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Abstract

The main purpose of this paper is to prove that the time complexity of finding a relation repre-
senting a given Sparner-system K is exactly exponential in the number of elements of K. Conversely,
we show that if NP=P then the time complexity of finding a set of all minimal keys of given rela-
tion R is also exactly exponential in the size of R.

§ 1. Introduction

The minimal keys play important roles for the logic and structural investigation
of relational datamodel. In this datamodel the form of data storage is matrix (rela-
tion), rows of which represent records and columns represent attributes. A set of
minimal keys of a relation forms a Sperner-system. Sets of minimal keys and Sperner- -
systems are equivalent in the sense that for an arbitrary Sperner-system K there exists
a relation R such that the minimal keys of R are exactly the elements of K (cf. [3]),
i.e. R represents K.

In this paper we prove that the time complexity of finding a relation representing
a given Sperner-system K is exactly exponential in the number of elements of X, i.e. -
we shall show that there is an algorithm that determines a relation representing a given
Sperner-system K in time exponential in the number of elements of K, and there is no
algorithm which finds a relation representing K and the time complexity of which is
polynomial in the number of elements of K. Let P denote the class of problems that
can be solved in deterministic polynomial time and let NP denote the class of problems
that can be solved in nondeterministic polynomial time. It is shown that if NP=P
then the time complexity of finding a set of all minimal keys of a given relation R is
exactly exponential in the number of rows and columns of R.

We start with some necessary definitions, and in § 2 formulate our results.

*This paper was supported by a grant from the Hungarian Academy of Sciences OTKA
Nr. 1066.
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Definition 1.1. Let R={h,, ..., h,} be a relation over 2, and 4, BEQ. Then
we say that B functionally depends on 4 in R (denoted 4 %» B) iff

(V i, h€ R)((V a€ A)(hi(a) = h;(a)) ~ (Vb€ B) (h;(b) = h,(b))).

Let Fr={(4, B):A%»B}- Fg is called the full family of functional dependencies
of R. .

Definition 1.2. Let 2 be a finite set, and denote P(Q) its power set. Let FC
S P(Q)X P(Q). We say that F is an f-family over Q iff for all 4, B,C, DEQ:

(F1) (A4, A)EF;
(F2) (4, B)EF, (B, C)¢F—~(4, C)¢F;
(F3) (4, B)¢F, ASC, DSB~(C, D)¢F;
- (F4) (4, B)EF, (C, D)¢ F~(4UC, BUD)EF.

Clpaﬂy’ F_ ic anlf.famﬂy over Q

..... Fgisan er Q.
1t is known [2] that if F is an arbitrary f-family, then there is a relation R over Q
such that Fz=F.

Definition 1.3. The mapping L: P(Q2)~P(Q) is called a closure operation over
Q iff for every 4, BEQ

(1) ASL4);
(2) ASB~L(4)SL(B);
3 L (L)) = L(4).
Definition 1.4. Let R be a relation, L be a closure operation over Q, and AS Q.
Aisakey of R (a key of L) if AL-Q (L(4)=Q). Ais a minimal key of R (a mini-
"mal key of L) if A is a key of R (a key of L), but B {v» Q (L(B)# Q) for any proper

subset B of A. Denote Ky (K) the set of all minimal keys of R (L). Clearly, Kz,
K, are Sperner-systems over £.

Definition 1.5. Let K be a Sperner-system over Q. We define the set of anti-
keys of K, denoted by K1, as follows:

K1={4% Q: (BEK) > (BEA) and (45 C)~ (3B€K) (BSC)}
It is easy to see that K~ is also a Sperner-system over Q.

Theorem 1.1. ([2], [3]) If K is an arbitrary Sperner-system, then there is a closure
operation L for which K;=K. 0O

In this paper we always assume that if a Sperner-systexﬁ plays the role of the set
of minimal keys (antikeys), then this Sperner-system is not empty (doesn’t con-
tain Q).

Definition 1.6. ([2]) Let F be an f-family over @, and (4, B)¢ F. We say that
(4, B) is a maximal right side dependency of F iff VB’ (BSB’): (4, B'Y¢ F~B=B".
Denote by M (F) the set of all maximal right side dependencies of F. We say that B
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is a maximal side of F iff there is an A such that (4, B)¢ M(F). Denote by I(F)
the set of all maximal sides of F.

In this paper we regard the comparison of two attributes to be the elementary
- step of algorithms. Thus, if we assume that subsets of £ are represented as sorted
lists of attributes, then a Boolean operation on two subsets of Q requires at most
|Q| elementary steps.

Definition 1.7. Let R be a relation, and K be a Sperner-system over 2. We say
that R represents K iff Kz=K.

§ 2. Results

Definition 2.1. Let L be a closure operation over Q.
Denote Z(L)={A€ P(Q): L(4)=A},
T(L)y={4€P(Q): L(A)=A and ASB-L(B)=Q}.
The elements of Z(L) are called closed sets. T(L) is called a maximal family of L.

Lemma 2.1. ([5]) Let L be a closure operation over Q. Then K/ '=T(L). O

Theorem 2.1. ([4])Let K be a Sperner-system over . Let s(K)=min {m: |R|=
=m, Kg=K, R is a relation over Q}. Then V2|K!j=s(K)=|K~!+1. O

Theorem 2.2, The time complexity of finding a relation representing a given
Sperner-system K is exactly exponential in the number of elements of K.

Proof. We have to prove that:

(1) There exists an algorithm that determines a relation representmg a given
Sperner-system K in time exponential in the number of elements of K.

(2) There is no algorithm that finds a relation representing K in time polyno-
mial in the number of elements of K. Based on (1) and (2) it is clear that the time
complexity of any algorithm that determines a relation representing a given Sperner-
system is at least exponential in the number of elements of this Sperner-system.

For (1): First we construct an algorithm which finds the set of antikeys from
a given Sperner-system, as follows:

Let us given an arbitrary Sperner-system K={B, ..., B,} over Q. We set
- Ky={2\{a}: a€B,}. It is obvious that K,={B;}*. Let us suppose that we have

constructed K,={B, ... q} t for g<m. We assume that Xl, .oy Xy, are the
elements of K contammg Bq+1 So K,=F,U{Xy, ..., X}, where F,=
—{AEK B .1 &4} Forall i (i=1, ..., 1) we construct the antlkeys of {Bqﬂ} on'

X;in an analogous way as K;, whlch are the maximal subsets of X; not containing
B 1. We denote them by A4, ..., 4}, (i=1,...,1). Let

K= FU{4d,: AcF,~ 4, ¢ A4, 1=i=1, 1=sp=r}

Clearly, because K and K ~! are uniquely determined by one another, the determi-
nation of K~ based on our algorithm does not depend on the order of B, ..., B,,.

In [5] we proved that for every ¢ (1=¢=m), K,={B, ..., B,;}7%, ie. K,=K™1,
and the worst-case time of this algorithm is exponential not only in the number of
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elements of K, but also in the number of attributes. Now we construct the following
algorithm:

Step I1: Based on the above algorithm we construct X 1,

Step 2: Let K~1={4,, ..., 4,} be a set of antikeys. Let R={hy, hy, ..., h,}
be a relation over Q given as follows:

For all acQ, hy(a)=0, .

0 if acA4,

for i (1=i=1t), h,-(a)={l, otherwise.

In [4], it has been proved that R represents K. It is clear that the complexity of this
algorithm is the complexity of the algorithm that finds the set of antikeys.

For (2): Let us take a partition Q=X1U...UXMUW, where m=[’31], and
[Xi|=3 (I1=i=m). Let . d
K= {B: |B| - 2, B € X; for some i} -if W1=0,
K={B:|B|=2,BS X, forsome i:1=i=m—1 or BEX,UW} if W|=1,
K={B:|B|=2,BS X, forsome i:1=i=m or B=W} if W|=2
It is lclear that
K= {4:|4NX|=1vi} if W|=0,
K1'={4:]ANX|=1(A=i=m-1) and [ANX,UW) =1} if W|=1,
K1'={4:]ANX|=1(1=i=m) and [ANW]|=1} if W|=2.

Let f:N—N (N is the set of natural numbers) be the function defined as follows:

3n/s if n=0(mod3),
f(m) =131.4/3 if n =1 (mod 3),
3R1.2 if n = 2 (mod 3).

It can be seen that f(n)=|K~1|. Clearly, n—1=|K|=n+2 and 3"*<f(n), where
n=|8|, i.e. 31"1<|K 1|, According to Theorem 2.1 we have V2. 308)= 5(K), i.e. the
number of rows of minimal relation representing K is greater than y2 .38, Thus,
for an arbitrary set of attributes we always can construct an example, in which the
number of K is not greater than |Q]+2, but the number of rows of any relation
representing K is exponential not only in the number of attributes, but also in the
number of elements of K. Hence, there is no algorithm which finds a relation represent-
ing a given Sperner-system and the time complexity of which is polynomial in the
number of elements of Sperner-system. The theorem is proved. [J

Now we give a necessary and sufficient condition for a relation to represent a gi-
ven Sperner-system. We define the following concept.
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Definition 2.2, Let R={hy,...,h,} be a relation over Q. Let Ez=
={E;;: 1si<j=m}, where E;;={acQ: h;(a)=h;(a)}. Let

Mg = {4€P(Q): 3E;;€Ex: E;=A and 3E,€Ex: ASE).
My is called the maximal equality system of R.

Theorem 2.3. Let K be a non-empty Sperner-system, and R be a relation over Q.
Then R represents K iff K~1= My, where My is the maximal equality system of R.

Proof. Because K is a non-empty Sperner-system, K ~! exists. On the other hand,
Kand K1 are uniquely determined by each other, hence Kz=K holds iff Kz'=
=K1 holds. Consequently, we must prove that Kz '=M,. It is obvious that Fisa

f-family. Now we suppose that A4 is an antikey of K. It can be seen that 4=Q. If

there exists a B such that 4G B and 4 1{——»B, then by the definition of antikey we
have BL- Q. Hence A~ @ holds. This contradicts C€K: CEA. So AEI(Fy)
holds. If there is a B’ so that B'= Q, B’¢I(Fg), and A& B’ then B’ is a key of R.
This contradicts to B’= . Consequently, AcI(FR)\® and 3B’ (B’eI(FR\2):
ASGB’. On the other hand, according to the of relation Q¢ M. It is easy to see

that E;;€I(Fg). Thus, MzSI(Fg) holds. If D is a set such that VCEMp: DEC,
then by the definition of functional dependency, D is a key of R. Consequently, Mg
is the set of maximal distinct elements of I(Fg). So we have A€ Mp.

Conversely, we assume that A€ M. According to the definition of relation and

My we obtain A{r Q, i.e. YBEKy: BE A. On the other hand, because A is a maxi-

mal equality set, for all D (4 D) D,{—» Q holds. Consequently, by the “definition
of antikey A€ Kgl. The theorem is proved. [0

It can be seen that the time complexity of finding the set of antikeys of R is poly-
nomial in the number of rows and columns of R. We construct the following algorithm
for finding a minimal key. Let H be a Sperner-system. We take a B (B€H) and
an a€ Q\B. We suppose that B={b,, ..., b,}. Let G={B;cH:a{B;} and To,=
=BU{a}. We define '

T .. = {Tq\{bq+1} if VB HN\G: T;\{bg+1} & B;,
g+l — .
T, otherwise.

" Lemma 2.2. (S If H is a set of antikeys, then Ty, Ty, ..., T, are the keys
and T, is a minimal key. [

It is easy to see that the worst-case time of finding T, is O(|2*-|H|).

Lemma 2.3. Let H be a Sperner-system over Q, and let H'={B,, ..., B,} be
a set of antikeys of H, TS H. Then TCH and T#0 if and only ifthereisa BSQ
such that B€T~! and BEB; (Vi léiém).

Proof. Suppose that there exists a Bsuchthat B€ET-! and BEB; (Vi: 1=i=m).

From the definition of the set of antikeys and by T ~!3@, we have T0, and for
all C (CeT), B does not contain C. If there is a B; such that B,¢ H ~! and B;C B,
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then it is obvious that Bisa key. If H “*UB is a Sperner-system, then by Theorem 1.1
there exists a closure operation L such that H=Kj. It is clear that if L(B)=Q,
then from Lemma 2.1 there is a B; (B;¢ H~!) such that L(B)< B;. Consequently,
BSB;. This conflicts with the fact that BEB; (Vi: 1=i=m). That is, B is a key.
Hence there is an 4 (AS Q) such that ASB and A€ H\T. It is easy to see that
TCH.

- Conversely, we suppose that TC H and T##. It is obvious that there is an 4
such that 4¢ H\T. From H is a Sperner-system we have AUT is a Sperner-system.
Denote B the biggest set such that ASB and BUT is also a Sperner-system. It is
clear that, B always exists and from the definition of antikeys we have BeT -1,
By A€H it can be seen that AEB; (Vi:1=i=m). By ASB we have BZEB,;
(Vi: 1=i=m). The theorem is proved. 0O

. Let K={B,, ..., B,} be a Sperner-system over . We have to construct H,
where H ~1=K. We construct H by induction.

Algorithm 2.1. Step I: Using a minimal key algorithm we construct an A4,
(4,€H). We set K;={4,}.

Step i+1:If thereisa BEK;! such that BEB;(Vj: 1§j§m), then by algo-
rithm which finds a minimal key we determine an A4;,; (A4;+1€H) and A4;,,< B.
After that, let K;,;=K;U{4;.,}. In the converse case we set H=K;. (]

Based on Lemma 2.3 there is a natural number p so that K,=H. It can be
seen that the time complexity of Algorithm 2.1 is also exponentlal in the number of
attrlbutes

Lémma 2.4. The following problem is NP-complete:

Given a Sperner-system K={B, ..., B,} over Q={a,,...,a,} and integer
k (k=n), decide whether there exists an ACSL such that |4|=k and
AEB; (i=1,...,m), ie. decide whether there exists a key having cardinality
not greater than k, if K is the set of antikeys.

Proof. We nondeterministically choose a subset 4 of Q so that |4]=k and
decide whether A is not a subset of B;(i=1, ..., m). It is obvious that this algorithm
is nondeterministic polynomial. Thus, the problem lies in NP. It is known [1] that
the vertex cover problem is NP-complete:

Given integer k and non-directed graph G=(V, E), where V is a set of vertices
and E is set of edges, decide whether or not G has a vertex cover having cardinality
not greater than k.

We shall prove that the vertex cover problem is polynomially reducible to our
problem. :

Let G=(V,E) be a non-directed graph, k=|V|. We set Q=V and K=
_{Q\{an a]} (al’ aJ)EE}

f ASQ, |d|=k and AL B (Vi=1, ..., m), then according to definition of K
we have AN {a;, a ,}#ﬁ(\y’ (a;, a;)EE). Consequently, A is a vertex cover of G.

Conversely, if A4 is a vertex cover of G, then by definition of K and definition of
vertex cover we have AL B; (Vi=1,...,m). Hence, AL B; (Vi=1, ..., m) holds if
and only if A4 is a vertex cover of G. The Lemma is proved. [
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Based on Lemma 2.4 and Step 2 of the algorithm which determines a relation
representing a given Sperner-system in Theorem 2.2, the following corollary is
obvious.

Corollary 2.1. The following problem is NP-complete: Given integer k£ and
relation, decide whether or not there exists a key having cardinality not greater
than k. 0O

Theorem 2.4. The time complexity of finding a set of all minimal keys of a given
relation R is exactly exponential in the number of rows and columns of R.

Proof. For a given arbitrary relation R we construct the following algorithm
which determines the set of all minimal keys of R,

Step 1: According to Theorem 2.3 we construct the set of antikeys of R.

Step 2: Based on Algorithm 2.1 we determine the set of all minimal keys of R.

By Lemma 2.2, Lemma 2.3, Theorem 2.3 and Algorithm 2.1, it is clear that the
worst-case time of this algorithm is exponential in the number of rows and col-
umns of R.

According to Lemma 2.4 and Corollary 2.1, it can be seen that there is no algo-
rithm which finds a set of all minimal keys of a given relation and the time com-
plexity of which is polynomial in the size of this relation. The theorem is proved. [

4

Based on Theorem 2.1 and Theorem 2.4 it can be seen that the problem
of finding a relation representing a given Sperner-system and finding a set of all
minimal keys of a relation are inherently difficult.

Pesrome
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