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Abstract 

The main purpose of this paper is to prove that the time complexity of finding a relation repre-
senting a given Spsrner-system K is exactly exponential in the number of elements of K. Conversely, 
we show that if NP?Î P then the time complexity of finding a set of all minimal keys of given rela-
tion R is also exactly exponential in the size of R. 

§ 1. Introduction 

The minimal keys play important roles for the logic and structural investigation 
of relational datamodel. In this datamodel the form of data storage is matrix (rela-
tion), rows of which represent records and columns represent attributes. A set of 
minimal keys of a relation forms a Sperner-system. Sets of minimal keys and Sperner-
systems are equivalent in the sense that for an arbitrary Sperner-system K there exists 
a relation R such that the minimal keys of R are exactly the elements of K (cf. [3]), 
i.e. R represents K. 

In this paper we prove that the time complexity of finding a relation representing 
a given Sperner-system K is exactly exponential in the number of elements of K, i.e. 
we shall show that there is an algorithm that determines a relation representing a given 
Sperner-system K in time exponential in the number of elements of K, and there is no 
algorithm which finds a relation representing K and the time complexity of which is 
polynomial in the number of elements of K. Let P denote the class of problems that 
can be solved in deterministic polynomial time and let N P denote the class of problems 
that can be solved in nondeterministic polynomial time. It is shown that if NP^P 
then the time complexity of finding a set of all minimal keys of a given relation R is 
exactly exponential in the number of rows and columns of R. 

We start with some necessary definitions, and in § 2 formulate our results. 

*This paper was supported by a grant from the Hungarian Academy of Sciences OTKA 
Nr. 1066. 
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Definition 1.1. Let R={hlt ..., hm} be a relation over Q, and A, BQQ. Then 
we say that B functionally depends on A in R (denoted A~*B) iff 

(VA„ h^R){^aZA)(ht(a) = h,(a)) - - h^b))). 

Let FR= {(A, B) : AJ~B} • FR is called the full family of functional dependencies 
of R. 

Definition 1.2. Let £2 be a finite set, and denote P(Q) its power set. Let FQ 
gP(£2)XP(£2). We say that F is an/-family over £2 iff for all A, B, C, DQQ: 

(F1 )(A,AKF; 
(F2) (A, BXF (B, C)£F—(A, C)£F; 
(F3) (A, B)£F, AQC, DQB^(C, D)£F] 
(F4) (A, B)£F, (C, D)iF-*(A{JC,B(JD)iF. 

Clearly, FR is an/-family over £2. 
It is known [2] that if F is an arbitrary /-family, then there is a relation R over £2 

such that FR=F. 

Definition 1.3. The mapping L: P(£2)—P(£2) is called a closure operation over 
£2 iff for every A,BQQ 

(1) AQL(A); 

(2) A<gB^L(A)<^L(By, 

(3) L{L(A)) = L(A). 

Definition 1.4. Let R be a relation, L be a closure operation over £2, and AQQ. 
A is a key of R (a key of L) if A £2 (L(A)= Q). A is a minimal key of R (a mini-

f 
mal key of L) if A is a key of R (a key of L), but B -V* Q (L(B)^Q) for any proper 
subset B of A. Denote KR (KL) the set of all minimal keys of R (L). Clearly, KR, 
KL are Sperner-systems over £2. 

Definition 1.5. Let K be a Sperner-system over £2. We define the set of anti-
keys of K, denoted by K-1, as follows: 

K~1= {A Cj £2: (B£K) + {B%A) and (A g C) - (3B£K) (BQC)}. 

It is easy to see that K ' 1 is also a Sperner-system over £2. 

Theorem 1.1. ([2], [3]) If K is an arbitrary Sperner-system, then there is a closure 
operation L for which KL=K. • 

In this paper we always assume that if a Sperner-system plays the role of the set 
of minimal keys (antikeys), then this Sperner-system is not empty (doesn't con-
tain £2). 

Definition 1.6. ([2]) Let F be an /-family over £2, and (A, B)£F. We say that 
(A,B ) is a maximal right side dependency of F iff \/B' (BQB'): (A, B%F^B=B'. 
Denote by M(F) the set of all maximal right side dependencies of F. We say that B 
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is a maximal side of F iff there is an A such that (A, B)EM(F). Denote by 1(F) 
the set of all maximal sides of F. 

In this paper we regard the comparison of two attributes to be the elementary 
step of algorithms. Thus, if we assume that subsets of Q are represented as sorted 
lists of attributes, then a Boolean operation on two subsets of Q requires at most 
| Q\ elementary steps. 

Definition 1.7. Let R be a relation, and K be a Sperner-system over Q. We say 
that R represents K iff KR=K. 

§ 2. Results 

Definition 2.1. Let L be a closure operation over Q. 
Denote Z(L)= {A£P(Q): L(A)=A), 

T(L)={A€P(0):L(A)=A and A^B-*L(B)=Q). 
The elements of Z(L) are called closed sets. T(L) is called a maximal family of L. 

Lemma 2.1. ([5]) Let L be a closure operation over Q. Then K£1=T(L). • 

Theorem 2.1. ([4]) Let K be a Sperner-system over Q. Let .?(£)=min {m: | i?| = 
=m, KR=K, R is a relation over i2}. Then ]'2\K-1\^s(K)s\K-1\ +1. • 

Theorem 2.2. The time complexity of finding a relation representing a given 
Sperner-system K is exactly exponential in the number of elements of K. 

Proof. We have to prove that: 
(1) There exists an algorithm that determines a relation representing a given 

Sperner-system K in time exponential in the number of elements of K. 
(2) There is no algorithm that finds a relation representing K in time polyno-

mial in the number of elements of K. Based on (1) and (2) it is clear that the time 
complexity of any algorithm that determines a relation representing a given Sperner-
system is at least exponential in the number of elements of this Sperner-system. 

For (1): First we construct an algorithm which finds the set of antikeys from 
a given Sperner-system, as follows: 

Let us given an arbitrary Sperner-system K— {Bx, ..., Bm} over Q. We set 
^!={i3\{a}: aiBj}. It is obvious that Ki={B1}~i. Let us suppose that we have 
constructed Kq= {By, ..., for q<m. We assume that ..., Xtq are the 
elements of K containing Bq+1. So Kq=Ft\J{Xu J , where Fq= 
= {A£Kq: Bq+1^A). For all i (i— 1, ..., tq) we construct the antikeys of {Bq+1} on 
Xi in an analogous way as Kx, which are the maximal subsets of X, not containing 
Bq+1. We denote them by A[, ..., A)., (i— 1, ..., tq). Let 

Kq+1 = F,U { 4 : AiFq - 4 $ A, 1 / =S fa, l s ^ 

Clearly, because K and K~l are uniquely determined by one another, the determi-
nation of K~l based on our algorithm does not depend on the order of Blt ..., Bm. 

In [5] we proved that for every q (1 Sq^m), Kq= {B1, ..., i?,}-1, i.e. Km=K~1. 
and the worst-case time of this algorithm is exponential not only in the number of 
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elements of K, but also in the number of attributes. Now we construct the following 
algorithm: 

Step 1: Based on the above algorithm we construct K'1. 
Step 2: Let K~^={A1, ...,A,} be a set of antikeys. Let R={h0,h1, ...,h,} 

be a relation over Q given as follows: 
Fo ra l l a e f i , h0(a) = 0, 

rO if a£Ah 
for i ( lS/=§0, hi{a) = \ . v ' , w u otherwise. 

In [4], it has been proved that R represents K. It is clear that the complexity of this 
algorithm is the complexity of the algorithm that finds the set of antikeys. 

For (2): Let us take a partition Q=X1U ...UXmUW, where m = [ j ] > a n d 

1^1 = 3 (1 S iSm) . Let 

K={B: \B\ = 2,BQXt for some /} if \W\ = 0, 

K = {B\ ]£] = 2, B g Xi for some or B Q XmUlV} if \W\ = 1, 

K = {B:\B\ =2,B QXi for some or B = W} if \W\=2. 

It is clear that 

K~x = {A: \AC\X,\ = l.Vi} if \W\ = 0, 

K'1 = {A: \AC\Xi\ = 1 ( l s i ^ m - l ) and \Ar\(XmUW)\ = 1} if 1^1 = 1, 

K-1 = {A: \ADXA = 1 (1 S i S m ) and \Af)W\ = 1} if \W\ = 2. 

Let f : N-»N (N is the set of natural numbers) be the function defined as follows: 

3n/3 if n = 0 (mod 3), 
3W«.4/3 if « = 1 (mod 3), 
3C/3] .2 if n = 2 (mod 3). 

It can be seen that Clearly, n-\^\K\^n+2 an_d 3 [" /4 ]</(n), where 
n= |fi|, i.e. 3[n/4]< IA"-1!. According to Theorem 2.1 we have ]/2-3tn/8]ss.y(A:), i.e. the 
number of rows of minimal relation representing K is greater than j/2 • 3[n/8]. Thus, 
for an arbitrary set of attributes we always can construct an example, in which the 
number of K is not greater than | + 2, but the number of rows of any relation 
representing K is exponential not only in the number of attributes, but also in the 
number of elements of K. Hence, there is no algorithm which finds a relation represent-
ing a given Sperner-system and the time complexity of which is polynomial in the 
number of elements of Sperner-system. 1 he theorem is proved. • 

Now we give a necessary and sufficient condition for a relation to represent a gi-
ven Sperner-system. We define the following concept. 
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Definition 2.2. Let R= {hi, ..., hm} be a relation over £2. Let ER= 
= {Etj: lS/«=/Sm}, where EtJ={aeQ: hl(a)=hJ(a)}. Let 

MR = {AiP(Q): 3Ei£ER: EtJ = A and 

MR is called the maximal equality system of R. 

Theorem 2.3. Let K be a non-empty Sperner-system, and R be a relation over Q. 
Then R represents K iff K~1=MR, where MR is the maximal equality system of R. 

Proof. Because Kis a non-empty Sperner-system, exists. On the other hand, 
K and K~x are uniquely determined by each other, hence KR=K holds iff KR

1= 
— K h o l d s . Consequently, we must prove that KR

1=MR. It is obvious that Fis a 
/-family. Now we suppose that A is an antikey of K. It can be seen that A^£2. If 
there exists a B such that A^B and Aj^B, then by the definition of antikey we 
have Bjf~Q. Hence A ^-£2 holds. This contradicts C£KR:C%A. So A£l(FR) 
holds. If there is a B' so that B'¿¿£2, B'£l(FR), and A^B' then B' is a key of R. 
This contradicts to B'^Q. Consequently, A£l(FR)\£2 and 3B' (B'£J(FR)\Q): 
A'-zB'. On the other hand, according to the of relation Q$MR. It is easy to see 
that Eif i I{FR) . Thus, MR^I{FR) holds. If D is a set such that VC£MR: D^C, 
then by the definition of functional dependency, D is a key of R. Consequently, MR 

is the set of maximal distinct elements of I(FR). So we have A£MR. 
Conversely, we assume that A£MR. According to the definition of relation and / 

MR we obtain A^~£2, i.e. \/B£KR: B%A. On the other hand, because A is a maxi-
mal equality set, for all D (A^zD) Dj-Q holds. Consequently, by the'definition 
of antikey A^K^1. The theorem is proved, n 

It can be seen that the time complexity of finding the set of antikeys of R is poly-
nomial in the number of rows and columns of R. We construct the following algorithm 
for finding a minimal key. Let H be a Sperner-system. We take a B (B£H) and 
an a££2\B. We suppose that B={bu ...,bm). Let G={B£H: a$Bj} and T0= 
=5U{a}. We define 

= JT q \ {b q + 1 } if VB£H\G: Tq\{bq+1} £ Bu 
9 + 1 l r 9 otherwise. 

Lemma 2.2. ([5]) If H is a set of antikeys, then T0, 7\, ..., Tm are the keys 
and Tm is a minimal key. • 

It is easy to see that the worst-case time of finding r m i s 0{\£2\2-\H\). 

Lemma 2.3. Let H be a Sperner-system over £2, and let H~1—{B1, ...,Bm} be 
a set of antikeys of H, TQH. Then T^H and 7 V 0 if and only if there is a BQ£2 
such that B£T~l and B%B{ (W: l ^ z ^ m ) . 

Proof. Suppose that there exists a B such.that i?€ T~1 and B^Bt (Vi: Isi^m). 
From the definition of the set of antikeys and by we have 7V0, and for 
all C (C£T) , B does not contain C. If there is a such that B^H'1 and B^B, 
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then it is obvious that B is a key. If H~1UB is a Sperner-system, then by Theorem 1.1 
there exists a closure operation L such that H=KL. It is clear that if L(B)^Q, 
then from Lemma 2.1 there is a Bt (B^H'1) such that L(B)^Bi. Consequently, 
BQBi. This conflicts with the fact that (Vi: 1== iSm). That is, B is a key. 
Hence there is an A (AQQ) such that AQB and A£H\T. It is easy to see that 
TczH. 

Conversely, we suppose that T<zH and 7V0. It is obvious that there is an A 
such that A(iH\T. From H is a Sperner-system we have AUT is a Sperner-system. 
Denote B the biggest set such that AQB and BUT is also a Sperner-system. It is 
clear that, B always exists and from the definition of antikeys we have B^T'1. 
By A£H it can be seen that A%Bt (Vi: l s i ^ w ) . By AQB we have B^Bt 
(V/: 1 ^ i ^ m ) . The theorem is proved. • 

Let K= {B1, ..., Bm} be a Sperner-system over Q. We have to construct H, 
where H~1=K. We construct H by induction. 

Algorithm 2.1. Step 1: Using a minimal key algorithm we construct an Al7 
(A^H). We set 

Step i+1: If there is a B£ Kr1 such that B%Bj(Vj: l ^ y ^ w ) , then by algo-
rithm which finds a minimal key we determine an Ai+1 (^¡+ 1€H) and Ai+1QB. 
After that, let Ki+1=KtU {Ai+1}. In the converse case we set H=Kt. • 

Based on Lemma 2.3 there is a natural number p so that KP=H. It can be 
seen that the time complexity of Algorithm 2.1 is also exponential in the number of 
attributes. 

Lemma 2.4. The following problem is NP-complete: 
Given a Sperner-system K= {Bx, ..., Bm) over £2= a„} and integer 

k (k^ri), decide whether there exists an AQQ such that Ml = A: and 
A%Bi (i= 1, ..., m), i.e. decide whether there exists a key having cardinality 
not greater than k, if K is the set of antikeys. 

Proof. We nondeterministically choose a subset A of Q so that \A\^k and 
decide whether A is not a subset of Bt (/= 1, ..., m). It is obvious that this algorithm 
is nondeterministic polynomial. Thus, the problem lies in NP. It is known [1] that 
the vertex cover problem is NP-complete: 

Given integer k and non-directed graph G— (V, E), where V is a set of vertices 
and E is set of edges, decide whether or not G has a vertex cover having cardinality 
not greater than k. 

We shall prove that the vertex cover problem is polynomially reducible to our 
problem. 

Let G=(V,E) be a non-directed graph, We set Q=V and K= 
= {i2 \{a i ; aj}: fa, a,•)€£}• 

If AQQ, = ana A%B (V/= 1, ..., tri), then according to definition of K 
we have AO fa, <3j}^0(V fa, aj)(LE). Consequently, A is a. vertex cover of G. 

Conversely, if A is a vertex cover of G, then by definition of K and definition of 
vertex cover we have A%Bt (V/= 1, ...,m). Hence, A ^ B t (V/= 1, ..., m) holds if 
and only if A is a vertex cover of G. The Lemma is proved. • 
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Based on Lemma 2.4 and Step 2 of the algorithm which determines a relation 
representing a given Sperner-system in Theorem 2.2, the following corollary is 
obvious. 

Corollary 2.1. The following problem is NP-complete: Given integer k and 
relation, decide whether or not there exists a key having cardinality not greater 
than k. • 

Theorem 2.4. The time complexity of finding a set of all minimal keys of a given 
relation R is exactly exponential in the number of rows and columns of R. 

Proof. For a given arbitrary relation R we construct the following algorithm 
which determines the set of all minimal keys of R. 

Step 1: According to Theorem 2.3 we construct the set of antikeys of R. 

Step 2: Based on Algorithm 2.1 we determine the set of all minimal keys of R. 
By Lemma 2.2, Lemma 2.3, Theorem 2.3 and Algorithm 2.1, it is clear that the 

worst-case time of this algorithm is exponential in the number of rows and col-
umns of R. 

According to Lemma 2.4 and Corollary 2.1, it can be seen that there is no algo-
rithm which finds a set of all minimal keys of a given relation and the time com-
plexity of which is polynomial in the size of this relation. The theorem is proved. • 

> 
Based on Theorem 2.1 and Theorem 2.4 it can be seen that the problem 

of finding a relation representing a given Sperner-system' and finding a set of all 
minimal keys of a relation are inherently difficult. 

Резюме 

В настоящей работе изучается связь между отношениями и минималь-
ными ключами. 
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