On ranges of compositions of deterministic root-to-frontier tree transformations

Z. FÜLÖP and S. VÁGVÖLGYI

1. Introduction

In [3] we have proved that $\mathcal{DR}^2 = \mathcal{DR}^n$ for every $n \ge 2$ where \mathcal{DR} is the class of all deterministic root-to-frontier tree transformations. This result motivated us for examining whether the set $S = \{\mathcal{DR}, \mathcal{NDR}, \mathcal{LDR}, \mathcal{LNDR}, \mathcal{H}, \mathcal{NH}, \mathcal{LH}\}$ generates, with composition \circ , a finite or infinite set of tree transformation classes. Here \mathcal{H} is the class of all homomorphism tree transformations, moreover the linear, nondeleting and linear-nondeleting subclasses of a class are denoted by prefixing the class by \mathcal{L}, \mathcal{N} and \mathcal{LN} , respectively. We note that the enlargement of S by \mathcal{LNH} has no effect on the generated set $[S] = \{\mathcal{H}_1 \circ \ldots \circ \mathcal{H}_n | n \ge 1, \mathcal{H}_i \in S \text{ for } 1 \le i \le n\}$ since, for each $\mathcal{C} \in S, \ \mathcal{C} \circ \mathcal{LNH} = \mathcal{LNH} \circ \mathcal{C} = \mathcal{C}.$

In Theorem 12 of [3] we obtained a characterization for the set [S], by means of which we proved that [S] is infinite if and only if the hierarchy $\{(\mathcal{LNDR} \circ \mathcal{NH})^n\}$ is proper, which was shown in [6].

In this paper we examine the set of surface set classes $[S](\Re_{ec}) = \{\mathscr{C}(\Re_{ec}) | \mathscr{C} \in [S]\}$ as well as the set of classes of tree transformation languages $\operatorname{yd}([S](\Re_{ec})) = \{\operatorname{yd}(\mathscr{T}) | \mathscr{T} \in [S](\Re_{ec})\}$. (\Re_{ec} is the class of all recognizable forests and yd is the operation "taking the string formed by the leaves" for trees.) We show that, although $\langle [S] \rangle, \subseteq \rangle$, as a poset, contains unrelated classes, $[S](\Re_{ec})$ forms a chain with respect to inclusion with least element \Re_{ec} and greatest element $\mathfrak{DR}(\Re_{ec})$. We also prove that, in this chain, $\mathcal{NDR}(\Re_{ec})$ is properly contained in $\mathfrak{DR}(\Re_{ec})$ while the problem whether $[S](\Re_{ec})$ is finite or infinite remains open. However, we show that the chain $\langle \operatorname{yd}([S](\Re_{ec})), \subseteq \rangle$ consists of exactly three elements.

2. Preliminaries

This paper is sequel to [3] and [6]. For notions and notations the reader is advised to consult with these works. Here we recall only the main results of [3] and [6] and introduce the terminology used exclusively in this paper.

We specify a special function symbol ε of arity 0 which either belongs to a ranked alphabet F or not.

3 Acta Cybernetica 8/3

If $p \in T_F$ is a tree then the yield $yd(p) \subseteq F_0^*$ of p is defined inductively as follows: (a) for $p \in F_0$, $yd(p) = \lambda$ if $p = \varepsilon$ and yd(p) = p otherwise;

(b) for $p=f(p_1,...,p_m)$, with $f \in F_m$ and $p_1,...,p_m \in T_F$, $yd(p) = yd(p_1)...yd(p_m)$.

We call the attention of the reader not to confuse yd(p) with fr (p) defined in [3] and [6] and called the frontier of a tree p.

Subsets of T_F are called forests. If $T \subseteq T_F$ is a forest then $\operatorname{yd}(T) = \{\operatorname{yd}(p) | p \in T\}$ and, for a class \mathscr{T} of forests we put $\operatorname{yd}(\mathscr{T}) = \{\operatorname{yd}(T) | T \in \mathscr{T}\}$.

In [6] we defined the set of paths path $(p) \subseteq N^*$ for a tree $p \in T_F(Y)$. Here we shall consider two distinguished elements, the longest leftmost path llp(p) and the longest rightmost path lrp(p) of path (p) which are defined in the following way:

(a) if $p \in Y \cup F_0$ then $\lim (p) = \lim (p) = \lambda$,

(b) if $p=f(p_1, ..., p_m)$ for some $m \ge 1$, $f \in F_m$ and $p_1, ..., p_m \in T_F(Y)$ then llp(p)=1 llp (p_1) and lrp(p)=n lrp (p_n) .

Let $\tau \subseteq T_F \times T_G$ be a tree transformation. The range of τ , defined as usual, is denoted by ran (τ). Let $T \subseteq T_F$ be a forest. The image $\tau(T)$ of T under τ is the set $\{q \in T_G | (p, q) \in \tau \text{ for some } p \in T\}$.

For a class \mathscr{C} of tree transformations and a class \mathscr{T} of forests we set ran $(\mathscr{C}) = \{ \operatorname{ran}(\tau) | \tau \in \mathscr{C} \}$ and $\mathscr{C}(\mathscr{T}) = \{ \tau(T) | \tau \in \mathscr{C} \}$ and $T \in \mathscr{T} \}$.

We denote by $\Re ec$ the class of all recognizable forests (c.f. [4]).

Again, let \mathscr{C} be a class of tree transformations.

The class of surface sets of \mathscr{C} is the class $\mathscr{C}(\mathscr{R}_{ec})$ of forests, moreover, the class of tree transformation languages of \mathscr{C} is the class yd ($\mathscr{C}(\mathscr{R}_{ec})$) of languages.

If $\tau \subseteq T_F \times T_G$ is a tree transformation then the tree-to-string transformation τ_{tts} underlying τ is $\tau_{tts} = \{(p, yd(q))|(p, q) \in \tau\}$. Thus $\tau_{tts} \subseteq T_F \times G_0^*$. Analogously, for a class \mathscr{C} of tree transformations we define $\mathscr{C}_{tts} = \{\tau_{tts} | \tau \in \mathscr{C}\}$.

We recall that the composition $\mathscr{C}_1 \circ \mathscr{C}_2$ of two tree transformation classes was defined in the order "first \mathscr{C}_1 and then $\mathscr{C}_2^{"}$ (c.f. [3], [6]). Thus we have $(\mathscr{C}_1 \circ \mathscr{C}_2)_{\text{tts}} = = \mathscr{C}_1 \circ \mathscr{C}_{2\text{tts}}$ and, for any class \mathcal{T} of forests yd $(\mathscr{C}_1(\mathcal{T})) = \mathscr{C}_{1\text{tts}}(\mathcal{T})$.

Let $\{\mathscr{C}_n | n=1, 2, ...\}$ be a set of classes. We say that $\{\mathscr{C}_n | n=1, 2, ...\}$, or $\{\mathscr{C}_n\}$ for short, is a hierarchy if $\mathscr{C}_n \subseteq \mathscr{C}_{n+1}$ for each $n \ge 1$. This hierarchy is proper if $\mathscr{C}_n \subset \mathscr{C}_{n+1}$.

Now we introduce some technical details which, hopefully, make easier to understand the proofs in this paper.

Consider a DR transducer $\mathfrak{A} = (F, A, G, P, a_0)$ and a rule $af(x_1, \ldots, x_m) \rightarrow q$ in P. In this paper q is considered as an element of $T_G(A \times X_m)$ rather than $T_G(A(X_m))$. This is important when speaking about the height h(q) of the right-hand side of a rule. (For the definition of height, see [3] or [6].) Moreover, we extend yd for the elements $T_G(A \times X_m)$ as follows: yd(q) = q if $q \in A \times X_m$ and otherwise yd(q) is defined in the same way as if q were in T_G , see above. Thus if q is the right-hand side of the above rule then yd(q) can be written in the form $w_0(a_1, x_{i_1})w_1...$ $...(a_n, x_{i_n})w_n$ for some $n \ge 0, w_0, ..., w_n \in G_0^*$, $a_1, ..., a_n \in A$ and $x_{i_1}, ..., x_{i_n} \in X_m$.

The length of a string w will be denoted by |w|. The following abbreviated notation will also be used. Let F and G be disjoint ranked alphabets, let $f \in F_m$ with $m \ge 0$ and $w \in G_0^*$ with $w = a_1 \dots a_m$ for some $a_1, \dots, a_m \in G_0$. For any partition $w = w_1 \dots w_n$ $(n \ge 0)$ of w the notation $f(w_1, \dots, w_n)$ stands for the tree $f(a_1, \dots, a_m) \in C_{T_{FUG}}$.

Finally we restate the main results of [3] and [6].

Denote the set $\{\mathfrak{DR}, \mathcal{NDR}, \mathcal{LDR}, \mathcal{LNDR}, \mathcal{H}, \mathcal{NH}, \mathcal{LH}\}$ of tree transformation classes by S. The set of all tree transformation classes generated by Swith composition \circ is $[S] = \{\mathscr{H}_1 \circ \ldots \circ \mathscr{H}_n | n \ge 1, \ \mathscr{H}_i \in S \text{ for } 1 \le i \le n\}.$

Let us introduce, for each integer $k \ge 0$, the class \mathscr{C}_k of tree transformations as follows:

(a) $\mathscr{C}_0 = \mathscr{LNDR},$ (b) $\mathscr{C}_{k+1} = \mathscr{C}_k \circ \mathscr{NH}$ if k is even and $\mathscr{C}_{k+1} = \mathscr{C}_k \circ \mathscr{LNDR}$ if k is odd. Moreover, consider the two finite subsets S_1 and S_2 of [S] defined by

$$S_1 = S \cup \{ \mathcal{DR}^2, \mathcal{LDR} \circ \mathcal{NH}, \mathcal{LDR}^2, \mathcal{LDR} \circ \mathcal{NDR}, \mathcal{H} \circ \mathcal{NDR}, \ \mathcal{LDR}^2 \circ \mathcal{NDR}, \mathcal{LNDR} \circ \mathcal{H} \}$$

and

 $S_{2} = \{\mathcal{H}, \mathcal{NH}, \mathcal{LH}, \mathcal{LDR} \circ \mathcal{NH}, \mathcal{LNDR} \circ \mathcal{H}\}.$

Proposition 2.1. (Theorem 12 of [3].) For each $\mathscr{C} \in [S]$ one of the following three assertions holds:

(i) $\mathscr{C} \in S_1$,

(ii) $\mathscr{C} = \mathscr{C}_k$ for some $k \ge 0$,

(iii) $\mathscr{C} = \mathscr{C} \circ \mathscr{C}_k$ for some $\mathscr{C} \in S_2$ and $k \ge 0$.

By this proposition, [S] is infinite if and only if the hierarchy $\{\mathscr{C}_k\}$ is proper. Then, in [6] we obtained the following result.

Proposition 2.2. (Theorem 3 of [6].) $\{\mathscr{C}_{2k+1}|k=0, 1, ...\}$ is a proper hierarchy. Notice that it follows from Proposition 2.2 that $\{\mathscr{C}_k\}$ is also a proper hierarchy. This can easily be seen by using the identities $\mathcal{LNDR} \circ \mathcal{LNDR} = \mathcal{LNDR}$ and $\mathcal{N}\mathcal{H} \circ \mathcal{N}\mathcal{H} = \mathcal{N}\mathcal{H}.$

3. The results

First we examine the set of surface set classes $[S](\mathcal{R}ec) = \{\mathscr{C}(\mathcal{R}ec) | \mathscr{C} \in [S]\}$. We have the following result.

Theorem 3.1. The poset $\langle [S](\mathcal{R}_{ec}), \subseteq \rangle$ is a chain which can be written in the following form:

 $\mathfrak{Rec} \subseteq \mathcal{NH}(\mathfrak{Rec}) \subseteq \mathcal{NH} \circ \mathcal{C}_0(\mathfrak{Rec}) \subseteq \mathcal{NH} \circ \mathcal{C}_1(\mathfrak{Rec}) \dots \subseteq \mathcal{NDR}(\mathfrak{Rec}) \subseteq \mathcal{DR}(\mathfrak{Rec}).$

Proof. By Proposition 2.1, we have $[S](\Re ec) = \{\mathscr{C}(\Re ec) | \mathscr{C} \in S_1\} \cup \{\mathscr{C}_k(\Re ec) | k \ge 1\}$ $\geq 0 \} \cup \{ \mathscr{C}' \circ \mathscr{C}_k(\mathscr{R}ec) | \mathscr{C}' \in S_2 \text{ and } k \geq 0 \}. \text{ Then, using the results } \mathscr{D}\mathscr{R}^2(\mathscr{R}ec) = \mathscr{D}\mathscr{R}(\mathscr{R}ec) \text{ (Theorem I. 3. in [5]) and } \mathscr{L}\mathscr{D}\mathscr{R}(\mathscr{R}ec) = \mathscr{LNDR}(\mathscr{R}ec) = \mathscr{LH}(\mathscr{R}ec) = \mathscr{LH}(\mathscr{LH}(\mathscr{R}ec) = \mathscr{LH}(\mathscr{LH}(\mathscr{R}ec) = \mathscr{LH}(\mathscr{L}ec) = \mathscr{LH}(\mathscr{LH}(\mathscr{R}ec) = \mathscr{LH}(\mathscr{LH}(\mathscr{LH}(\mathscr{R}ec)) = \mathscr{LH}(\mathscr{L})))) = \mathscr{LH}(\mathscr{L}(\mathscr{LH}(\mathscr{LH}(\mathscr{L}))) = \mathscr{L}(\mathscr{L}($ = $\Re ec$ (Corollary IV.6.6. in [4]) as well as the identities $\mathscr{LH} \circ \mathscr{NH} = \mathscr{H}$ and $\mathcal{NH} \circ \mathcal{NDR} = \mathcal{NDR}$ ([3]) we can write

 $\{\mathscr{C}(\mathscr{R}ec)|\mathscr{C}\in S_1\}=\{\mathscr{R}ec,\,\mathscr{N}\,\mathscr{H}(\mathscr{R}ec),\,\mathscr{NDR}(\mathscr{R}ec),\,\mathscr{DR}(\mathscr{R}ec)\},\,$ $\{\mathscr{C}_k(\mathscr{R}ec)|k \ge 0\} = \{\mathscr{R}ec, \mathcal{NH}(\mathscr{R}ec), \mathcal{NH}\circ\mathscr{C}_0(\mathscr{R}ec), \mathcal{NH}\circ\mathscr{C}_1(\mathscr{R}ec), \ldots\}$ and $\{\mathscr{C}' \circ \mathscr{C}_k(\mathscr{R}ec) | \mathscr{C}' \in S_2 \text{ and } k \geq 0\} = \{\mathscr{NH}(\mathscr{R}ec), \mathscr{NH} \circ \mathscr{C}_0(\mathscr{R}ec), \mathcal{NH} \circ \mathscr{C}_0(\mathscr{R}ec), \mathcal{NH$

 $\mathcal{N}\mathcal{H}\circ\mathcal{C}_1(\mathcal{R}ec),\ldots\}$

obtaining all the elements of $[S](\mathcal{R}ec)$. For proving the inclusions stated in our theorem we only have to observe that, since \mathcal{NDR} is closed under composition,

3*

261

 $\mathscr{C}_k \subseteq \mathscr{NDR}$ and thus $\mathscr{NH} \circ \mathscr{C}_k \subseteq \mathscr{NDR}$ for each $k \ge 0$. All the other inclusions follow by definition. \Box

We can raise the question that which of the inclusion relations appearing in Theorem 3.1 are proper. It is a folkloric result that $\Re ec \subset \mathcal{NH}(\Re ec)$, moreover, it is also not difficult to see that $\mathcal{NH}(\Re ec) \subset \mathcal{NH} \circ \mathcal{C}_0(\Re ec)$ which, in our paper, will be a consequence of Theorem 3.6. The questions that whether the hierarchy $\{\mathcal{NH} \circ \mathcal{C}_k(\Re ec)\}$ of classes of surface sets is proper or not and that whether $\bigcup_{k=0}^{\infty} \mathcal{NH} \circ \mathcal{C}_k(\Re ec) \subset \mathcal{NDR}(\Re ec)$ are much more interesting and, at the same time, difficult. These problems are still open. However, we obtained the following result:

Lemma 3.2. $\mathcal{NDR}(\mathcal{R}ec) \subset \mathcal{DR}(\mathcal{R}ec)$.

Proof. We observe that, by Theorem 3.2.1 of [2], ran $(\mathcal{DR}) = \mathcal{DR}(\mathcal{Rec})$ and ran $(\mathcal{NDR}) = \mathcal{NDR}(\mathcal{Rec})$. Therefore it is sufficient to give a forest in ran (\mathcal{DR}) which is not in ran (\mathcal{NDR}) .

Let us introduce the ranked alphabet $F = F_0 \cup F_1 \cup F_2$ where $F_0 = \{ \sharp \}$, $F_1 = \{f_1, f_2\}$ and $F_2 = \{g\}$. Denote the balanced tree of type $\{g, \sharp\}$ with height *n* by t'_n . Then construct the tree t_n from t'_n in the following manner: for each $w \in \text{path}(t'_n)$ with |w| = n substitute the tree $f_{i_1}(\dots f_{i_n}(\sharp) \dots)$ for str (t'_n, w) in t'_n where $w = i_1 \dots i_n$. (We know that, for such a w, str $(t'_n, w) = \sharp$ and that $1 \leq i_1, \dots, i_n \leq 2$.) An example for the case n=2 of this construction can be seen in Fig. 1.

With this we achieved that each subtree of t_n with root g has exactly one occurrence in t_n .

Next we take a function symbol f with arity 2 and two function symbols e and h with arity 1. Let $G = F \cup \{e\}$ and $H = F \cup \{f, h\}$.

There exists a DR transducer \mathfrak{A} such that $\tau_{\mathfrak{A}} = \{(e(p), f(p, h^n(\sharp))) | p \in T_F \text{ and } n = |\text{llp}(p)|\}$, where $h^n(\sharp) = \sharp$ if n = 0 and $h^n(\sharp) = h(h^{n-1}(\sharp))$ if $n \ge 1$. (Notice that $\tau_{\mathfrak{A}} \subseteq T_G \times T_H$, moreover that |llp(q)| = |lrp(q)| holds whenever $q \in \text{ran}(\tau_{\mathfrak{A}})$.)

In fact, the DR transducer the rules of which are listed below can be taken as \mathfrak{A} . The initial state is a.

$$de(x_1) \to f(bx_1, cx_1),$$

$$bg(x_1, x_2) \to g(bx_1, bx_2),$$

$$bf_i(x_1) \to f_i(bx_1), \quad i = 1, 2, \quad b \ \# \to \ \#,$$

$$cg(x_1, x_2) \to h(cx_1), \quad cf_i(x_1) \to h(cx_1), \quad i = 1, 2, \quad c \ \# \to \ \#.$$

We show that ran $(\tau_{\mathfrak{A}})\notin \operatorname{ran}(\mathscr{NDR})$. For this, let us introduce first the abbreviation $q_n = g(t_n, h^{2n}(\sharp))$, for $n \ge 1$. Then, since $\tau_{\mathfrak{A}}$ sends $e(t_n)$ to q_n we have that $\{q_n | n = 1, 2, \ldots\} \subseteq \operatorname{ran}(\tau_{\mathfrak{A}})$.

Now suppose indirectly that there exists an NDR transducer $\mathfrak{B} = (E, B, H, P, b_0)$ such that ran $(\tau_{\mathfrak{A}}) = \operatorname{ran} (\tau_{\mathfrak{B}})$. Then also $\{q_n|n=1, 2, \ldots\} \subseteq \operatorname{ran} (\tau_{\mathfrak{B}})$ therefore, for each $n=1, 2, \ldots$ there exists a $p'_n \in T_E$ so that $b_0 p'_n \stackrel{*}{=} q_n$. We note that some of these derivations may start with such a sequence of rules in which the height of the right-hand side of each rule is 0. But, after dropping this sequence of rules from each derivation we have that for each $n=1, 2, \ldots$ there exists a $b_n \in B$ and a $p_n \in \operatorname{sub}(p'_n)$ with $b_n p_n \stackrel{*}{=} q_n$ such that each derivation starts with a rule, the height of the righthand side of which is greater than 0. Then we can choose an infinite subsequence $n_1, n_2, \ldots, n_k, \ldots$ of $1, 2, \ldots, n, \ldots$ such that the same rule, let us say $b\sigma(x_1, \ldots, x_n)$ $\rightarrow q(b_1x_{i_1}, \ldots, b_v x_{i_v})$ is applied in the first step of the derivations $b_{n_k} p_{n_k} \stackrel{*}{=} q_{n_k}$ for $k=1, 2, \ldots$ (This, of course, entails that $b=b_{n_k}$ for each $k=1, 2, \ldots$) Moreover, without loss of generality, we may suppose that $q \in \hat{T}_{H,v}$ and fr $(q)=x_1,\ldots x_v$. (For notations, see [3] or [6].)

We observe that the longest leftmost path (resp. longest rightmost path) of qends in x_1 (resp. x_v) or, formally, str (llp $(q), q) = x_1$ (resp. str (lrp $(q), q) = x_v$). For, if this were not the case then $|llp (q_{n_k})|$ (resp. $|lrp (q_{n_k})|$) would be a constant for each k=1, 2, ...

Next we show that $x_{i_1} = x_{i_v}$ or, equivalently, $i_1 = i_v$. On the contrary, assume that $i_1 < i_v$. Choose two integers k and l such that k < l and write the derivations $bp_{n_k} \stackrel{*}{\xrightarrow{}{3}} q_{n_k}$ and $bp_{n_l} \stackrel{*}{\xrightarrow{}{3}} q_{n_l}$ in more detailed form as

$$bp_{n_{k}} = b\sigma(p_{1}^{(k)}, ..., p_{i_{1}}^{(k)}, ..., p_{i_{v}}^{(k)}, ..., p_{u}^{(k)}) \xrightarrow{*}{\mathfrak{B}}$$

$$q(b_1 p_{i_1}^{(k)}, ..., b_v p_{i_v}^{(k)}) \xrightarrow{*}{\mathfrak{B}} q(q_1^{(k)}, ..., q_v^{(k)}) = q_n$$

and similarly

$$bp_{n_{l}} = b\sigma(p_{1}^{(l)}, ..., p_{i_{1}}^{(l)}, ..., p_{i_{v}}^{(l)}, ..., p_{u}^{(l)}) \xrightarrow{*}{\mathfrak{B}}$$
$$q(b_{1}p_{i_{1}}^{(l)}, ..., b_{n}p_{i_{1}}^{(l)}) \xrightarrow{*}{\mathfrak{B}} q(q_{1}^{(l)}, ..., q_{n}^{(l)}) = q_{n_{1}}$$

These two derivations entail that

$$b\sigma(p_1^{(k)}, ..., p_{i_1}^{(k)}, ..., p_{i_v}^{(l)}, ..., p_u^{(k)}) \stackrel{*}{=} q(q_1^{(k)}, ..., q_v^{(l)})$$

from where we see that $q(q_1^{(k)}, \ldots, q_v^{(l)}) \in \operatorname{ran}(\tau_{\mathfrak{B}})$ and thus, by $\operatorname{ran}(\tau_{\mathfrak{B}}) = \operatorname{ran}(\tau_{\mathfrak{B}})$,

263

(1)

 $q(q_1^{(k)}, \ldots, q_v^{(l)}) \in \operatorname{ran}(\tau_{\mathfrak{A}})$. Then, by the note we made after the definition of $\tau_{\mathfrak{A}}$, $|\operatorname{llp}(q(q_1^{(k)}, \ldots, q_v^{(l)}))| = |\operatorname{lrp}(q(q_1^{(k)}, \ldots, q_v^{(l)}))|$. On the other hand

$$\left| \ln \left(q(q_1^{(k)}, \dots, q_v^{(l)}) \right) \right| = \left| \ln (q) \right| + \left| \ln (q_1^{(k)}) \right| = \left| \ln (q_{n_k}) \right| = 2n_k + 1$$
 and

 $\left| \operatorname{lrp}(q(q_1^{(k)}, \dots, q_p^{(l)})) \right| = \left| \operatorname{lrp}(q) \right| + \left| \operatorname{lrp}(q_p^{(l)}) \right| = \left| \operatorname{lrp}(q_{n_l}) \right| = 2n_l + 1, \text{ that is, } n_k = n_l.$

This is a contradiction, since k < l.

Let us suppose that $i_1 = i_n = 1$. Denote the number of states in B by |B| and let $K=\max \{h(q)|q\}$ is the righthand side of some rule in P}. Let the integer k be chosen and fixed such that $n_k > 1$ >K(|B|+1).

Consider, from (1), the derivation $b_v p_1^{(k)} \xrightarrow{*}{\cong} q_v^{(k)}$. Since $\operatorname{lrp}(q)$ ends in x_v , by the definition of q_{n_k} , $q_v^{(k)}$ contains only the function symbols h and \sharp of H. But then, since \mathfrak{B} is an NDR transducer and the arity of h is 1, the arity of the function symbols occuring in $p_1^{(k)}$ is either 1 or 0.

Consider now the derivation $b_1 p_1^{(k)} \stackrel{*}{\to} q_1^{(k)}$. We state three properties of $q_1^{(k)}$. Namely, by the choice of k, we have

(P1) $h(q_1^{(k)}) \ge 2n_k + 1 - K > 2 \cdot |B| \cdot K$

moreover, by the position of $q_1^{(k)}$ in q_{n_k} , (P2) if $w \in \text{path}(q_1^{(k)})$ is such that $lab(q_1^{(k)}, w)$ is f_1, f_2 or # then $|w| > |B| \cdot K$ and, since $q_1^{(k)}$ is a subtree of t_{n_k} , (P3) each subtree of $q_1^{(k)}$ with root g has exactly one occurrence in $q_1^{(k)}$.

Further on, we analyse the derivation $b_1 p_1^{(k)} \stackrel{*}{\Longrightarrow} q_1^{(k)}$. Therefore, consider the following algorithm.

let $i=0, r_0=x_1, b_1^{(0)}=b_1, s_0=p_1^{(k)}, m_0=1;$ while $r_i \neq q_1^{(k)}$ do begin

search for the smallest integer j for which $r_i(b_1^{(i)}s_i, \dots, b_m^{(i)}s_i) \xrightarrow{j}{\mathfrak{B}} r(b_1's, \dots, b_m's)$ holds for some $m \ge 0$, $r \in \hat{T}_{H,m}$, $s \in T_E$ and $b'_1, \ldots, b'_m \in B$ such that $rn(r_i) < r$ <rn (r); let i=i+1; let $r_i = r$, $s_i = s$, $m_i = m$, $j_i = j$ and $b_i^{(i)} = b_i'$ for $1 \le l \le m$

end

(Here $\frac{j}{m}$ stands for the *j*-fold composition of the relation $\frac{j}{m}$).)

We note that the smallest integer j in the above algorithm can be found by rewriting simultaneously the subtrees $b_1^{(i)}s_i, \ldots, b_m^{(i)}s_i$. (This simultaneous rewriting was called parallel derivation in [2].)

Since each derivation of B starting from a state and an input tree terminates after a finite number of steps our algorithm also terminates after, let us say, N steps. Moreover, since $b_1 p_1^{(k)} \stackrel{*}{\Longrightarrow} q_1^{(k)}$, it holds that $m_N = 0$ and $r_N = q_1^{(k)}$. Thus we can write

$$r_0(b_1^{(0)}s_0) \xrightarrow{j_1}{\mathfrak{B}} r_1(b_1^{(1)}s_1, \ldots, b_{m_1}^{(1)}s_1) \xrightarrow{j_2}{\mathfrak{B}} \cdots \xrightarrow{j_N}{\mathfrak{B}} r_N(b_1^{(N)}s_N, \ldots, b_{m_N}^{(N)}s_N) = q_1^{(k)}.$$

We make the following observations.

Since we choose the smallest integer j in the while loop it holds that $h(r_i) \le \le i \cdot K$, for $1 \le i \le N$, therefore, by property (P1) of $q_1^{(k)}$, we have that $N > 2 \cdot |B|$.

Let i=|B|. Then, by property (P2) of $q_1^{(k)}$ we obtain that each tree of r_1, \ldots, r_i contains only the function symbol g of H. Thus the condition rn $(r_0) < \operatorname{rn}(r_1) < \ldots < < \operatorname{rn}(r_i)$ entails that $2 \le m_1 < \ldots < m_i$, hence, we get that $m_i > |B|$.

Then, for i=|B|, there is at least one state that appears at least twice in the sequence $b_1^{(i)}, \ldots, b_m^{(i)}$.

Since $r_i(b_1^{(i)}s_i, \ldots, b_{m_i}^{(i)}s_i) \stackrel{*}{=} q_1^{(k)}$ we obtain, by (P2) and $h(r_i) \leq i \cdot K = B \cdot K$, that there is a subtree with root g of $q_1^{(k)}$ which appears at least twice in $q_1^{(k)}$. However, this contradicts property (P3) of $q_1^{(k)}$. With this we finished the proof of our lemma. \Box

We note that in the above proof we strongly used the fact that the output ranked alphabet H of our counter-example $\tau_{\mathfrak{A}}$ contains function symbols of arity 1. It is not clear how this lemma could be proved if we restricted ourselves to ranked alphabets that do not contain 1-ary function symbols.

Now we begin to deal with the poset $\langle yd([S](\Re ec)), \subseteq \rangle$ where $yd([S](\Re ec)) = = \{yd(\mathcal{T}) | \mathcal{T} \in [S](\Re ec)\}$. We observe that, since $\langle [S](\Re ec), \subseteq \rangle$ is a chain and yd preserves inclusion, $\langle yd([S](\Re ec)), \subseteq \rangle$ is also a chain. First we prove a technical lemma.

Lemma 3.3. $\mathcal{NDR}_{tts} = \mathcal{DR}_{tts}$.

Proof. It is sufficient to show that $\mathscr{DR}_{tts} \subseteq \mathscr{NDR}_{tts}$. To this end take a DR transducer $\mathfrak{A} = (F, A, G, P, a_0)$ and denote the number of rules in P by |P|. Suppose that the rules in P are numbered from 1 to |P|.

The following algorithm produces, for each i=1, ..., |P|, a function symbol f_i and a rule ϱ_i for a DR transducer:

- (a) Suppose that the *i*-th rule is of the form $af(x_1, ..., x_m) \rightarrow q$ where $q \in T_G(A \times X_m)$.
- (b) Let $yd(q) = w_0(a_1, x_{i_1})w_1...(a_n, x_{i_n})w_n$ where $n \ge 0, 1 \le x_{i_1}, ..., x_{i_n} \le m, w_0, w_1, ..., w_n \in G_0^*$.
- (c) Let $\{x_{j_1}, ..., x_{j_k}\} \subseteq X_m$ be the set of all variables which do not occur in q (and so neither in yd(q)).
- (d) Let f_i be a new function symbol with arity $|w_0| + ... + |w_n| + n + k$.
- (e) Let ϱ_i be the rule

 $af(x_1, ..., x_m) \rightarrow f_i(w_0, a_1x_{i_1}, ..., a_nx_{i_n}, w_n, cx_{j_1}, ..., cx_{j_k})$ where $c \notin A$ is a new state. (As usual, (a_k, x_{i_k}) is abbreviated by $a_k x_{i_k}$, for $1 \le k \le n$.) Now we introduce the DR transducer $\mathfrak{B} = (F, A \cup \{c\}, F', P', a_0)$ where

$$F' = \{f_i | i = 1, ..., |P|\} \cup F \cup \{\varepsilon\} \text{ and}$$
$$P' = \{\varrho_i | i = 1, ..., |P|\} \cup \{cf(x_1, ..., x_m) \rightarrow f(cx_1, ..., cx_m) | m \ge 1, f \in F_m\} \cup \{cf \rightarrow \varepsilon| f \in F_0\}.$$

It can be seen from the construction that \mathfrak{B} is an NDR transducer. Moreover, it can be verified by an induction on p that for each $a \in A$, $p \in T_F$ and $w \in G_a^*$,

$$(\exists q \in T_G)(ap \stackrel{*}{\rightrightarrows} q \land yd(q) = w) \Leftrightarrow (\exists q' \in T_{F'})(ap \stackrel{*}{\rightrightarrows} q' \land yd(q') = w).$$

265

It then follows that $\tau_{\mathfrak{A}_{tts}} = \tau_{\mathfrak{B}_{tts}}$. Hence we have $\mathscr{DR}_{tts} \subseteq \mathscr{NDR}_{tts}$.

Consequence 3.4. $\mathcal{LNDR}_{tts} = \mathcal{LDR}_{tts}$.

Proof. If A in Lemma 3.3 is an LDR transducer then B is an LNDR transducer.

п

. .

Consequence 3.5. $\mathcal{DR}_{iis} = (\mathcal{NH} \circ \mathcal{LNDR})_{iis}$.

Proof. It is well known that $\mathcal{DR} = \mathcal{NH} \circ \mathcal{LDR}$ (c.f. [1], [4]) thus we have $\mathcal{DR}_{us} = (\mathcal{NH} \circ \mathcal{LDR})_{us} = \mathcal{NH} \circ \mathcal{LDR}_{us} = (\mathcal{NH} \circ \mathcal{LNDR})_{us}$.

Now we are ready to state our last theorem.

Theorem 3.6. The poset $\langle yd([S](\mathcal{R}ec)), \subseteq \rangle$ is a chain of three elements

 $\operatorname{yd}(\operatorname{\mathscr{R}ec}) \subset \operatorname{yd}(\operatorname{\mathscr{N}H}(\operatorname{\mathscr{R}ec})) \subset \operatorname{yd}(\operatorname{\mathscr{D}R}(\operatorname{\mathscr{R}ec})).$

Proof. By Consequence 3.5, we can compute as follows:

yd $(\mathcal{NHoC}_0(\mathcal{Rec}))=$ yd $(\mathcal{NHoLNDR}(\mathcal{Rec}))=(\mathcal{NHoLNDR})_{tts}(\mathcal{Rec})=\mathcal{DR}_{tts}(\mathcal{Rec})=$ =yd $(\mathcal{DR}(\mathcal{Rec}))$. Thus applying yd to each element of $\langle [S](\mathcal{Rec}), \subseteq \rangle$ we obtain the chain yd $(\mathcal{Rec})\subseteq$ yd $(\mathcal{NH}(\mathcal{Rec}))\subseteq$ yd $(\mathcal{DR}(\mathcal{Rec}))$. Here each inclusion is proper as it was shown in [2]. \Box

Finally we have the consequence mentioned before.

Consequence 3.7. $\mathcal{NH}(\mathcal{R}ec) \subset \mathcal{NH} \circ \mathcal{C}_0(\mathcal{R}ec)$.

Proof. It is obvious since, by the proof of Theorem 3.6, the same proper inclusion holds for the yields of these two classes. \Box

RESEARCH GROUP ON THEORY OF AUTOMATA HUNGARIAN ACADEMY OF SCIENCES SOMOGYI U. 7., SZEGED, HUNGARY, H--6720

11-0720

References

[1] ENGELFRIET, J., Bottom-up and top-down tree transformations — A comparison, Math. Syst Theory, 9, 198—231, 1975.

[2] ENGELFRIET, J., G. ROZENBERG and G. SLUTZKI, Tree transducers, L systems and two-way machines, Journal of Comp. and Syst. Sciences, 20, 150–202, 1980.

- [3] FÜLÖP Z. and VÁGVÖLGYI S., Results on compositions of deterministic root-to-frontier tree transformations, Acta Cybernetica, 8, 49–62, 1987.
- [4] GÉCSEG F. and M. STEINBY, Tree Automata, Akadémia Kiadó, Budapest, 1984.
- [5] ROUNDS, W. C., Mappings and grammars on trees, Math. Syst. Theory, 4, 257–287, 1970.
- [6] VÁGVÖLGYI S. and FÜLÖP Z., An infinite hierarchy of tree transformations in the class NDR, Acta Cybernetica, 8, 153—168, 1987.

(Received June 19, 1987)

266