Some results about functional dependencies*

J. DeEMETROVICS and V. D. Tm1

Abstract

§ 1. Introduction -

The relational datamodel was defined by E. F. Codd [2]. In this datamodel a rela-
tion is a table (matrix) in which each column corresponds to a distinct attribute and
each row to a distinct record. Relations are used to describe connections among data
items. The functional dependency is one of the main concepts in relational datamodel.
The mathematical structure of functional dependencies was thouroughly investi-
-gated by W. W. Armstrong [1]. The equivalence of sets of minimal keys with Sperner-
systems was proved [4]. It is known [1] that for a given family F of functional depend-
encies there is a relation representing F in the sense that the full family of functional
dependencies of this relation is exactly F. Also it is shown [4] that for an arbitrarily
given Sperner-system there exists a relarion R representing this Sperner-system so that
this Sperner-system is exactly the set of all minimal keys of R. In this paper we give
necessary and sufficient conditions for a relation to represent a given family of
functional dependencies or a Sperner-system.

The closure operation is a useful and interesting instrument for investigating the
structure of functional dependencies. In this paper we investigate the connection
between closure operations and sets of minimal keys, too Now we give some neces-
sary definitions.

Let Q={a,, ..., a,} be a finite non-empty set of attributes. For each attribute g,
there is a non-empty set D(a;) of all possible values of that attribute. An arbitrary
finite subset of the Cartesian product D(a1)>< .XD(a, ) is called a relation over Q.
It can be seen that a relation over  is a set of mappmgs h: Q—~ U D(a) where
h(a)¢D(a) for all a.
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The main purpose of this paper is to give necessary and sufficient conditions for a relation to

represent an arbitrarily given family of functional dependencies or a closure operation or a Sperner-
system. The connection between closure operations and sets of minimal keys is investigated too.
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Definition 1.1. [2] Let R={h,, ..., h,} be a relation over the finite set of attri-
butes Q. Let 4, BS Q. We say that B functionally depends on A4 in R (denoted as
A~ B) iff (Vh;, h;€ R)((V a€ A)(hi(@)=h;(a))—~(V b€ B)(h;(b)=h;(b))).

Let Fr={(4, B): A4~ B}. Fg is called the full family of functional depend-
encies of R.

Definition 1.2. [1] Let Q be a finite set, and denote P(Q) its power set. Let
FCP(Q)X P(2). We say that F is an f-family over  iff for all 4, B,C, DEQ

(F1) (4, A)CF;

(F2) (4, B)EF, (B, C)e F~(4, C)CF;

(F3) (4, B)e F, ASC, DEB~(C, D)EF,;
(F4) (4, B)EF, (C, D) F~(AUC, BUD)CF. .

By [1], Fg is an f~family over Q. It is known [1] that if F is an f-family, then there is a
relation R over Q such that Fe=F.

Definition 1.3. The mapping L: P(Q)—-P(2) is called a closure operation
over Q iff for every 4, BEQ:

(1) A4S L(4);
(2) ASB~L(4)SL(B);

(3) L(L(4)) = L(4).

Remark 1.1. It is easy to see that if F is an f~family and for all AS Q, we set
Lp(A)={acQ: (4, {a))c F } then Ly is a closure operation over £. Conversely, it
is shown [1] that if L 1s a closure operation over €, then there is exactly one f~family
such that Lg=L, where F={(4, B): BEL(A4)}. ’lhus, between closure operations
~ and f~families over £ there exists an one-to-one correspondence.

Definition 1.4. Let R be a relation, F an f~family and L a closure operation over
. We say that R represents F (L) iff Fp=F (Lg,=L).

Definition 1.5, Let R be a relation, L a closure operation over Q, and KS Q.
We say that K is a key of R (of L) if K~Q (L(K)=®). K is a minimal key of R
(of L) if K is a key of R (of L) and for any proper subset B of K, B> Q (L(B)=Q).

Denote #% the set of all minimal keys of R and £} that of L. Clearly, K, Kic Ay
implies K;EK;. Systems of subsets of Q satisfying this condition are Sperner-
systems. Consequently, A, A are Sperner-systems. .

For a Sperner-system 2 we can define the set of antlkeys of A (denoted
by A1) as follows

#1= (B Q: (KeH) — (KgB) and (BCC) ~ @KeA)(K S C)}.

It is easy to see that # 1 is also a Sperner-system. Clearly, the elements of 2"~ do
not contain the elements of " and they are maximal forthis property: .

Definition 1.6. Let R={h,, ..., h,} be a relation over Q.. For 1<1<j<m
denote E;; the set {a€Q:h(a)=h;(a)}. We set Eg= {ElJ 151<_1$m} ER
called the equality set of R.
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§ 2. Results

Now we give a necessary and sufficient condition for a relation representing a
given f-family. It is a precise characterization for relations represent f-families.

Theorem 2.1. Let R={h,, ...,’h,} be a relation and F an f-family over Q.
Then R represents F iff for every 4ASQ

(\ E; if 3E;€Eq: ASE;,
Le(4) = {AgEu .
Q otherwice,

where Lp(4)={acQ:(4, {a})¢ F} and Ey is the equality set of R.

Proof. Tt is easy to see that Fy is an f~family over €, first we prove that in an
arbitrary relation R for all ASQ

(1 E; if JE;CEx: ASE,

1y
Lp (4) = {ACE:J
£a(4) = Q otherwice.

We suppose that A is a set such that there is not an E;;€ Eg so that ASE;;. Then for
all h;, hj€R 3acAd: hi(a)#h;(a). According to the definition of functlonal depend-
ency A—» Q holds. By the deﬁmtlon of the mapping Lr, we obtain Ly, (4)=Q.

It is obv1ous that Ly (@)= (N E; holds. If A#@ and there is an E;;€ Eg so that

E; €Ep
ASE;;, then we set V= {EU ACE;;, E;j€Eg} and E= ﬂ E,, Clearly, ASE.

If V= ER holds, then (4, E)¢ Fg holds. If V=Eg holds then it can be seen that
for all E; €V (Va€A)(hi(a@)=h;(@)—~(beE)(h(b)=h; (b)) and for all E; ¢4V
Ja€A: h; (a);éh (a). Thus, (4, E)GFR holds. By the deﬁnltlon of Ley, ESLg (A)
holds. Clearly, by the definition of relation we have Ec Q. From ACE < LF (A)
and according to the definition of closure operation we obtain (E, LFR(A))E Fg.
Now we assume that ¢ is an attribute such that c¢E. Consequently, there is an

E;€V sothat ¢4 E;,. Thus, 3h;, h;€ R:VbEE: hy(b)=h;(b) holds, but h;(c)=h;(c).
Accordmg to Deﬁmtlon 1.1, (FU c) does not depend on E. Thus, for all attnbutes
c¢ E (E, EUc)¢ Fg holds. By the definition of Ly, we obtain Lg (4)= () E. By

E;.cV
Remark 1.1 it is easy to see that Fg=F holds iff Ly,=Ly holds. The proof is
complete. O

The following corollary is obvious.

Corollary 2.1. Let R be a relation and L a closure operation over Q. Then R
represents L iff for all ASQ
( E; if 3E;€Er: AS E;, .
L(4) = {"EEU , O
Q otherwise. .

Definition 2.1. Let L be a closure operation over Q. Let Z(L)=
={ASQ: L(4)=A}, and M(L)={AcQ: AcZ(L), AcCB—~L(B)=Q} The ele-
ments of Z(L) are called closed sets. M (L) is the family of maximal closed sets
(except Q).
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Clearly, Z(L) is closed under intersection.

Definition 2.2. Let NS P(Q). Denote N* the set {NN": NSN}. By con-
vention N@=Q, ie. N* always contains Q. It can be seen that for all E;;€Ex we
have E;;€Z(Lg,), ie. E{ SZ(Lg,). By Theorem 2.1, Z(Lr,)S E% holds. Clearly,
if L,, L, are two closure operations over Q then L,=L, holds iff Z(L,)=Z(L,).
Consequently, the next corollary is clear.

Corollary 2.2. Let R be a relation and L a closure operation over Q. Then R
represents L iff Z(L)=FEf holds. QO

Definition 2.3. Let F be an f-family over Q and (4, B)¢ F. We say that (A B)
is a maximal right side dependency of F iff

VB (BcB):(4,B)cF —~ B = B.

Denoie by M (F) the set of all maximal right side dependencies of F. We say that B
is a maximal side of F iff there is an A4 so that (4, B)E M(F). Denote I(F) the set of
all maximal sides of F.
It can be seen that I(F)=Z(Lg). Consequently, the following corollary is
- obvious.

Corollary 2.3. Let F be an f-family and R a relation over Q. Then R represents
Fiff I(F)=FE}. O

It is known ([1], [4]) that for an arbitrary non-empty Sperner-system ¢ there
is a relation R so that A p=X%"

Definition 2.4. Let R be a relation and o~ a ‘Sperner-system over Q. We say that
R represents " iff Ar=A".

The next theorem is a useful precise characterization of relations which repre-
sent a given Sperner-system. First we define the following concept.

Definition 2.5. Let R be a relation over 2, and EjR the equality set of R, i.e.
Ex={E;: 1=si<j=m}, where E;={acQ:h(a)=h;(@)}. Let Tr={4cCQ:
JE;€Eg: E;;=A and 3E,€Eg: ACE,}). Then Ty is called the maximal equality
system of R.

Theorem 2.2. Let 2 be a non-empty Sperner-system and R a relation over Q.
Then R represents A iff A4 ~1=Tg, where Ty is the maximal equality system of R.

Proof. As A is a non-empty Sperner- system, o1 exists. On the other hand, '
Jf’ and A~ are uniquely determined by each other, we obtain A= holds iff
=41 does. Consequently, we must prove that J# g 1=T5p.
It is obvious that Fjy is an f~family over Q. Now we suppose that 4 is an antikey
of #x. Clearly, A7 Q. If thereis a B suchthat ACB and A~ B then by definition
of antikeys we obtain B~ Q. Hence A Q holds. This contradlcts to K€ Ay

KE 4. So A€I(FR) holds If there is a B’ so that B’ Q, B'¢cI(Fg), and AcCB’,
then B’ is a key of R. This contradicts to B’'#Q. Thus, A¢I(Fx)\2 and

3B’ (B’€I1(FR)\R2): ACB’. On the other hand, Q¢ Ty by definition of R. It is easy
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toseethat E;;€I(Fg). Hence TRCI(Fg) holds. If Disa set such that VC€Tg: DEC,
then from Definition 1.1, D is a key of R. Consequently, Ty is the set of maximal
distinct elements of 1(Fg). So we obtain A€ Tg.

Conversely, we assume that "4€ Tz. According to the definition of a relation and
T, we have A—\ Q, i.e. YKEAR : KE A. On the other hand, by definition of Ty

forall D (ACD) D = 2 holds. Consequently, by the definition of antikeys A¢ A ?.
The proof is complete O

Now we investigate the connection between closure operations.

Lemma 2.1. [6] Let L be a closure operation over Q, and 7 the set of minimal
keys of L. Then A '=M(L). O

Definition 2.6. [3] Let Q be a set of all closure. operations over 2. An ordermg
over Q is defined as follows:

For L,L'c¢Q let L=L" iff forall ASQ, L'(4)SL(A). It can be seen that Q
is a partially ordered set for this ordering. If L=L" but L= L’ then the notation
L<I’ isused.

Theorem 2.3. [3] Let L, L’ be two closure operations over Q. Then L=L’ iff
Z(0HsZL). O

Based on Theorem 2.3 it is easy to see that L<L’ iff Z(LYycZ(L").

Theorem 2.4. Let 2 be a non-empty Sperner-system over Q, and 4 —! the set
of all antikeys of " . Let

(W B if thereisa BEA ~': AC B, \
L(4) = {ez
Q otherwise.

Then L is a closure operation over Q and H#p=#". If L’ is an arbitrary closure
operation over Q such that # =2¢;., than L=L’ holds.

Proof. Clearly, L is a closure operation over Q. Also it is obvious that for all
BeA-! wehave L(B)=B, ie. BEZ(L). On the other hand, #~* being a Sperner-
" system over Q we obtain M(L)=2¢{""1. By Lemma 2.1 # =271, Since " and o !
are uniquely determined by each other A=

Suppose that L’ is an arbitrary closure operation.so that 2 =27, it can be seen
that Z(L)=(#"Y)*. By Lemma 2.1, M(L)=X"1=24". Consequently, M(L)=
=M(L)=2"1. Hence Z(L)YSZ(L’) holds and by Theorem 2.3 we obtain L=L’.
Clearly, L is the closure operation for which =2} and for any closure operation
L’ such that o=}, and LsL’ we obtain L< L’ .The theorem is proved. [

Corollary 2.4. Let £ be a non-empty Sperner-system over . Denote by V
the set of all closure operations over @ the minimal keys of which are exactly the
elements of . Then L as constructed in Theorem 2.4 is the unique minimal element
of the partially ordered set ¥ for the ordering defined. O

4*
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Remark 2.1. In [6] we constructed an algorithm which computes the set of all
antikeys of an arbitrary Sperner-system. By Theorem 2.4 and this algorithm we can
explicitly construct the closure operation L for which = Ji’,_ to an arbitrarily
given Sperner-system 2. [

The next remark shows that conversely, the set of all minimal keys of a given
closure operation can be found.

Remark 2.2. In [5] we construct an algorithm which determines the set H such
that H =" for a given Sperner-system . Thus, if 2 is a set of antikeys then
H is a set of minimal keys. Consequently, from a given closure operation L we can
construct the family M(L). By Lemma 2.1 M(L)=X;" holds. From M (L) we can
determine the set of all minimal keys of L by this algorithm. 3

Pesiome -

OnHO ¥3 IJIABHEIX MOHATHH TEOPHH PEINIIMORHLIX 6a3 JaHHBIX SBJISETCA JIOH-
siTHE (YHKLUOHANBHOM 33BHCMMOCTA. CTAaThi HM3YyYaeT PENSLMH KOTOpBIE TIpef-
CTaBIAIOT AaHHYI0 paMuinio QyHKIHOHANBHBIX 3aBACUMOCTEH, ONEPalli 3aMblka-
HUSd ® cHcTeMbl CrepHepa. A TakXe HM3y4aeTCsl CBA3b MEXAY OINEpalluaMu
3aMHKAHASA H MUHAMAJIBHBIMH KJIIOYaAMH.
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