shown in [6]. 

In this paper we examine the set of surface set classes [S]{3$ec)= (^¿c)^ d[S]} 
as well as the set of classes of tree transformation languages yd([S](S?^c))= 
= { y d ( ^ r ) | ( S t e c is the class of all recognizable forests and yd is the 
operation "taking the string formed by the leaves" for trees.) We show that, although 
([•£]), = )> as a poset, contains unrelated classes, [S] (3/tec) forms a chain with respect 
to inclusion with least element 3k ec and greatest element 2!3${3$£c). We also prove 
that, in this chain, Jf20l{0lec) is properly contained in Si 3k(3kec) while the problem 
whether [S](^Uc) is finite or infinite remains open. However, we show that the chain 
(yd([S](3$£c)), g ) consists of exactly three elements. 

2. Preliminaries 

This paper is sequel to [3] and [6]. For notions and notations the reader is advised 
to consult with these works. Here we recall only the main results of [3] and [6] and 
introduce the terminology used exclusively in this paper. 

We specify a special function symbol e of arity 0 which either belongs to a ranked 
alphabet F or not. 
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If p£ TF is a tree then the yield yd(/?)gFo of p is defined inductively as follows: 
(a) for p£F0, y d ( p ) = k if p=e and y d ( p ) = p otherwise; 
(b) for p=f(px, ...,pj, with f£Fm and plf ...,pm£TF, y d ( p ) = 

= yd(p1)...yd(pm). 
We call the attention of the reader not to confuse yd (p) with fr (p) defined in [3] 
and [6] and called the frontier of a tree p. 

Subsets of TF are called forests. If TQ TF is a forest then yd (T)= {yd (p)\p€ T} 
and, for a class F of forests we put yd (ST)= {yd { T ) \ T ^ } . 

In [6] we defined the set of paths path (p)^N* for a tree p£TF(Y). Here we 
shall consider two distinguished elements, the longest leftmost path lip (p) and the 
longest rightmost path lrp (p) of path (p) which are defined in the following way : 

(a) if p£YUF0 then Up (p)=lrp (/>)=A, 
(b) if p=f(pi, ...,pm) for some m g 1, f£Fm and plt ...,pm£TF(Y) then 

Up ( /0=1 lip (pi) and lrp (p)=n lrp (/>„). 
Let T Q T f X T g be a tree transformation. The range of T, defined as usual, is 

denoted by ran (T). Let TQTp be a forest, The image z(T) of T under t is the set 
{q£Tc\(p, q)£t for some p£T}. 

For a class # of tree transformations and a class 9~ of forests we set 
r a n ( ( € ) = {ran (T ) |T€#} and ^(3r)= {z(T)\z^ a n d 

We denote by Sfcec the class of all recognizable forests (c.f. [4]). 
Again, let be a class of tree transformations. 
The class of surface sets of <6 is the class (8%ec) of forests, moreover, the class 

of tree transformation languages of is the class yd (3%ecj) of languages. 
If r QTfXTg is a tree transformation then the tree-to-string transformation T t t s 

underlying x is rtts={(p, yd (q))\(p, qKt). Thus tUsQTfXGo. Analogously, 
for a class % of tree transformations we define {t tts\T^}-

We recall that the composition <6xoc62 of two tree transformation classes was 
defined in the order "first r€x and then ^ (c.f. [3], [6]). Thus we have (^ 1o^ 2)U s= 
= «io<g,

stls and, for any class ST of forests yd (<g'1(^))=^ l t t s(5 r) . 
Let {#„|n=l, 2, ...} be a set of classes. We say that {^„\n= 1 , 2 , . . . } , or {%„} 

for short, is a hierarchy if for each » S i . This hierarchy is proper if 

Now we introduce some technical details which, hopefully, make easier to under-
stand the proofs in this paper. 

Consider a DR transducer 2I=(F, A, G, P, a0) and a rule af(xlt ...,xm)— 
—g in P. In this paper q is considered as an element of Ta(AXXm) rather than 
TG(A(Xm)). This is important when speaking about the height h(q) of the right-hand 
side of a rule. (For the definition of height, see [3] or [6].) Moreover, we extend yd 
for the elements Tc(AXXm) as follows: yd (q)=q if q£AXXm and otherwise 
yd (q) is defined in the same way as if q were in TG, see above. Thus if q is the right-
hand side of the above rule then yd (q) can be written in the form w0(al5 x.J Wj... 
...(an,xin)wn for some nsO, w0, ..., wn£G%, au ...,an£A and xir ..., xin€Xm. 

The length of a string w will be denoted by |w|. The following abbreviated nota-
tion will also be used. Let F and G be disjoint ranked alphabets, let / € F m with 

0 and »v£Gq with w=a1...am for some a l5 ..., a„,CG0. For any partition w= 
= w1...w„ ( n s 0 ) of w the notation f(wx, ..., w„) stands for the tree f(ax, ..., am)£ 
€Tf u f i . 

Finally we restate the main results of [3] and [6]. 
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Denote the set {9M, JV3>M, <£2)M, SSJISDM, M, JFTF, <£&} of tree trans-
formation classes by S. The set of all tree transformation classes generated by S 
with composition o is [S]= { ^ o 1, j f ^ S for 1^ /^n} . 

Let us introduce, for each integer k^O, the class of tree transformations as 
follows : 

(a) %=sejr3>M, 
(b) (gk+i=(£koJfJf' if k is èven a n d <gk+1=<#koSejV@M if A; is o d d . 
Moreover, consider the two finite subsets and S2 of [5] defined by 

S i = S U I£Q!8Î0J/-JE, SEOSMOJFQIM, 
<£JT2)Mojf } 

and 

s2 = {jt, j t x , seje, <e®Mojrœ, sejfQMoje}. 

Proposition 2.1. (Theorem 12 of [3].) For each one of the following three 
assertions holds : 

(i) Sx, 
(ii) (ë=<èk for some k ^ 0 , 

(iii) (€=(€'o(€k for some <ë'ÇS2 and k^O. 
By this proposition, [S] is infinite if and only if the hierarchy t} is proper. 

Then, in [6] we obtained the following result. 

Proposition 2.2. (Theorem 3 of [6].) {^2k+1\k—0, 1, ...} is a proper hierarchy. 
Notice that it follows from Proposition 2.2 that k} is also a proper hierarchy. 

This can easily be seen by using the identities Sej/~3lMo<£J/'3)M=Sej/'2)M and 
j r x ojf3te=jr#e. 

3. The results 

First we examine the set of surface set classes [S](Mec)= {^(Mec^^lS]}. 
We have the following result. 

Theorem 3.1. The poset ([S](Mec), Q) is a chain which can be written in the 
following form: 
Mec QJTJP (Mec) g JOf o-^ (Mec) (Mec)... <^Jf®M (Mec) Q 9 M (Mec). 

Proof. By P ropos i t i on 2.1, we have [S](Mec)= {(ê(Mec)\'ë^Sl}\J {<ek(Mec)\ks= 
a 0 } U < ë k ( M e c ) \ < ë ' € S 2 and /fcsO}. Then, using the results @M2(Mec)= 
=2>M(Mec) ( T h e o r e m I . 3. in [5]) a n d <£@M(Mec)=<£J/'Q>M(Mcc)=<e3fe(Mec)= 
=Mec (Corollary IV.6.6. in [4]) as well as the identities g ^ o j f j e = j e and 
Jf#FoJ/'Q)M=J/~S>M ([3]) we can write 

{(ë(Mec)\<e^.Si} = {Mec, ¿V3V(Mec), Jf2)M(Mec), 2>M(Mec)}, 
{<#k(Mec)\k 0} = {Mec, j f j e (MecXJfjeo^MecXJrœo^Mec), ...} 

and 
{^'o^k(MecW^S2 a n d k S 0} = {Jfje(Mec),Jfœo%(Mec), 

Jftfo^Mec), ...} 
obtaining all the elements of [S](Mec). For proving the inclusions stated in our 
theorem we only have to observe that, since JfQlM is closed under composition, 

3« 
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and thus J f ^ o ^ ^ J i ^ S i t for each A:S0. All the other inclusions 
follow by definition. • 

We can raise the question that which of the inclusion relations appearing in The-
orem 3.1 are proper. It is a folkloric result that moreover, it is 
also not difficult to see that J i t f { 0 i e c ) < z J i ^ w h i c h , in our paper, will 
be a consequence of Theorem 3.6. The questions that whether the hierarchy 
{jVjFo^k(3iec)} of classes of surface sets is proper or not and that whether 

U J O f o ̂ (3$ec )c (3%ec) are much more interesting and, at the same time, 
k=0 
difficult. These problems are still open. However, we obtained the following result: 

Lemma 3.2. 

Proof. We observe that, by Theorem 3.2.1 of [2], ran and 
ran Therefore it is sufficient to give a forest in ran (253%) 
which is not in ran (JiSlSi). 

Let us introduce the ranked alphabet F=F0\JF1UF2 where F0— {#}, Fx— 
= {/ i , /2} and F2 = {g}. Denote the balanced tree of type {g, jf} with height n by 
t'„. Then construct the tree tn from t'„ in the following manner: for each wi path (t'„) 
with \w\=n substitute the tree /•,(.../•„(#)•••) for str (t'n, w) in t'„ where w= 
= i1...in. (We know that, for such a w, str (t'n, it and that 1 ^ , . . . , /„^2. ) 
An example for the case n—2 of this construction can be seen in Fig. 1. 
With this we achieved that each subtree of tn with root g has exactly one occurrence 
in f„. 

Next we take a function symbol / with arity 2 and two function symbols e and 
h with arity 1. Let G=FU{e} and H=FU{f,h}. 

There exists a DR transducer 21 such that ra={(*?(/?),/(/>, h"($)))\peTF and 
n=|llpO>)|}, where / i"(#)=# if n=0 and hn($)=h(h"-\$)) if n S l . (Notice 
that R « A Q T G X T B , moreover that [llp(^)| = |lrp holds whenever ^€ran (T<H) . ) 

* « 
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Figure 1. 
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In fact, the DR transducer the rules of which are listed below can be taken as 21. 
The initial state is a. 

aefo)-/(£*!, cxO, 

bg(xx2) - g(bxl, bx2), 

bfiM ^MbxJ, i = 1, 2, b if - ' f , 

c g ( * i , x 2 ) - h(cXl), cfi(Xl) - hicxj, t = 1 , 2 , cif $ . 

We show that ran (T<B)| ran (jVSfiSi). For this, let us introduce first the abbre-
viation qn=g{t„, /i2"(#)), for n s l . Then, since x% sends e(t„) to q„ we have that 
{q„\n=l, 2, ...}gran (TM). • 

Now suppose indirectly that there exists an NDR transducer © = ( £ , B, H, P, b0) 
such that ran (TA)=ran (T®). Then also {q„\n— 1, 2, . . .}^ran (T<B) therefore, for 
each n= 1, 2, ... there exists a p'n£TE so that b0p'„==> q„. We note that some of 
these derivations may start with such a sequence of rules in which the height of the 
right-hand side of each rule is 0. But, after dropping this sequence of rules from 
each derivation we have that for each «=1 , 2 , ... there exists a bn£B anda/>„€sub(X) 
with b„pn <=> q„ such thai each derivation starts with a rule, the height of the right-
hand side of which is greater than 0. Then we can choose an infinite subsequence 

«2» •••> nk> ••• of 1, 2, ..., n, ... such that the same rule, let us say ba{x1, ..., xu) 
—q(biXh, ...,bvXi) is applied in the first step of the derivations b„kp„k => q„k for 
k= 1 , 2 , . . . . (This, of course, entails that b=b„k for each k= 1 , 2 , . . . . ) Moreover, 
without loss of generality, we may suppose that q£.THiV and fr {q) = x1,...xv. 
(For notations, see [3] or [6].) 

We observe that the longest leftmost path (resp. longest rightmost path) of q 
ends in x1 (resp. or, formally, str (lip (q), q)=xl (resp. str (lrp (q), q)—x^). 
For, if this were not the case then |llp (g„t)| (resp. |lrp (q„k)\) would be a constant 
for each k= 1, 2, .... 

Next we show that xh=xiv or, equivalently, h=h • On the contrary, assume 
that i1<iv. Choose two integers k and I such that and write the derivations 
bp„k ==> q„k and bp„t q^ in more detailed form as 

bPnk = bc(pi«\ ...,p\f, ...,/>«)#• 
(1) 

q(blP%\ ..., bvpf?)i> q{q*\ ..., <?<<>) = q„k 

and similarly 

bpn,= ba(j>i'\...,PW,...,pil\...,pP)%> 

q{b1pW,...,bvPV)%>q{q«\...,qy)=qni. 

These two derivations entail that 

bc(p[k\ ...,plk\ q(qlk\ g<'>) 

from where we see that q(qik), ..., q^)^ran (T») and thus, by ran ( t a )=ran (r®), 
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q(q{k\ ..., ^°)€ran (ta). Then, by the note we made after the definition of r a , 
| l lp( 9 (^>, . . . ,^°)) |=|lrp(i(?i ( ) l ) . On the other hand 

|Up(?(?ik). - |Hp(?)l + |Up(?it))| - I"P(<7JI = 2nk+l and 

j l rp (q(aP, ..., <7<"))| - |kp(?)| + | l rp(^)) | = |lrp(?„,)| = 2nt+1, that is, nk = 

This is a contradiction, since 
Let us suppose that i 1 =i„= l . 
Denote the number of states in B by \B\ and let K=max {h(q)\q is the right-

hand side of some rule in P}. Let the integer k be chosen and fixed such that 
>K(|2?|+1). 

Consider, from (1), the derivation b0 p[k) =§=> q{k). Since lrp (q) ends in xv, by the 
definition of q„k, q^k) contains only the function symbols h and # of H. But then, 
since 53 is an NDR transducer and the arity of h is 1, the arity of the function symbols 
occuring in pik- is either 1 or 0. 

Consider now the derivation bLpik) •§=>• q[k). We state three properties of q[k). 
Namely, by the choice of k, we have 

(PI) h(qik))^2nk+l-K>2-\B\-K 
moreover, by the position of q[k) in q„k, 

(P2) if w€path(^k>) is such that lab (qik), w) i s f l t f 2 or «then |w]> |5 | • K 
and, since q[k) is a subtree of t„k, 

(P3) each subtree of qik) with root g has exactly one occurrence in q[k}. 
Further on, we analyse the derivation b t f ^ ^ - q ^ . Therefore, consider the 

following algorithm. 

let i'=0, r 0 =x 1 , b^^bi, s0=p1
(k), m0= 1; 

while r ^ q i ^ do 
begin 

search for the smallest integer jfor which r^b^Si, ..., b^si) r(b[s,..., b'ms) 
holds for some mSO, r^fHin,ts^TE and b[, ..., b'm£B such that rn (/•,)< 
< r n (r); 
let I = I + 1 ; 
let rt = r, st=s, m—mij—j 

and bp=b't for l S / S r a 
end 

(Here ==> stands for the 7-fold composition of the relation 
We note that the smallest integer j in the above algorithm can be found by rewrit-

ing simultaneously the subtrees b ^ s t , ..., b^St. (This simultaneous rewriting was 
called parallel derivation in [2].) 

Since each derivation of S starting from a state and an input tree terminates after 
a finite number of steps our algorithm also terminates after, let us say, N steps. 
Moreover, since brf^ =§> qlk), it holds that mN=0 and rN=q[k). Thus we can write 

r0(bf)s„)^ r^i1^, ..., b<n\>s1)4>...^> rN(brsN, ..., bZ>sN) = q{k\ 
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We make the following observations. 
Since we choose the smallest integer j in the while loop it holds that /i(r ()s 

S i - K , for l^i^N, therefore, by property (PI) of q[k\ we have that N>2-\B\. 
Let i=\B\. Then, by property (P2) of q[k) we obtain that each tree of r l f ..., r{ 

contains only the function symbol g of H. 1 hus the condition rn (r0)<rn (r t)< . . .< 
< r n (rf) entails that 2 ^ m t < . . . < m t , hence, we get that mi>\B\. 

Then, for i= \B\, there is at least one state that appears at least twice in the se-
quence ...,b£]. 

Since rtib^s,, q{k~> we obtain, by (P2) and h{r^i-K=B-K, 
that there is a subtree with root g of q[k) which appears at least twice in q{k). However, 
this contradicts property (P3) of q(k). With this we finished the proof of our lemma. • 

We note that in the above proof we strongly used the fact that the output ranked 
alphabet H of our counter-example tffl contains function symbols of arity 1. It is not 
clear how this lemma could be proved if we restricted ourselves to ranked alphabets 
that do not contain 1-ary function symbols. 

Now we begin to deal with the poset (yd ([S](Mec)), g ) where y d ( [ S ] ( ^ ) ) = 
={yd(^")ly~i[S]{0l£c)}. We observe that, since ([S](@ec), g ) is a chain and yd 
preserves inclusion, (yd ([S](Mcc)), Q) is also a chain. First we prove a technical 
lemma. 

Lemma 3.3. 

Proof. It is sufficent to show that To this end take a DR 
transducer 21={F, A, G, P, a0) and denote the number of rules in P by |P|. Sup-
pose that the rules in P are numbered from 1 to |P|. 

The following algorithm produces, for each /=1, ..., |P|, a function symbol 
f and a rule gt for a DR transducer: 

(a) Suppose that the i-th rule is of the form af{xx, ..., xm)-*q where 
qiTa{AxXm). 

(b) Let yd (g)=w0(a1,xil)w1...(an, xin)wn where n^O, lSxh, ..., xinSm, 
w0, wlt ..., wn€G%. 

(c) Let {xh, ..., xJk}QXm be the set of all variables which do not occur in q 
(and so neither in yd (q)). 

(d) Let/- be a new function symbol with arity |w0| + ... + |w„|+7z+fc. 
(e) Let Qi be the rule 

af(xlt ...,xm)-*fi(w0, fliX.j, ...,a„xln, wn, cxh, ..., cxJk) where c$A is a 
new state. (As usual, (ak, xQ is abbreviated by akxik, for l^k^n.) 

Now we introduce the DR transducer 8 = ( F , AU {c}, F', P', a0) where 

i7 ' = W-li = 1, |P|}U^U{e} and 

P' = {Ql\i = 1, ..., IPDUfc/fo, ..., 

-~f(cxlt cxm)\m 1, / € F m } U { c / - e\fcFa). 
It can be seen from the construction that 23 is an NDR transducer. Moreover, it can 
be verified by an induction o n p that for each a£A,p£TF and w(iG*, 

(3?€TG)(ap =* qAyd(q) = w)o (3q'£ TF,)(ap ==> q'Ayd(q')= w). 
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It then follows that T<ntts=Tstts- Hence we have S ^ ^ ^ S S t ^ . • 
Consequence 3.4. <ejfg>SH^=<£3)0t^. 

Proof. If 21 in Lemma 3.3 is an LDR transducer then SB is an LNDR transducer. 
• 

Consequence 3.5. 

Proof. It is well known that (c.f. [1], [4]) thus we have 
a « t l I = { j r x ose®@)tl= jrxo&agt*^ jrtfo&jr®»^ { j r x ose^siM)^ • 

• 
Now we are ready to state our last theorem. 

Theorem 3.6. The poset (yd([S](&-ec)), is a chain of three elements 

yd {Stee) C yd C yd . . . . 

Proof By Consequence 3.5, we can compute as follows: 

=yd(3>3&(0tec)). Thus applying yd to each element of ([S]{0tec), we obt-
ain the chain yd(5?«0gyd Here each inclusion is 
proper as it was shown in [2]. • 

Finally we have the consequence mentioned before. 

Consequence 3.7. J f t f 
Proof. It is obvious since, by the proof of Theorem 3.6, the same proper inclusion 

holds for the yields of these two classes. • 
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