
On homomorphic simulation of automata by a0-products 

P. DOMOSI a n d Z . ESIK 

1. Introduction 

' The concept of the a0-product of automata is equivalent to the cascade compo-
sition or loop-free product (see [1, 7]). In an <x0-product, the feedback functions 
admit only strict letter-to-letter replacement as opposed to the generalized oc„-
product where input words may correspond to input letters. Thus the generalized 
a0-product is closely related to the wreath product of transformation semigroups 
and/or monoids, see [1, 4]. The a0-product and the above generalization are usually 
studied in conjunction with homomorphic realization or homomorphic simulation. 
The difference between the concepts of homomorphic realization and homomorphic 
simulation is similar to the difference between the a0-product and the generalized a0-
product: for simulation the action of an input letter is related to the action of an input 
word rather than to the action of an input letter. It is a matter of fact that the homo-
morphic realization is equivalent to the homomorphic simulation with respect to the 
generalized a0-product. In the present paper we study homomorphic simulations of 
automata by a0-products. We give a sufficient condition on a class Jf of automata 
ensuring that an automaton be homomorphically simulated by a generalized a0-
product over Jf if and only if it is homomorphically simulated by an a0-product 
of automata from JT. As an application it is shown that a class JT is complete with 
respect to the homomorphic simulation by the generalized a0-product if and only if 
it is complete with respect to the homomorphic simulation by the a0-product, as 
far as nonempty words are considered. 

2. Preliminaries 

For a finite nonempty set X we let X* denote the free monoid of all words over 
X and write X+ for the free semigroup X* — {).}, where X is the empty word. We set 
Xx=XU {;.}. The length of a word u£X* is denoted |w|. If u=x 1...x„ with the 
x's in X, then for each /'£[«] = {1, •••,«} we define M(/)=X,- and W[/] = JCJ ...xi_1. 

An automaton is a triple A = ( A , X, (5) with finite nonempty set A (state set), 
X (input letters) and transition <5: A XX—A that extends to a mapping A XX*-* A 
as usual. If u£X* we write uK for the transformation A~+A given by auA=S(a,u), 

1 Acta Cybernetica VUI/4 



316 P. Domosi, Z. £sik 

a£A. The characteristic monoid (semigroup) S1(A), (S(A)) of A consists of all the 
transformations uK with u£X* (u£X+). 

Let A = ( A , X , d ) be an automaton. We define A*=(A, ^ ( A ) , <5*) and 
A+=(A, S(A), 8+) to be the automata with 8*(a,s)—as and S+(a, t)=at, for 
all a£A, sCS^A) and t£S(A). Likewise we put AX=(A, {uA\u£Xx}, Sx) with 
Sx(a,uA)=auA. The automata A* and A + thus correspond to the transformation 
monoid and the transformation semigroup of A, see [3]. 

Given a family of automata Ai=(Ah Xt, <5,) (/'€[«], «SO) and a finite non-
empty set X together with feedback functions 

(pr. A1X...XAi_1xX - Xt, 
the a0-product (cf. [8]) 

AxX ... X An(X, <p) 

is defined to be the automaton A=(A, X, 8) with 
A = Ai X ... X A„ 

and 
<5((al5 ..., a„). x) = (^(fli, x j , ..., S„(an, xn)), 

Xi = (Pi(a!,..., a ; - ! , x) (/£[«]), 
for all (fli, ..., a„)£A and x£X. The a0-product is equivalent to the cascade com-
position or the loop-free product (cf. [1, 7]). 

We let H, S and P^ denote the operator corresponding to the formation of 
homomorphic images, subautomata and a0-products, resp. Thus, if JT is a class of 
automata, then P0,0 p f ) is the class of all a0-products of automata from Further, 
we let Plao(Jf) be the class 

{A (A", (p)\Aejf, A(X, <p) is an a0-product} 

and define j f * = U(P lao(A*)|A6X), = U(P l ao(A+)|A^X) and X x = 
= U(P tat(A1)|A 6JT). 

If O is one of the operators S and Pao, then by 0 * ( J f ) (O+fX), Ox(Jf)) we 
denote the class 0 ( J f* ) (OiJf+), 0(JfA)) . We have Pi0(Jf)=P« ( ,({A*|A€Jf}\ 
P+f^)=Pa„({A + |A€X}) and Pi0(Jf)-P I 0({A^|A6Jf}). Moreover, A<EHS*({B}) 
for automata A = ( A , X , S ) and B = ( B , Y , 8 ' ) if and only if, there exist a set B'QB, 
an onto mapping h: B'—A and a mapping (p: X-+Y* such that 8(h(b), x) = 
=h(5'(b, <p(x))) for all beB' and x£X. It is understood that 8'(b, <p(x))£B'. 
Similar fact is true for the combined operators H S + and HSA. In [6] the relation 
A£HS*({B}) is expressed by saying that A is homomorphically simulated by B. 
We also note that the operators HS* and H S + correspond to the covering relation 
(or division) of transformation monoids and/or transformation semigroups, see [4]. 

In the sequel we shall also make use of another view of the operators P*0, P+ 
and P,j0. Define the concept of the a ̂ -product (ajf~ -product, -product) in exact ana-
logue with the a0-product except for the fact that each feedback function (p assumes 
values in X* ( X f , Xx). In this setting Pa0 (P+, Pi0) becomes the operator of forming 
aj-products (a^-products, «¿-products). It is apparent that the generalized a0-
products, i.e. the aj-product and the -product, are closely related to the wreath 
product of transformation semigroups, cf. [4]. 
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The above defined operators and the combined ones, e.g. HS*P„0, satisfy a 
number of simple closure properties that we shall use implicitly. In this paper the 
emphasis will be on the combinations HS*P£0 vs HS^P^, and also on H S + P + 
and HS+P a o . 

Also the operators HSP*0 and HSP+ could be of interest. These are however 
discarded due to the following simple fact, see also [7]. 

Proposition 2.1. For every class X and modifier m(i{*, +,X} it holds that 
SmPaJJf ) g SmP- (JT) = SP- (X). 

The inclusion HS*P £ t 0 (Jf)gHS*P+(Jf) , just as H S + P a o ( J f ) i H S + P + ( J f ) , 
cannot usually be turned to equality. E.g. if Jf" consists of a single counter with prime 
length 1, i.e. Jf = {C} with C=([/>], {x}, <5), 5(i, x 4 = / ' + l mod/7, then 
HS*P a 0 ( J f )=HS + P t I 0 (X) consist of commutative automata with very simple 
structure. On the other hand, H S + P i 0 ( X ) = H S +P+ ( X ) is the class of all automata 
that could be called /^-automata: i.e. permutation automata whose characteristic 
monoid is a p-group. The latter observation follows from the Krohn—Rhodes De-
composition Theorem, see below. In the next section there is given a sufficient con-
dition ensuring HS*P*0(X)=HS*P a o(Jf) . In fact the condition will quarantee that 
H S + P : o ( X ) = H S * P a o ( J T ) = H S + P + ( J r ) = H S + P a o ( X ) . 

Some more terminology. By a semigroup we always mean a finite semigroup. 
We put S | T, i.e., S divides T, for semigroups S and T, if and only if S is a homomor-
phic image of a subsemigroup of T. If S is a monoid (group), it is equivalent to saying 
that S is a homomorphic image of a submonoid (subgroup) of T, see [1, 4]. (When 
talking about a submonoid M of a semigroup S which is a monoid, M is not required 
to contain the identity of S.) The following fact is known, see [4] and also [7] for the 
group case. 

Lemma 2.2. Let A=(J, X, <5) be an automaton and M a submonoid of 5(A) 
or JS^A). There exists a nonempty set BQA with the following properties: 

(i) The elements of M map B into itself. 
(ii) The restriction of the identity of M to B is the identical mapping B^B. 

(iii) If m1 and m2 are distinct elements of M then »'i (b) ̂  m2 (b) for at least one 
b£B. 

To end this section we mention one more useful fact whose proof is omitted. 
For similar, in fact stronger statements, see [4]. A trivial automaton is an automaton 
with a single state. 

Lemma 2.3. If 5'1(A)|iS'1(B) for two automata A, B and either B is nontrivial 
or A is trivial, then A€HSPa*0({B}). 

3. The results 

We start with an auxiliary definition. Let A = A1X...XAn(X, cp) (ws 1) be 
an a0

+ -product with components A X t , <5f) and let B=(B , X, 5) be a sub-
automaton of A. For an integer /£[«] the useful states of A; (with respect to B) 
are those states in At which occur in the place of the i-th component of the elements 
of B. 

1« 
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Lemma 3.1. Let A and B be automata as above. Suppose that for each x£X 
an integer 1 is given with 

...,at-ltx)\ = kx, 

for all /£[«] and (a l t ..., fliJi^X.-X^-i. Assume further that for each/ ' 
and x there is a word with |pf|=fcx and bi{ai,p^)=ai whenever a&A, 
is useful. Then B is isomorphic to an automaton in S+({A'}) for an a0-product 
A ' ^ A x X - . X A „(¥,$). 

Proof. For every x£X let Yx be a new set of mx=nkx input letters, say 

Yx = [yxj\Mmx]}. 

Set Y= U(Yx\x£X). To define the feedback function /£[«], let al£A1, ... 
..., a i - iC^j- i be fixed states and yj£Yx. Let be that integer with 

•/=* mod k.. If there is an [/— 1] such that as is not of the form <5S(6S,/>£[/]) 
for some useful state bs£As, then ijfi(ai> ••••> JJ) is any letter in .y,. Otherwise 
there are uniquely determined useful states ¿,-16^,-1 with Ss(bs, 
ps

x[t])=as, 56[ / - l ] . If j^{i—\)kx or )>ikx then we define 

«/'¡(a!, ....a,-!,^) = p f ( t ) . 

Finally, if (¡'— l ) k x < j ^ i k x , we put 

^¡(fli, .... 0,-1,3^) = q(t), 
where 

q = <Pi(bi,- ^bi-!,x). 

This ends the definition of the a0-product A'. 
Let x€ X be any letter and define 

= wi... wf, u] = ytj-k)Ux+1... y%x, 

(yeW). Denote by <5' the transition of A'. To see that B is in S+({A'}), it suffices to 
show that for any ¿>=(¿1, ..., bn)£B and x£X we have 5'(b, ux)=d(b,x). This is 
however obvious, for if §(b, x)=c—(c1,..., cn), then for each /6["] we can compute 
as follows: 

S'((bx, ...,bi-1, bi, c i + 1 , ..., c„), u f ) = 

= . . . , ¿ ¡ - 1 ( ^ - 1 , ^ - 1 ) ) , 

¿i+i(ci+i,/Jf+i), ...,S„(c„,pZ)) = 
= (blt . . . , C;, Ci + i, . . . , C„). 

A straightforward induction argument completes the proof. 

Recall that a permutation automaton A = ( A , X, <5) is an automaton such that 8X 
is a permutation of the state set for each x£X. Equivalently, A is a permutation 
automaton if and only if S^ (A) is a group. Note that S1(A)=S(A) for a permu-
tation automaton. 
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Remark. If the automata A; of the previous lemma were permutation automata, 
then a much simpler argument could be applied. In fact we could define 

Yx = {yxi\K[kx]}, y=U(7Jx€^), 
and then 

•AiO*i> - . « ¡ - i , y j ) = (<Pi(bi, *))(/)» 

where the states bs, s£ [n], are successively determined by the condition 

(<ps(&i, ...,bs-15 x))[y]) = a,. 

For a more general form of the following definition see [4]. Let M be a monoid 
and A=(A,X, §) an automaton. We write Af||5"(A) (MRS^A)) if and only if 
there exists a submonoid M' of <S(A) (S2(A)) which can be mapped homomorphi-
cally onto M and such that M'g {uK\u£X*, |w| =n} for an integer « > 0 (nSO). 
Notice that MII-S^A) if and only if AfHS^A), for if AfHS^A) with n=0 then M' 
is trivial and so is M. 

Theorem 3.2. Let J f x and JT2 be two classes of automata. Assume that 
contains an automaton A0 such that S t (A0) is a nontrivial monoid. Assume further 
that for every there is B(=X2 with 5'1(A)||S'(B). Then H S ^ C ^ f j e 
g H S + P j 0 ( J f 2 ) . 

Proof. First note that H S ^ P ^ J f j ^ H S * ? ^ ^ - Jf"0), where is the class 
of all automata with trivial characteristic monoid. (The class can also be called 
the class of discrete automata, for an automaton belongs to J f 0 if and only if each 
input letter induces the identical state transformation.) Thus it suffices to prove that 
H S * P i 0 ( J f ! - J f 0 ) g H S + P a o ( ^ f 2 ) ; or even, by Proposition 2.1, it is enough to show 
the inclusion P ^ ( j r 1 - j r 0 ) g H S + P a , ( j r i ) . 

Let A=A,X...XA„(X,<p) be any «¿-product with components A 
If n= 0 then A is trivial, so that A€HS + P a o (X 2 ) . Assume «>0 . For every [«] 
there are an automaton Bi=(Bi, Xt, a submonoid Mt of S(Bf) and an 
integer 0 such that MiQ{ifi i \u^X^,\u\=k^ and Sx{Aj) is a homomorphic 
image of Afp Let k be the l.c.m. of the numbers k{. If ufi is the identity of Mt and 
\u0\=ki, then for any M ; with |u\=k t we have wBi=wBi where w=uu^/kt~1. 
It follows that Mig{uB<|w€*i+, \u\=k}. 

Let /£[«] be a fixed integer. Since M{ is a submonoid of S(B,), there is a (non-
empty) set BiQBi as in Lemma 2.2. Define the automaton B,'={B[, Mt, ¿¡) by 
¿i(b, m)=m(b), for all b^B't and m£M. Mt is isomorphic to ^ ( B [ ) and every 
transformation in Sx(Bi) is induced by a letter in M ; . Since 5i(A f) is a homomorphic 
image of S^(.#,•) and S^C¿¡) is nontrivial, from Lemma 2.3 we obtain Ai€HSPi0({5('}). 

We have seen that A,-6HSP*0({B;}) for all i. Consequently also A£ 
CHSP*0({Bi, ..., B^}), and since the members of each ¿^(B-) are induced by input 
letters, A€HSPao({Bi, ..., B^}). Let B'=B'hX...XB'ic(X, <p') be an a0-product of the 
automata B{, ...,B'„ containing a subautomaton which can be mapped homomor-
phically onto A. We define an a0

+-product B=B i l X. . .XB / ( (Z , i/0 as follows. For 
each ji[t], let u ^ X ? be a fixed word with \uj\=k, and to each (b1, ..., ¿>j_i)€ 
GB'^X.-.XBl t and x£X let us correspond a word u—u(bj,..., 
with \u\=k and uBlj=cpj(b1,...,bj_1,x). Then for all j€[t], (b1,...,bJ^ 
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Z B ^ X . - X B , ^ and x£X let 
p (6 l 5 . . „ f cy -x .x ) if (b1,...,bJ-1)£B'ilx...B;J_i, 

otherwise. 
fu(l 

bL , x ) = < 
l Uj 

It is easy to see that B contains an isomorphic copy of B\ in fact B' is a subautomaton 
of B. The a0

+-product B and the subautomaton B' satisfies the assumptions of Lem-
ma 3.1, therefore B ' e S + P j f B j , ..., B ^ g S + P ^ X - , ) . Since A£HS({B'}) it 
follows that A6HS+P a o(Jf2)- The proof is complete. 

Notice that also HS^P^CXOiHS*P a o (J f 2 ) and H S + P + ( - ? Q i H S + P J j f 2 ) . 
It should be noted that if consists of discrete automata one of which is 

nontrivial, then HS*P*0 ( J ^ ) = J f 0 , the class of all discrete automata. Moreover, 
HS*Pi 0 (X 1 )gHS+P a o ( j f 2 ) if and only if JT2 contains an automaton A which is 
not definite, i.e., which has two distinct states a l 5 a2 and a nonempty input word u 
with a iMA=a i, i = l, 2. 

Next we give a reformulation of Theorem 3.2 and discuss some consequences. 
For a monoid M, define Aut (M)=(M, M, d) with <5(r«l5 «i2)=/n1;;;2. If J{ is 
a class of monoids, set Aut (.//) = {Aut (M)\M(iJt}. 

Corollary 3.3. Let Jt be a class of monoids and J f a class of automata. Suppose 
that for each M ^ J l there is az automaton A€.?f with jWH^'(A). Then 
HS*Pi0(Aut (Ji))=HSPao(Aut HS + P a o (X) . 

Corollary 3.4. Let and J f 2 be two classes of automata such that for each 
Ae J f \ there is an automaton Be JT2 with 5'1(A)|5'1(B). Suppose further that either 
J f 1 consists of trivial automata or contains a nontrivial automaton. Then 
HS*Pi0(X i) gHS+P£0( .r2) . 

Proof. If consists of discrete automata then the result is obvious. Otherwise 
there is an automaton A 0£Jf] such that ^ ( A 0 ) is nontrivial. If 5'1(A)|5'1(B) then 
S'1(A)||5'(BA). Thus the inclusion H S * P £ 0 ( j r g H S + P i 0 ( ^ f 2 ) is obtained by applying 
Theorem 3.2 for and JT2

A. 

Corollary 3.5. Let Jif be any class of automata. If for every there exists 
B e x with Si(A)||S(B) then HS^PJ/J f ) = H S + P a o ( j T ) = H S + P + ( X ) = H S + P a o ( j r ) . 
Moreover, HS*Pi 0 (X)=HS + P^ 0 (Jf ) holds universaUy. 

The Krohn—Rhodes Decomposition Theorem (cf. [1,4,7]) is a basis for studying 
the a0-product. Below we give one possible formalization in terms of the operators 
H, S + , S*, P+0 and P*0. Following [1], by U3 we denote the three-element monoid 
with two right zeros. An irreducible semigroup is a semigroup S such that for every 
nonempty class JT, if SIS^A) for some A€HS*P*0(Jf) then there is an automaton 

with SIS^iB). Equivalently this means that for every nonempty class J f , 
if SIS'(A) for an automaton AeHS+P+GT) or A e H S P ^ p f ) then S I ^ B ) for 
some Be J f . Notice that for a group G the conditions GIS^A) and CIS (A) are equ-
ivalent. 

Theorem 3.6. Krohn—Rhodes Decomposition Theorem. 
(1) For every group G let A c be any automaton with GISYAG) and let A0 be 

an automaton with C^IS^A,,) (U3\S(A0)). Given an automaton A, define 
X = {AC|G is a simple group, with G|S(A)}. Then AeHS*Pi0(XU{Ao}) 
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(A£HS+Pa
+

0(Jf U {Ao})). If A is a permutation automaton and 5г(А) is nontrivial, 
then A6HS+Pi0(Jf). 

(2) A semigroup S is irreducible if and only if S is a simple group or S\U3. 
The monoids M with M\U3, M^ U3, are the trivial monoid and the two-ele-

ment monoid U2 with a right zero. Let ^ be a nonempty class of simple groups closed 
under division, i.e. such that and H\G implies Н^У for every simple group 
H. We define: 

= HSP,0(Aut(^U{C/3})), 

= H S P E O ( A u t ( S T U { C / 2 } ) ) , 

J f 0 (3) = H S P j A u t («?)). 

Note that X3(«?)=HS*P* (Aut(^U{£/3})) and similarly for J f 2 ( 3 ) and Jf0(S)-
The avoid trivial situations, when writing we shall always assume that 4S 
contains a nontrivial group. As a direct consequence of the Krohn—Rhodes Decom-
position Theorem we have: 

Corollary 3.7. 
(i) J R 3 ( ^ ) I H S * P * 0 ( X ) ( J R S ( 9 ) i H S + P + С у О ) if and only if the following 

hold: 
(11) For every there is А w i t h G|S(A). 
(12) There is an automaton A€Jf with U3\S1 (A) (U3\S(A)). 

(ii) J f 2 ( ^ ) g H S + P : 0 ( J f ) ( X 2 ( ^ ) g H S + P + ( X j ) if and only if ( i j and (ii,) 
hold: 
( i i j There is A € J F with i/2|5,(A) (U2\S(A)). 

(iii) X 0 (^ )EHS*P: o (X) ( X 0 ( ^ ) g H S + P + ( J f ) ) if and only if ft) holds. 

We note that {^¡^(A) for an automaton A if and only if A is not a permutation 
automaton. In order to establish similar results for the operators HS*Pao and HS+P a o , 
we need the following facts. Proposition 3.8 derives from a strong result in [2], for a 
direct proof see also [6]. 

Proposition 3.8. Let G be any group and A an automaton. If G|>S(A) then 
G'||5(A), where G' denotes the commutator group of G. 

Corollary 3.9. Let G be a nonabelian simple group and A an automaton. If 
G\S(A) then G||5(A). 

Proposition 3.10. If for / = 2 , 3 we have U,\S(A) then Ut US'(A). 

Proposition 3.11. Let G be a nontrivial simple group. If б| |£(А) for an auto-
maton A€HSPa0(jf), where Ж is any class of automata, then G||S(B) for some 
B€JT. 

The proof of Proposition 3.10 is trivial. Proposition 3.11 is from [5]. In the rest 
of the paper <S denotes a fixed class of simple groups closed under division. Recall 
that when dealing with it is assumed that ^ contains a nontrivial group. 
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Theorem 3.12. Let J f be a class of automata. 
(i) ¿ r , ( S ) g H S * P „ ( j r ) if and only if (ix>—(i3) hold: 

(ix) For every nonabelian there is J f with GIS^A). 
(12) For every abelian G t h e r e is A ^ j f with G||S(A). 
(13) There is an automaton AdJf with U3\S(A). 

(ii) JT 2 (^)£HS*P a o (X) if and only if (ix), (i2) and ( i i j hold: 
(iit) There is an automaton with i/2|5(A). 

(iii) HS*Pao(X) if and only if (¡J and (i2) hold. 

Proof. We only prove the first statement. Assuming J f 3 ( ^ ) g H S * P a o ( J f ) also 
X 3 ( ^ ) i H S * P i 0 ( X ) . Thus (ij) follows from the Krohn—Rhodes Decomposition 
Theorem. Let G be a nontrivial abelian simple group in say G=ZP, the cyclic 
group of order p. Let H be any nonabelian /7-group. We have Aut (H)£yf3(<&) 
from the Krohn—Rhodes Decomposition Theorem. Thus also Aut (H)£ HS*Pao(X) 
and, henceforth, there is an automaton B € P a p f ) with //|S(B). But then 77'||,S(B) 
follows from Proposition 3.8. Since H' is a nontrivial /7-group we have ZP\H'. 
Since ||.S(B) also ZJS (B) and, by Proposition 3.11, ZP\\S(A) for some 
Thus (i2) is satisfied by J f . To see that (i3) holds, let A 0 =(A 0 , X, 5) be an automaton 
in with i73|S'('A0) and such that none of the transformations xAo, x£X, 
is the identical mapping A0-»A0. Since A06HS*Pao(jr), the above property yields 
A 0 6HS + P a o ( j r )gHS + P+(J f ) . The Krohn—Rhodes Decomposition Theorem 
implies U3\S(A) for some AC J f . This ends the proof of the necessity. 

Conversely the assumptions (ix)—(i3), Corollary 3.9 and Proposition 3.10 imply 
that for every Gthere is ACJT with Gil 5 (A) and similarly for U3. Apply 
Corollary 3.3. 

Corollary 3.13. For each /=0 ,2 ,3 , if and only if 
. r ^ i H S + P JjiT). 

Corollary 3.14. The following are equivalent for a class J f of automata: 
(i) HS^P^/JT) is the class of all automata. 

(ii) H S + P a o p f ) is the class of all automata. 
(iii) HS + P+(J f ) is the class of all automata. 

Completeness criteria for the operator HSP^ are formulated in [6, 3]. 

Abstract 

A sufficient condition is given on a class jTof automata ensuring that an automaton be homo-
morphically simulated by a generalized a„-product (loop-free product) over JTif and only if it is 
homomorphically simulated by an a0-product with components in As an application it is proved 
that a class C/f of automata is complete with respect to the homomorphic simulation by generalized 
oto-products if and only if it is complete with respect to the homomorphic simulation by a0 -products, 
as far as nonempty words are considered. 
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