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' o - 1. Introduction

In [3] we have proved that QR2=PR" for every n=2 where PR is the class
of all deterministic root-to-frontier tree transformations. This result motivated us
for examining whether the set S={9%, /DR, DR, LN DR, H, N K, LH}
generates, with composition o, a finite or infinite set-of tree transformation classes.
Here 2 is the class of all homomorphism tree transformations, moreover the linear,
nondeleting and linear-nondeleting subclasses of a class are denoted by prefixing the
class by &, # and LA, respectively. We note that the enlargement of S by LA #
has no effect on the generated set [S]={Ajo0...0oH,n=1, H;€S for 1=i=n}
since, for each €¢€S, Go LN H =L N H o€=F.

In Theorem 12 of {3} we obtained a characterization for the set [S], by means
of which we proved that [S] is infinite if and only if the h1erarchy {(,SP./V @%om H )"}
is proper, which was shown in [6].

In this paper we examine the set of surface set classes [S ](.%ec) {¢ (%ec)l(g €[S1}
as well as the set-of classes of tree transformation languages yd([S ](%ec))—
={yd(T)|T€[S](Rec)}. (Rec is the class of all recognizable forests and yd is the
operation “taking the string formed by the leaves™ for trees.) We show that, although
{SD), &), as a poset, contains unrelated classes, [S](Z%ec) forms a chain with respect
to inclusion with least element Zec and greatest element DR (Aec). We also prove
that, in this chain, /9% (Zec) is properly contained in D% (ZRec) while the problem
whether [S](Zec) is finite or infinite remains open. However, we show that the chain
(yd ([S 1 (.%ec)) > consists of exactly three elements.

2, Prellmmarles '

This paper is sequel to [3] and [6]. For notions and notations the reader is advised
to consult with these works. Here we recall only the main results of [3] and [6] and
introduce the terminology-used exclusively in this paper.

We specify a special function symbol € of arlty 0 which either belongs toa ranked
alphabet F or not. ,
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If pe T is atree then the yield yd(p)S Fy of pis defined inductively as follows:

(a) for p€F,, yd(p)=424 if p=¢ and yd(p)=p otherwise;

) for p=f(p1, ..., Pm), With fEF, and py,..,p,€Te, yd(p)=
=yd(py)...yd(pn)- )

We call the attention of the reader not to confuse yd (p) with fr (p) defined in [3]
and [6) and called the frontier of a tree p.

Subsets of T are called forests. If TC Ty is a forest then yd (T)={yd (p)|p€ T}
and, for a class 7 of forests we put yd (7)={yd (T)|T€T}.

In [6) we defined the set of paths path (p)SN* for a tree p€T(Y). Here we
shall consider two distinguished elements, the longest leftmost path lip (p) and the
longest rightmost path Irp (p) of path (p) which are defined in the following way:

(@) if pcYUF, then llp (p)=Ilrp(p)=4,

) if p=f(py, ..., p) for some m=1, f€F, and p,,. ,p,,,ETF(Y) then

llp (p)=1 lip (p,) and Irp (p)=n1lrp (,). :

Let t&TpXT; be a tree transformation. The range ¢ of 1, deﬁned as usual, is
denoted by ran (1). Let TS Tr be a forest. The image 1(7) of T under 7 is the set
{9€T5I(p, g)€T for some pET).

For a class ¥ of tree transformations and a class J of forests we set
ran (%)= {ran (7)|1€¥¢} and ¢(J)={t(T)|t€¥ and T€cT}.

‘ We denote by Zec the class of all recognizable forests (c.f. [4]).

Again, let % be a class of tree transformations.

The class of surface sets of € is the class € (%«c) of forests, moreover, the class
of tree transformation languages of € is the class yd (% (Z%ec)) of languages.

If t&TeX T is a tree transformation then the tree-to-string transformation
underlying © is T,={(p, yd (@)p, 9)€1}. Thus 71,ETFXG:. Analogously,
for a class € of tree transformations we define = {7,|t€%}. ‘

We recall that the composition %,0%, of two tree transformation classes was
defined in the order “first %, and then %3 (c.f. (3], [6]). Thus we have (%,0%2)y=
=%,0%s and, for any class 7 of forests yd (%,(7))=%1s(T).

Let {¢,n=1,2,...} be a set of classes. We say that {%,In=1,2,...}, or {%,}
for short, is a hlerarchy if €,5%,+, for each n=1. This hierarchy is proper if
(g C%n+l

Now we introduce some technical details which, hopefully, make easier to under-
stand the proofs in this paper.

Consider a DR transducer U=(F, 4, G, P, a;) and a rule af(x,, ..., x,)—~
—g in P. In this paper ¢q is considered as an element of T(4X X,,) rather than
T6(A(X,)). This is important when speaking about the height 4(g) of the right-hand
side of a rule. (For the definition of height, see [3] or [6].) Moreover, we extend yd
for the elements T5(AXX,) as follows: yd(q)=q if g€AX X, and otherwise
yd (q) is defined in the same way as if ¢ were in T, see above. Thus if g is the rlght-
hand side of the above rule then yd (q) can be written in the form wy(ay, x;)w;..

..y, x; )w, for some n=0, w,, ..., w,€Gs, a,...,a,64 and x;, ..., x;, GX .

The' length of a string w will be denoted by |w]. The following abbrev1ated nota-
tion will also be used. Let F and G be disjoint ranked alphabets, let f€F, with
m=0 and w€G§ with w=a,...q, for some a, ..., a,€G,. For any partition w=
=w...w, (n=0) of w the notation f(w,, ..., w,) stands for the tree f(a;, ..., a,)€

€Trye-
Finally we restate the main results of [3] and [6].
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Denote the set {2R, N DR, LDR, LN DR, H, N H,LH} of tree trans-
formation classes by S. The set of all tree transformation classes generated by S
with composition o is [S]={X}0...0 |n=1, H€S for 1=i=n}.

Let us introduce, for each integer k=0, the class %, of tree transformations as
follows:

@) =S N DR,

1) G o1=Co N H if kis éven and €, ,,=60 LA DR if k is odd.

Moreover, consider the two finite subsets S, and S; of [S] defined by

= SU{PR* LDRN K, FDR:, LDRON DR, H o N DR,
LDRN DR, LN DRoH '}
and

So={H,NH,LH LDRNH, LN DR H}.

Proposition 2.1. (Theorem 12 of [3].) For each €¢[S] one of the following three
assertions holds:
(l) (gE Sl.’
(ii) =%, for some k=0,
(ili) =% 0%, for some ¥’€S, and k=0.
By this proposition, [S] is infinite if and only if the hierarchy {%,} is proper.
Then, in [6] we obtained the following result.

Proposition 2.2. (Theorem 3 of [6].) {%,.1lk=0, 1, ...} is a proper hierarchy.

Notice that it follows from Proposition 2.2 that {&,} is also a proper hierarchy.
This can easily be seen by using the identities LN DR LN DR=L N DR and
NHONH=NH.

3. The results

First we examine the set of surface set classes [S](Zec)= {6 (Rec)|€€[S]).
We have the following result.

Theorem 3.1. The poset {[S](Zec), &) is a chain which can be written in the

following form:
Rec SN H (Rec) SN HoCy(Rec) SN H 0C (Rec)... EN DR (Rec) EDR(Rec).

Proof. By Proposition 2.1, we have [S](Zec)= {6 (Rec)|€€ S} U (G (Rec)k=
Z0}U{€ 0% (Rec)|6’€S, and k=0}. Then, using the results DR*(Rec)=
=PR(Rec) (Theorem 1. 3. in [5]) and L DR (Rec)=LN DR(Rec)=L H (Rec)=
=%Rec (Corollary 1V.6.6. in [4]) as well as the identities LH oA # =4 and
NHoNDR=NDR ([3]) we can write

{(Rec)|CE S} = {Rec, N H (Rec), N DR(Rec), DR (Rec)},
{6(Rec)lk = 0} = {Rec, N H (Rec), N H by (Rec), N H o6, (Rec), ...}
and :
{€ 0% (Ree)| G €S, and k = 0} = {N H (Rec), N H 0Cy(Rec),
N HoC (Rec), ...}
obtaining all the elements of [S](Z%«c). For proving the inclusions stated in our
theorem we only have to observe that, since &/ 92% is closed under composition,

3.
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CEN DR and thus N H oG SN DR for each k=0. All the other inclusions
follow by definition. [

We can raise the question that which of the inclusion relations appearing in The-
orem 3.1 are proper. It is a folkloric result that RecC A # (Zec), moreover, it is
- also not difficult to see that A (Rec)C A # 0€y(Rec) which, in our paper, will
be a consequence of Theorem 3.6. The questions that whether the hierarchy
(N H oG (Rec)} of classes of surface sets is proper or not and that whether

D N H oG (Rec) CHN DR(Rec) are much more interesting and, at the same time,
k=0

difficult. These problems are still open. However, we obtained the following result:
Lemma 3.2. /DR (Rec) DR(Rec). )
Proof. We observe that, by Theorem 3.2.1 of [2], ran (2%)=2DR(Rec) and

ran (N DR)=HN"DR(Rec). Therefore it is sufficient to give a forest in ran (2%)
which is not in ran (& 2%).

Let us introduce the ranked alphabet F=F,UF,UF, where Fy={%}, F,=
={f1,fz} and F,={g}. Denote the balanced tree of type {g, 4} with height n by
t,. Then construct the tree ¢, from ¢, in the following manner: for each wepath (#,)
with |w|=n substitute the tree f,(...f;(#)...) for str(s,,w) in 1, where w=
=iy...i,. (We know that, for such a w, str(s;, w)=# and that 1=i, ...,i,=2.)
An example for the case n=2 of this construction can be seen in Fig. 1.

With this we achieved that each subtree of #, with root g has exactly one occurrence
in t,.

Next we take a function symbol f with arity 2 and two function symbols e and
h with arity 1. Let G=FU{e} and H=FU{f, h}.

There exists a DR transducer % such that ‘rm:{(e( p). f(p, (4 )| p€TF and
n=[llp (p)|}, where h"(4)=# if n=0 and h"(#)=h(h""'(%)) if n=1. (Notice
that taS7¢X Ty, moreover that [llp(g)|=|lrp (¢)| holds whenever g€ran (ta).)

# ¥ % ¥

Figure 1.
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In fact, the DR transducer the rules of which are listed below can be taken as 2. -

The initial state is a.
ae(x;) ~ f(bxy, cxy),
bg(x1, x5) ~ g(bxy, bx,),
bfi(x) ~ filbxy), i=1,2, by >~ &,
cg (1, %2) ~ h(cxs), cfi(x) ~ h(exy), i=1,2, ¥ — 4.

We show that ran (ta)¢ ran (/" 2£). For this, let us introduce first the abbre-
viation g,=g(,, h**(4)), for n=1. Then, since ta sends e(t,) to g, we have that
{g.ln=1, 2, ...}Eran (ta). -

Now suppose indirectly that there exists an NDR transducer B=(E, B, H, P, b,)
such that ran (tw)=ran (ts). Then also {g,ln=1,2,...}&ran (zg) therefore, for
each n=1,2, ... there exists a p,€Ty so that byp,=3 2> g,. We note that some of
these derivations may start with such a sequence of rules in which the height of the
right-hand side of each rule is 0. But, after dropping this sequence of rules from
each derivation we have that foreach n=1, 2, ... thereexistsa b,€B and a p,Esub(p;)
with b,p, 5 = g, such thaj each derivation starts with a rule, the height of the right-
hand side of which is greater than 0. Then we can choose an infinite subsequence
My, gy ooy My, ... OF 1,2, ..., n, ... such that the same rule, let us say bo(xy, ..., x,)
~q(byx,5 ---» byx;,) is applied in the first step of the derivations b, p,, > Gy, for
k=1,2,. ("I his, of course, entails that b=b, foreach k=1, 2, ....) Moreover,
without loss of generality, we may suppose ‘that qcTy,, and fr @=x1,...x,.

(For notations, see [3] or [6].)

We observe that the longest leftmost path (resp. longest rightmost path) of ¢
ends in x, (resp.x,) or, formally, str(llp(g),g)=x, (resp.str (Irp(g), g)=1x,).
For, if this were not the case then lllp (@)l (resp. |Irp (g,)1) would be a constant

for each k=1, 2, .
Next we show that X, —-x or, equivalently, #;=i,. On the contrary, assume
that i;<i,. Choose two 1ntegers k and / such that k<! and write the derivations

bpy, == qn, and bp, => g,, in more detailed form as

bp,, = ba(p®, ..., p®, ..., p®, ..., ) 2> "
g(byp®, ..., b,pP) 2> g(g®, ..., ¢*) = q,,
and similarly
bp, = ba(p{®; ..., p®, . p(” e p,ﬁ'))%»

g(b.pf?, ..., b,pM 5> q(g?, ..., ¢P) = ¢,
These two derivations entail that .
bo(p®, ..., b0, ., 2O, o, PF) 2> q (g, ..., gP)

from where we see that q(g®, ..., ¢)cran (1) and thus, by . ran (ta)=ran (1s),
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q(g®, "))Eran (ta). Then, by the note we made after the definition of 74,
|llp (q(q(") e GO =D (q(q(") .--sq$)|- On the other hand

[ip(g(gs®, -.., ¢)| = lip(g)| +llp(¢*)| = llip(gn)| = 2m+1 and
irp(q(g®, ..., ¢™)| = lep (@)l +Irp(gsP)] = lrp(gn)l = 2m+1, that is, m = .

This is a contradiction, since k<I.

Let us suppose that §;=i,=1.

Denote the number of states in B by IBI and let K=max {h(q)lq is the right-~
hand side of some rule in P}. Let the integer k be chosen and fixed such that n,>
> K(|B|+1).

Consider, from (1), the derivation b, p{® %> ¢{®. Since Irp () ends in x,, by the
definition of g,,, gi* contains only the function symbols h and § of H. But then,
since B is an NDR transducer and the arity of h is 1, the arity of the function symbols
occuring in p{® is cither 1 or 0.

Consider now the derivation b,p{®==> ¢f®. We state three properties of g{®.
Namely, by the choice of k, we have

(P1) h(gM)z2n+1-K>2-|B|. K
moreover, by the position of ¢ in g,

(P2) if wepath (¢f¥) is such that lab (@™, w) is f,, f or % then |w|>|B|-K
and, since ¢{" is a subtree of t,,,

(P3) each subtree of ¢{¥ with root g has exactly one occurrence in g{®.

Further on, we analyse the derivation b,p{M%>g{®. Therefore, consider the

following algorithm.

let i=0, ry=x,, b{®=b,, 5,=p®, my=1;
while r;=g{® do
begm
- search for the smallest integer jfor which r;(b{s,, ..., bY s,-)—%o r(bis, ..., b.s)
. holds. for- some m=0, réTy,,, s€Tz and bj, ..., bL€B such that m (r;)<
<rm (r); A . : L
let i=it1;
let ri=r, s;=s, m=m,ji=j
and bP=b] for 1=l=m
end

(Here ‘=i:> stands for the j-fold composition of the relation 5> .)

We note that the smallest integer jin the above algorithm can be found by rewrit-
ing simultaneously the subtrees b{?s;, ..., b@s;. (This simultaneous rewriting was
called parallel derivation in [2].)

Since each derivation of B starting from a state and an input tree terminates after
a finite number of steps our algorithm also terminates after, let us say, N steps.

Moreover, since b,p® 2> g{®, it holds that mN=O and ry=¢{®. Thus we can write

j
ro(b{Vsg)=> ri(bVsy, ..., b,(,}l’sl);;:..._—%»_r,,(bl"’s”, s DM sy) = g0,
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We make the following observations. o S

Since we choose the smallest integer j in the while loop it holds that A(r)=
=i.K, for 1=i=N, therefore, by property (P1) of ¢{¥), we have that N>2.|B|.

Let i=|B|. Then, by property (P2) of ¢ we obtain that each tree of ry, ..., r;
contains only the function symbol g of H. Thus the condition rn (rp)<rn (r)=<...<
<rn (r;) entails that 2=m;<...<m;, hence, we get that m;>|B]|.

Then, for i=|B|, there is at least one state that appears at least twice in the se-
quence b{", ..., b, -

Since r,(b{s;, ..., b s) 2> g we obtain, by (P2) and h(r)=i-K=B.K,
that there is a subtree with root g of ¢{* which appears at least twice in ¢{*. However,
this contradicts property (P3) of ¢{*. With this we finished the proof of our lemma. 0O

We note that in the above proof we strongly used the fact that the output ranked
alphabet H of our counter-example 7y contains function symbols of arity 1. It is not
clear how this lemma could be proved if we restricted ourselves to ranked alphabets
that do not contain l-ary function symbols. ‘

_ Now we begin to deal with the poset (yd ([S]1(%¢c)), ) where yd ([S](%<e))=

={yd (DT €[S1(Rec)). We observe that, since ([S](Zec), &) is a chain and yd
preserves inclusion, (yd ([S1(Zec)), ) is also a chain. First we prove a technical
lemma.

Lemma 3.3, /" 2%.=DRys-

Proof. 1t is sufficent to show that 9%, SN PA,,. To this end take a DR
transducer U=(F, 4, G, P, a,) and denote the number of rules in P by |P|. Sup-
pose that the rules in P are numbered from 1 to | P|. ’ :

The following algorithm produces, for each i=1, ..., |P|, a function symbol .
f; and a rule g, for a DR transducer: .

(a) Suppose that the i-th rule is of the form af(x,, ..., x,;)~¢ where

geTe(AX X,). C o )

(b) Let  yd (@)=wo(ar, x;)w1...(@,, X; )W, where n=0, 1=x;,..,x, =m,

Wos Wy, ..., W,€Gg.
(© Let {xj, ..., x;}£X, be the set of all variables which do not occur in ¢
. (and so neither in yd(g)). , o
(d) Let f; be a new function symbol with arity |wy]+...+w,|+n+k.
(e) Let g; be the rule :
af (X1, ooy Xp)>fi(Wo, @1Xsys .05 QuXi , Wys €Xj5 .0, €X;) where cdA4 is a
new state. (As usual, (g, x; ) is abbreviated by a.x;, for 1=k=n.)
Now we introduce the DR transducer B=(F, AU {c}, F’, P’, a,) where

F'={fli=1,..,|P}JUFU{e} and
P ={oli=1, ..., 1P YU{cf (x1, ... Xp) =
= f(exyy ..., ex)m = 1, fEF,}U {cf — el f€ Fy)-
It can be seen from the construction that B is an NDR transducer. Moreover, it can
be verified by an induction on p that for each ac 4, pcTr and weGy,

(3g€ To)(ap 5= gAyd(q) = w) < (3g’€ Te)(ap 5> ¢’ Ayd(g)=w).
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It then follows that 7eyu=7s4s. Hence we have- 22, S A4 2%,,. O
Consequence 34, PN DRy=L DR,

' Proof. If W in Lemma 3.3 is an LDR transducer then B is an LNDR transducer
o
Consequence 3.5. DR, =N H o LN DR)ys- , -
Proof. 1t is well known that 9R=H#o L DR (cf. [1], [4]) thus we have
DRys=(NH LD R)ys=N H L DRys=N H LN DRyys=(N H LN DR) s
Now we are ready to state our last theorem. ) , "
Theorem 3.6. The poset {yd ([Sj(.%’ec)), C) is a chain of three elements . '
yd (Bec) C yd (./V H (Rec)) C yd (2R (.%ec)). .
Pmof By Corisequence 3.5, we can compute as follows:

yd (./ijo%(.%ec)) yd (.M;fog./tf@.%(.%w)) (N H LN DRy (Rec)= @%,,s(.%u)_
=yd (2%(Rec)). Thus applying yd to each element of ([S](%<c), &) we obt-
ain the chain yd(%ec)Syd (N (Rec))Syd (DR (Rec)). Here each mclusmn is
proper as it was shown in [2]. O

Finally we have the consequence mentioned before.
Consequence 3.7. N H# (Rec)CN H 0Cy(Rec).

Proof. 1t is obvious since, by the proof of Theorem 3.6, the same proper inclusion
holds for the yields of these two classes O
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