On minimal autonomous partitions of directed graphs
and some applications to automata theory

Boris B. K1ross

We are here concerned with a class of partitions which are similar to the well
known cyclic partitions of Markov chains. Let G=(V, E) be a directed graph with
a non-empty (possibly infinite) vertex set ¥ and a set of directed edges E. Consider
partitions 7={B,} of a graph G, where {B,} is a family of disjoint non-empty sub-
sets (or blocks) B,&V and |J B,=V. A partition = is called autonomous if for

a

every block B, either 6(B,) is empty or §(B,)SB; for some block Bs;. Here 6(B)
denotes the set of all vertices which are reached in one step from BEV. By the
minimal autonomous partition (m.a.p.) of a directed graph G we mean such auto-
nomous partition which is a refinement of any autonomous partition of this graph.
Denote the m.a.p. of G by n,,;,(G), or simply =, when non confusion is possible.
The intersection of all autonomous partitions of G is an autonomous partition which
is equal to the m.a.p. of G. Thus, the m.a.p. is uniquely determined for every directed
graph.

These partitions turned out to be a very useful tool for studying some properties
of automata and much of the motivation for the work discussed here derives from
attempts to describe a structure of automata which are stable to the input-induced
errors. My attention to examining the m.a.p. was also called by the paper [1] of A.
Adam, who introduced the autonomous partitions under the name P-partitions and
considered these partitions from the graphtheoretical point of view. The main result
of A. Ad4m lies in the following. Let g be the relation on a graph G such that for each
pair of vertices v, ucV we have (v, u)€¢ if and only if v and u are reached in equal
number of steps from some vertex weV, i.e. there exist two paths of equal length
from w to v and from w to u. Then o"=n,,;, for every sink-free directed graph,
where o7 denotes the transitive closure of ¢. (Here and elsewhere we do not distin-
guish between partitions and the corresponding equivalence relations.) The above

" statement we shall call A. Ad4m’s theorem on minimal autonomous partitions.
The purposes of our paper are:
1) to describe the structure of m.a.p. for various types of directed graphs; and
© 2) to demonstrate the possibility of applications of A. Ad4m’s theorem to auto-
mata theory. :
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Minimal autonomous partitions

In this section we describe the structure of m.a.p. for arbitrary directed graphs,
for graphs with finitely many sinks, for sink-free and source-free graphs and for
strongly connected graphs.

By o we denote the trivial partition such that every block of o is a singleton. If
7 is any relation on a graph, then we denote by 1° the following relation: for each two
vertices v, u€V we have (v, u)€t® if and only if either (v, u)€t or there exists a
finite sequence of pairs v;, ,€V, i=1, ..., n, such that (v, ¥;)€7, v,€5(v;_,) and
w;€6(u;_y) for i=2,...,n and v,=v, u,=u. 1° will be called the autonomous clo-
sure of 7. It will be observed that o° is exactly the relation ¢ defined above. By 7
we denote the transitive closure of 7, i.e. (v, v)€t7 iff there exists a finite sequence of
vertices vy, ..., v, such that (v;_,,v;)€t for i=2,...,n and v,=v, v,=u.

We begin with A. Adam’s theorem ([1], Propositions 5,6):

Theorem 1, For an arbitrary graph 0°7Cn,,,. For an arbitrary sink-free
graph o°T=n_,,. ~

Remark 1. Although A. Ad4m [1] dealt only with finite connected graphs, his
proof of this theorem is valid for arbitrary graphs.

We are going to generalize A. Ad4dm’s theorem in the following way. Let sink (G)
be the number of sinks of G and 0"*“T) means 0°T-47, where aT is repeated n times.

We shall first give some properties of the relations o"*©@T), Put o=@ = | ) o"*%D),

n=1
ie. (v, W)€0=CT iff (v, u)€0"*D) for some n=1. Note that o"*@D Cor+1x D)
for each n=1, hence 0=®@" is a partition. Furthermore, one easily verifies that the
following pairs of factor-graphs are isomorphic:

 G/Min(G) ~ [G/0*T)/[Meyin(G/0"T)] (%)
G/o(n+1) x(aT) ., [G/oaT]/[on x (aT) (G/O"T)] (ale * )
or (by induction) for each n,i=1
G/ Tmin (G) ~ [G/ o™ (aT)]/ [nmln(G/ o' aT)] (* )
G/o(u+l) x(aT) [G/o"‘ (aT)]/[on x(aT) (G/Oi x (aT))] (ale * )

We are now in a position to prove the generalization of A. Ad4m’s theorem:

Theorem 2. For an arbitrary graph, 0=>“D=n_ .. If sink (G)=n, then
o(n-}-l)x(aT):n X .

min *

Proof. 1) It follows from A. Ad4m’s theorem that 0"*@TCx_, for each n=1.
Thus 0=¢DCn,.. To prove 0=“N=n,, , fix two vertices (v, u)€0=CT. We
then have (v, w)€0**®D, for some k=1. Consequently, (v',u)€o*+V*@D jf
v'€d(v) and u'€8(u). From this it follows that 0=“T is an autonomous partition.
Suppose 0@ n ... Then 0= is a proper refinement of 7., and the minimality
of 7, gives the contradiction.
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2) Now prove the second assertion.
Induction base: If sink (G)=0, then 0°T=n,;, by A. Addm’s theorem. .
Induction step: If sink (G)= n+1 and 0°T#n,;,,. then sink (G/o°T)=n. Indeed,
if 0°T#7,;,, then there exist blocks 4, B, C of 0°T with §(4)N B0, S(ANC =0
and BNC=0. (Here @ denotes the empty set.} This means that there is a sink in A4,
but A, considered as a vertex of the factor-graph G/o"T, is not a sink. Thus
sink (G/o“T)<n

Suppose o‘"“)"‘")——rcmm holds for each graph G’ with sink (G’)=n. Then

G [1ia(G) ~ G'[o+DXED(G),

where G'= G/o"T and ~ means graph isomorphism. On the other hand, propertles
(%) and (* %) give
G,/nmin(G,) ~ G/nmin(G)

| | ,/ (= )(G,) ~ G/O(n Yxla )(G).
Thus +
G/umin(c) ~ G/O(” 2)"(ﬂ7)(G)

and consequently, 7y, =0+ *@T) if sink (G)=n+1. Q.E.D.

Examples. Fig. 1 shows a graph G with sink G)=1, o°Toxm ., 0°TT=
Tn- Fig. 2 shows a graph G with sink (G)=2, o"“"#nmm, o°TaTeT =z . . For
the graph in Fig. 3 we have sink (G)=3, o“T“T“T"¢1rmm, o°TeTeTal —g .. '
These examples give rise to the following

}

Fig. 1.

Fig. 2. ' - Fig. 3.
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Proposition 1. For each integer n there exists a graph G such that sink (G)=n
and o** (aT)a = T in -

Question 1. Does Proposition 1 remain valid when we restrict ourselves to
finite graphs without sources?

Question 2. For any », characterize the graphs having exactly » sinks such that
; p 4
o"*@Na—g . holds in Theorem 2.

Corollary 1. If G is finite, then 0"*“D=g_,. for some integer n=|V|.

Proof. If every vertex of G is a sink, then o=n_,,. Elsewise, sink (G)=|V[—1
and we can apply Theorem 2.

Question 3. What is the smallest number f(k) such that o/@x@D=g . for
every finite graph with |V |=k?

Now let us consider sink-free graphs. The relation o° is not transitive, in general,
even if a graph has no sink and no source (see Fig. 4). (This example alsc provides a
particular answer to Problem 3 in [1].) But for strongly connected graphs the relation
o is always transitive.

Fig. 4.

Proposition 2. For an arbitrary strongly connected graph, o%=m;,.

Proof. First, let G be a finite strongly connected graph. Let B¢n_;, be an arbi-
trary block of its m.a.p. and let ¢€B be a vertex in this block. Consider the factor
graph G/m.,- Obviously, G/m.;, is a cycle. Denote its length by p. Consider a se-
quence of sets S, =8(c), k=0,1,2,.., where &"(c)=0(6""c)), &%Cc)=¢,
8Yc)=6(c). Note that S, &BEn,;, and for every pair of vertices v, u€.S, we have
(v, w)€0° for each k=0, 1, 2, .... Since G is finite, the sequence S, becomes station-
ary, i.e. there exist integers /=m such that 6°(S)=S5.+1, 6°(Si4+1)=Sis2, ...

.es 0%(S,,)=S). Since G is strongly connected, |J S;=B. If I=m, then the prop-

i=1
osition is already proved (in this case S;=B and (v, u)€o® for each pair v, u¢ B).
If not, suppose without the loss of generality that all sets in the system S={S,, ...
..y S} are different. A family of sets {S,}&S, a€4ES{l, ..., m}, will be called a
maximal system if and only if (| S,=50 and for each n (/=n=m) such that

~ afd
n¢A we have §NS,=0. Let §={(Si, ..., §;} be the family of intersections of the
maximal systems. It is not difficult to see that 67($,)ES,, ..., 0P(S))E S, for a
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suitable numeration of the sets S. Furthermore, if i>j, then. 5,-05,-:@. Since G

q
is strongly connected, one has (J S;=B. Therefore we can consider the following
i=1
partition: 5 5 o B
T = {Sl’ 51(S1), asey 5?—1(S1), Sg, ceey 5P—I(Sq)}.

Obviously, n is autonomous partition and = is a proper refinement of r;,. This con-
tradicts the minimality of n,;,. Hence I=m and o%=m,,.

The general case, when G is an arbitrary strongly connected graph, is reducible
to the previous one. Indeed, let B be an arbitrary block of the m.a.p. We are going to
show that (v, u)€o® for each pair of vertices v, u€B. Since a strongly connected
graph has no sink, therefore it fulfils the suppositions of A. Addm’s theorem. Hence
(v, u)€ 0. This means that there exists a sequence of vetrices v, ..., v, B such that
vy=0v, v,=u and (v;, v;;,)€0° for i=1,...,n—1. Select two paths of equal length
from v; to v; and from v; to v;y, for each i=1, ..., n—1 and take an arbitrary path
from v, to v,. Consider the subgraph G’ of G consisting all vertices and edges of se-
lected paths. It is clear that G’ is a finite strongly connected graph. Moreover, the
vertices v and u belong to the same block of 7,,;,(G’). Consequently, (v, u)€0® "by
the previous part of the proof (note that 0°(G’) is the refinement of 0%(G)). Q.E.D.

Remark 2. In addition, strongly connected graphs have- another advantageous
property: it is a well known fact in the theory of Markov chains that for such graphs
the equality p=p* holds (see below).

Now we are going to generalize Proposition 2. When does 0°=r,,;, hold for
sink-free and source-free graphs? This problem is closely related to Problem 2 in [1]:
when is the length p of the cycle of the functional graph G/n;, equal to the greatest
common divisor p* of all cycle lengths of G? Let § be the greatest common divisor
of all cycle lengths of the induced subgraph spanned by all generators of G, i.e.
p=g.c.d. {length (C): every vertex of cycle C is a generator of G}. (A vertex v is
called generator if for each vertex u there exists a path from v to u.)

One has the following

Theorem 3. If a finite connected graph G has no source, then o°=m,;, iff
there exists at least one generator of G and p=p.

Proof. Assume that 0°=r,,;, and G has no source. Then o° is a transitive rela-
tion. It is not difficult to see that there exists a generator v of G. Let u be a vertex
such that there is a path from u to v of length p. If v=u, then p=p. Otherwise, since
the vertices v and u belong to the same block of ,,, (therefore (v, u)€0%) and since
v is a generator, there exist two paths from v to v and from v to u of equal length kp
(for some integer k=1). It is clear that one can find two cycles, both containing v,
with lengths kp and kp+p. Hence p=p.

Now let p=p and suppose that there exists a generator v of G. Then there are
two cycles C; and C, such that v€C;, v€C, and the greatest common divisor of
I, =length (C,) and I,=length (C,) equals p. Indeed, the subgraph G of G spanned by
all generators is strongly connected, hence we can apply Proposition 2, our assump-
tion p=p, then Remark 2 and the construction of the previous part of this proof. It
is clear that if (v, v,)€0°% then (v;, V)€7y,;,. We are going to show the converse
implication. Let v, and v, be arbitrary vertices which belong to the same block of
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Tmin- SiNce v is a generator of G, there exist two paths from v to v, (of the length m,)
and from v to v, (of the length m,). It should be observed that /,=k,p, L=k,p,
imy—my|=k,p, for some k=1, k,=1, k;=0. From the fact that the equation

hx+ly = |m—m)

is solvable in integers, it follows that there exist two paths of equal length from v to v,
and from v to v,, respectively. Q.E.D.

Corollary 1. If a finite connected graph G has no source, then o?=mn;, im-
plies p=p*.

Proof. The divisibility relations p|p* and p*|j are clear. If p=p, then p=p*.

The converse implication in Corollary 1 is not valid, in general (see Fig. 5).

We finish this section with the remark that the above results were not intended
as an overview of the m.a.p. and Problems 1—2 proposed by A. Addm [1] are still
open.

Fig. 5.

Applications to automata theory

In this section we are going to describe a class of automata which are stable to
the input-induced errors. First introduce some notations used below. By automaton
we mean a system A=(X, S, ), where X and S are arbitrary finite non-empty sets,
called the input alphabet and the state set, respectively, and §: SXX—S is called
the transition function. By é we also denote the natural extension of the transition
function to a mapping 25X X*—25, where 25 is a family of subsets of S and X*
is a free monoid generated by X. By the m.a.p. of an automaton we mean the m.a.p.
of its transition diagram. A block B of the m.a.p. of an automaton is called cyclic if
é(B, J)S B for some non-empty JE€X*. The set of states which belong to the cyclic
blocks is denoted C(S). By the period of automaton 4 we mean the least common
multiple of all cycle lengths of the transition diagram of the factor automaton A/x,;,.
We denote the period of 4 by p(4). If 4,=(X, S,,6,) and A,=(X, S,,d,) are
automata with S;MNS,=0 and the same input alphabet, then A4;XA,=
=(X, $;XS,,8), where 6((sy, 52), x)=(8,(5y, X), 62(50, X)) for each $,€8;, 5,€S,
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and x€X, is called the product of the automata and 4, +4,=(X, S,US,, §), where

5(s. {51(s, x), if s€S,
(5 %) = 15,0, %), i seS,,

is called the sum of the automata. An automaton A=(X, §,5) is called a subauto-
maton of A=(X, S,d) if SSS§ and 8@, x)=6(5, x) for every choice of ¢S5,
x€X. An automaton A is said to be strongly connected if for every pair of states
s, 1€ S there are such words J,, L€ X* that é(s,Jy)=t and 6(z, J;)=s. In other
words, an automaton A is strongly connected iff the transition diagram of 4 is strongly
connected. An automaton is said to be connected if its transition diagram, considered
as a non-oriented graph, is connected. Note that every automaton A is a sum of
connected automata 4= > A,. We say that an automaton A4 can be represented by

a parallel composition of automata B and C if there exists a subautomaton D of
BXC such that 4 is a homomorphic image of D. The onto mapping A: S’—S is
called a homomorphism from D=(X, S’ ) to A=(X,S,d) if §(h(s),x)=
=h(&(s, x)) for every choice of s€S’, x€X.

An automaton A4 is called autonomous if d(s, x)=4(s, y) for each s¢S and
x, € X. It should be observed that an automaton A is autonomous iff it is isomorphic
to the factor automaton A4/7m,.

An automaton A is called to be directable (or cofinal) if there exists a word
Jex* such that |6(S,J)|=1, where |-| denotes the cardinality. Such words J are
called directing.

A directable automaton is called definite if there exists an integer n such that
every word, whose length is greater than or equal to n, is directing.

The automata we will be concerned with belong to a class defined by the followmg
properties.

Definition 1. An automaton A=(X; S, §) is called correctable if there exists
JEX* such that §(s,J;J)=0(s, J;J) for every state s€S and every two words
Jy, J.€X* of equal length. Such words J are called correcting.

Note that it is just the case of S. Winograd’s automata which are synchronized
with probability 1 with respect to the input-induced errors [6].

The automata of this type are capable of “forgetting” all previously occurred
errors after accepting a specrally selected correcting sequence of inputs. This provides

" the advantages. of their use in technique.
The next assertion follows immediately from A. Ad4dm’s theorem.

Correctability Criterion. An automaton A is correctable iff there exists a (cor-
recting) word JE€X™* such that |6(B, J)|=1 for each block B&ny;,(A4).

This criterion allows us to descnbe the structure of correctable automata more
precisely.

First Decomposition Theorem. An automaton A is correctable iff it can be rep-
resented by a parallel composition of autonomous and directable automata.

Sketch of the proof. The following five lemmas imply the sufficiency of the
theorem.

The next assertion is obvious:

2 Acta Cybernetica VIII/4
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Lemma 1. Every autonomous automaton is correctable.

Lemma 2. An automaton A is directable iff the following three conditions are
fulfilled:
A is correctable,
. A is connected,

p(A)=1.

Proof. Suppose that p(4)=1 holds for a connected correctable automaton A4.
Then A/n.;, has only one cycle and this cycle is a loop. Denote by B the set of states
sE€S of A such that the natural homomorphism y of 4 onto A/n;, carries s to the
unique cyclic vertex of A/n;,. It is easy to see that there exists a natural number n
such that &(S, I)S B whenever the length of the word 7 is at least n. The Correcta-
bility Criterion implies the existence of a word J,€X* such that [6(B, J)|=1. Let
J,€X* be an arbitrary word whose length is at least n and let J be defined by
J=J,J,. Then J is a directing word.

Conversely, assume that A is a directable automaton. Obviously, 4 is connected
and correctable. Our last aim is to verify p(4)=1. We shall show that p(A4)=1
leads to a contradiction. Indeed, p(4)=1 implies the existence of two states s, t€S
such that s and ¢ belong to different cyclic blocks of = ;,. Thus &(s, J)=dé(¢t, J)
for every word J¢X* and the lemma follows. :

Lemma 3. ([4]). A product of finitely many correctable automata is correctable.
Lemma 4. ([4]). Every subautomaton of a correctable one is correctable.

Lemma 5. Every homomorphic image (consequently every factor automaton)
of a correctable automaton is correctable.

Proof. Consider a homomorphism h: A—B, where A is correctable. Let us
start with three states sy, S, S5 of B such that dg(s;, Jy)=5,, Op(s;, Jo)=5; with
some words J;, J, which are of equal length. (Here d; means the transition function
of B and J, denotes the transition function of A). Then obviously

0u(s1, JERT1(s5), B 4(s1, )ERT(s3)
for an arbitrary element s7 of A~1(s,); thus the correcting word J of A fulfils

04(s1, J1J) = 3 4(s1, o J).
Hence
(s, J) = 8p(s3, J) ‘
and the lemma follows.

Now we are going to prove the necessity. Let A be a correctable automaton.
Consider the following three cases.

1. Let A be strongly connected. Then the partition classes mod 7,,;,(A4) can be
denoted by By, B,, ..., B, in such a manner that 6(B;, x)E B;,, if 1=i=g—1 and
6(B,, x)& B, (for each xEX ). Let us choose a set C= {sl, Sy, ..., Sgp such that
s;€B; for each i (1=i=q).

Consider the family of all sets 6 (C, J) where (C is fixed and) J runs through all
the elements of X*. Since 4 is a finite automaton, this family consists of a finite num-
ber of different members. Denote the members of the family by C,, C,, ..., C, (the



On minimal autonomous partitions of directed graphs and scme applications to autcmata thecry 333

ordering is arbitrary). C,, Cs, ..., C, are pairwise different (but not necessarily dis-
joint) state sets and their union C,U...UC, equals S (otherwise we could get a
contradiction to the strongly connectedness of A). It is easy to see that |C;NB]=1
for every choice of C; and B, where 1=i=n and B is a block mod n.,;,(4). For
every choice of C; and x€X there exists a unique C; such that (C;, x)=C; (1=i=n,
1=j=n). )

Consider the automaton 4,=(X, {C}, é,), where 8,(C;, x)=C; iff 6(C;, x)=C,.
Denote A,=A/mn. It is not difficult to see that A, is a directable automaton. This
assertion follows from the Correctability Criterion. Indeed, since A is correctable, then
there exists a correcting word JEX* such that |6(B,J)=1 for each block
Bmod m,(4). Consider two arbitrary states C;, C; of 4;. Let Ci={sy,..., 55}
and C;={s{, ..., 53}, where 5,£B,, s;¢B,. Since s, and s; belong to the same block
mod 7, (4), we have 6(s,, J)=6(s;,J) for each o (I1=a=gq). Put s,=0(s,J).
Obviously, {s7,...,s7} is a member of the family C={C,,...,C,}. Let {s,

, 5;3=C, where 1=k=g. Then

84(Ci, J) = 8,(C;, J) = C;,

hence A, is directable. Obviously, A4, is autonomous. The mapping from A4,X A4,
to A taking a pair of states B€m,,, (4) (this is a state of A;)and C;€C (this is a state
if 4,) into the state s=BNC; of A4 is a required homomorphxsm

2. Let A be connected.

Lemma 6. ([4]). Every connected correctable automaton contains a unique
strongly connected subautomaton (which is evidently correctable).

Remark 3. It will be noted that Lemma 6 is not valid in general for 1nﬁn1te auto-
mata.

Denote by A=(X, §,5) the strongly connected subautomaton of A. Let
A= A/n i (4) and A,,_(X {C}),4,). C;< S, be autonomous and directable com-
ponents of 4, constructed analogously to the previous part of this proof, i.e. 4 can
be represented by a parallel composition of A, and 4,. Consider the automaton
A,=(X, S\SU{C:}, 6,), where

o(b, x), if beSN\S and (b, x)ES\S
84(b, x) = jarbitrary C;c{C} such that (b, x)€C;, if beS\S and 3(b, x)eS;
8a(b, x), if be{C}.

The automaton A, is directable. Indeed, it is easy to see that there exists a word
Ji€X* such that §,((S\S)U{C}, Jl)C {C}. Let J,6X* be a correcting word of
4, hence J, is a directing word of 4. Let J be defined by J=JiJ,. Then Jis a direct-
ing word of A,. Denote A,=A/n;,(A). Our last aim is to find a subauomtaton of
A, X A; which can be rnapped homomorphlcally onto A. Consider the subautomaton
A whose states are all the pairs (B, b), where BE My, (4), bE(S\S)U{C'} such
that BNb>0. Note that A really is a subautomaton. Then the mapping (B, b)—~
—~BNb is a required homomorphism.

3. Let A be an arbitrary correctable automaton. Represent 4 in the form
A=3 A,, where A, is connected for each a.

2%
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Lemma 7. ([4]). Suppose A= ZA,, then A4 is correctable iff A4; is correctable
for each i=1,...,n If Ais correctable and A= Z’A (where there is an infinity

of summands), then A, is correctable for each a.

Let A5 and A3 be automous and directable components of A4,, constructed ana-
logously to the first and second parts of our proof. Then A4 can be represented by
a parallel composition of Z’ A% and ]] Aj. Tt will be noted that a sum of autono-

mous automata is autonomous and a product of finitely many directable automata is
directable. Since every correcting word of 4 is a directing word of [ A3, the auto-

a
maton [J] A% is directable, even if there were an infinite number of multiplicands.
a
Q.E.D.

Remark 4. It follows from part 1 of the previous proof that every strongly
connected correctable automaton is a homomorphic image of a product of strongly
connected autonomous and strongly connected directable automata.

A. Ad4m’s theorem can be applied to the description the other types of automata

Definition 2. A correctable automaton A is called self-correctable if there exists
an integer n such that every word whose length is greater than or equal to n, is
correcting.

. The smallest » which satisfies the above condition is called the correction time
and denoted by n(A4).

Self-correctability Criterion. An automaton A is self-correctable iff there exists
-an integer n such that |6(B, J)|=1 for each block B€n,,.(4) and each word
JeX". The smallest n which satisfies this condition equals n(A).

Second Decomposition Theorem. An automaton A is self-correctable iff it can
be represented by a parallel composition of autonomous and definite automata.

The proof might have been arranged analogously to the proof of First Decom-
position Theorem, but we are here suggested a simpler way of proving this theorem.

First we establish some preliminary results on self-correctable automata.

The following result is obvious:

Lemma 8. An automaton 4 is self-correctable iff there exists anAinteger n such
that the equality
o(s, LLJ) = 6(s, I,J)

holds for every choice of the state s and the words I, I,, J where I, I, are of equal
length and the length of J is n.

Suppose that A4 is self-correctable, let the smallest possible n ( =n(4)) be consid-
ered (cf. Lemma 8). For every ¢ (=n) we denote by F,(s,J) the state 6(s, IJ)
where sis a state Jis a word of length » and 7is an abritrary word whose length is ¢ —n.

Supplement to Lemma 8. The sequence of functions

. o F,Fi1, Fg, . (% * %)
is periodic.
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Proof. The set of states of 4 and the set of words of length »n are finite. Thus the
sequence (# % %) contains only a finite number of different members. Let g be the
smallest number such that there is a number #, for which n=t<gq and F, =F,
are valid. We can show without difficulty that F,=F, implies F,,,=F,,,. Conse-
quently, the sequence (* * %) is periodic; the length of its period and pre-period are
p=q—1t, and t,, respectively. (In other words: F,=F, if and only if t=1,, t'=t,
and 1=¢"(mod p) are true.) :

Remark 5. The period p of (# % #) equals the period p(A4) of the automaton 4.

Proof of the Second Decomposition Theorem. Since Lemmas 1—7 are valid for
self-correctable automata after replacing the words correctable by self-correctable and
directable by definite, then a composition of autonomous and definite automata is
self-correctable. Now let A4 be a self-correctable automaton. Then one can consider
the definite component of 4 as a connection of storage device on a shift register (for
preservation of last n(4) inputs) and a set of p(4) devices for computing functions
F,, ..., Fyspiay-1- It is easy to see that the definite component is a definite in fact
automaton. In this case the autonomous component A/r.;, determines the function
which value corresponds to the present state of 4. Q.E.D.

Remark 6. One can show that every strongly connected self-correctable auto-
maton is a homomorphic image of a product of strongly connected autonomous and
strongly connected definite automata (cf. Remark 4). M. Ito and J. Duske proved in
[3] that every strongly connected definite automaton is a homomorphic image of a
shift register. (Recall that a shift register in [3] is an automaton (X, X", §) where X is
finite, n=1 and &((xy, ..., X,), X)=(xz, ..., X,, X) for every choice of x€X, x;€X,
i=1,...,n.) Thus, every strongly connected self-correctable automaton is a homo-
morphic image of a product of strongly connected autonomous automaton and a
shift register.

Now let us estimate the correction time n(4) of self-correctable automata.

Theorem 4. Let A be a self-correctable automaton and let & (=0) be the smal-
lest number such that each JeX™4)+k gatisfies:
1) 6(S,J)SC(S); and
2) if 6(B,,J)EB and 6(B,, J)SB for some B, By, BEmy,,(A4), then
0(By; J) = 6(Bs, J).
Then
n(A)+k =|S|—m,
where m is the maximum of all cycle lengths of the transition diagram of A/m.,.
If A4 is a strongly connected self-correctable antomaton, then
pAX|X]["™® = |S|.
Remark 7. In particular, if A4 is a connected self-correctable automaton, then
n(A)+k = |S|—p(A4).
Remark 8. Since JeX"™+*¥ and k=0, then [5(B;,J)|=1 in Theorem 4
(i=1, 2). Therefore one can write &(B;, J)€B instead of
0(Bi,J) & B.
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Proof of Theorem 4. Let us first suppose that 4 is a strongly connected self-
correctable automaton. Since C(S)=S, then k=0 in this case. Given an integer n
consider the relation

P, = {(51, 52)€S%: 8(sy,J) = 8(s;, J) for each JcX"}.

It is clear that Py={(s, s): s€S}. Since 4 is strongly connected, then P, _nmm(A)
holds for each n=0. It follows from Self-correctability Criterion that P, 4=
2 Mmin(4) where n(4) is the correction time of A. Thus, P, 4)=mmin(4). Moreover,
P,CP,,, and P,#P,,, iff n<n(d). The strong connectedness of 4 implies that
the transition diagram of A4/n., is a cycle. Therefore the number of blocks of n,,;,(A4)
is equal to the period p(4) of A. Obviously, the number of blocks of P, 4, _, is greater
than or equal to p(A)+1. Similarly, if 0=i=n(4) then the number of blocks of
Pnay—i =p(A)+i. In particular, with i=n(4), we get

n(4) = |S|-p(4).

Now consider an arbitrary self-correctable automaton 4. Without the loss of
generality we may restrict ourselves to the case where 4 is connected.
The proof of Theorem 4 will be continued after verifying a lemma.

Lemma 9. Let 4 be a connected self-correctable automaton. Then there exists
a partition n={B;}, i=1,...,n, of 4 such that

1) for any i (1=i=n), the elements of B,UB,U...UB; form a subautomaton
of A; moreover, (X, B,, 8) is strongly connected and self-correctable;

2) if 1=i=n and J is a word whose length is denoted by /, then §(B;, J)S
CB,U...UB;_;x, where [*=min(},i-1).

Proof. One can choose (using Lemma 6 and the remark at the beginning of the
proof of the Second Decomposition Theorem) the unique selfcorrectable strongly
connected subautomaton (X, B;, 6) of A.

Consider a sequence of sets:

B: = {s€S\B,: 5(s, X)€B, for each x€X};
= {s€ S\(B,UB,); (s, x)€B; UB, for each xeX};

Clearly, one can find an integer m (1) such that B;=0 iff i>m. Since the
family of disjoint sets {B;}, i=1, ... m, satisfies the conditions 1 —2, we only have

to prove that {B;} is really a partition, i.e. |J B;=S. Put §=S\(B,U...UB,).
i=1

We are going to show that S=0.

Assume now that S#0. We derive a contradiction from this assumption. It is
easy to see that there exists r=1 such that (S, J/)SC(S) for all words JeX".
Using the definition of § one also easily obtains that for any s€ S there exists a
sequence of words Jf€ X! such that &(s, JHeS where i=1,2,.... Let § be an arbi-
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trary state of S, then s=4(5, J5) belongs to a cyclic block of 7,;,(4). A moment’s
consideration shows that there exists a state ¢ of B, which belongs to the same block
of the m.a.p. Indeed, let the cyclic blocks of m,(4) be denoted by C;, Cs, ..., C,.
Since (X, B, 6) is a subautomaton of the connected automaton 4, B,NC;=0 for
any j=1, ...,q. Now let s€C;, we choose an arbitrary state ¢ of BlﬂC Thus the
states sES and 1€ B, belong to the same (cyclic) block of 7y, (4). Furthermore
o(s, Jf)éS for all i=1,2,... and 6(t, J)€éB, for each word JEX™* Obviously,
B,NS=0. Therefore 5(s, J,-’);rfé(t, JP) for every choice of i=1,2, ... (Note that
the length of J§ equals 7). This contradicts the Self-correctability Criterion and the
lemma follows.

Proof of Theorem 4 (final part). Now (using Lemma 9) let us select the strongly
connected subautomaton 4=(X, B,, 5) of Aandletr (=1) be the smallest number
which satisfies J(S,J)E B, for all JeX'. Clearly 6(S,J)SC(S) when JEX'
and it follows from Lemma 9 that

r=[S\B,. ()
Since A is strongly connected, therefore by the previous part of the proof one has
n(d) = |B)|-p(4). )]
It will be noted that _
p(4) = p(A). &)
Also note that _
n(A)+k = n(d)+r. C)

Clearly (1), (2), (3) and (4) jointly imply
n(4)+k = n(A)+r = |B)|—p(4) +|S\By| = |S|—p(4),
and the first assertion of Theorem 4 is proved.
But it follows immediately from Remark 6 that
PAXIXI O =S|
holds for strongly connected self-correctable automata. Q.E.D.

Now let A4 be definite, then the smallest » which satisfies:
[6(S,J)] =1 forall JeX"
is called the degree of 4 and is denoted by d(A4).

Corollary 1. Let 4 be a definite automaton, then
d(4) = |S|-1.
If A is a strongly connected definite automaton, then
(X4 = |S].

Proof. If Ais definite, then it is self-correctable. By Lemma 2 and remark at the
beginning of the proof of the Second Decomposition Theorem one has p(4)=1.
Since A4 is definite, it is connected, therefore the maximum 1 of all cycle lengths of the
transition diagram of A/r;, equals p(4)=1. Finally we show that d(4)=n(4)+k
(cf. Theorem 4). It is clear that d(A)=n(A)+k. Now let JEX™* be defined by
J=J,J, where the length of J; equals k and the length of J, equals n(4). Then all the



338 . Boris B. Kloss

states of 6(S, J,) belong to the unique cyclic block of n,;,(4). Therefore, by the Self-
correctability Criterion, one has |6(S, J)]=1. Thus, d(4)=n(4)+k and the first
assertion of Corollary 1 follows.

In order to prove the second assertion it will suffice to note that d(4)=n(A)
holds for strongly connected definite automata.

Remark 9. The first assertion of Corollary 1 is well-known (e.g. see V. I. Le-
venshtejn [5, Lemma 11]). In [3] M. Tto and J. Duske obtained the estimation:
(X |40 =|S].

Although we only dealt with finite automata in this section, some results are valid
for arbitrary automata. First, one easily sees that the validity of the Correctability
(Self-correctability) Criterion does not depend on the cardinality of the state set and
of the input alphabet. One can also prove Decomposition Theorems for arbitrary
automata.

A word should be said here about the structure of semigroups of correctable au-
tomata. Recall that the semigroup S, of A4 is the factor semigroup X*/= where
Li=J, T 6(s, J))=6(s, J,) for all states s€§. It is easy to see that the set of all
correcting words forms an ideal of S,. (Here and elsewhere we do not distinguish
between semigroup’s elements J€S, and corresponding words JEX*.) If A4 is finite,
then S, is a finite semigroup, therefore there exists the kernel Ker (S4) of S,. One
can show that JeKer (S) iff 1) J is a correcting word; and 2) J satifies conditions
1—2 of Theorem 4. Note that conditions 1-—2 of Theorem 4 actually means that the
set {J, J%, J3, ...} (where J*=JJ, J®=JJJ, ...) forms a subgroup of S,. Recall that
the kernel of an arbitrary compact (in particular, finite) semigroup can be written as a
union of pairwise disjoint maximal isomorphic groups: Ker= |J G,. The groups G,

are called the group-components of the kernel. If 4 is a correctable automaton, then
each group-component G, is cyclic and the period of G, equals p(4). Moreover,
S.-G,=G, for each a. One easily see that the semigroups of self-correctable auto-
mata possess the following additional property: the equality S,-G=G holds for
any maximal subgroup G&S,. In other words, the group-components of S,
(where A is a correctable automaton) are ““generalized right zeros” of S,. If 4 is
self-correctable, then every maximal subgroup of S, is a ““generalized right zero”.

Input-induced errors

Here we suggest an equivalent form of A. Addm’s theorem for automata. Let us
consider the input-induced errors. Recall that an error (s, ) of storing state ¢ instead
of state s is said to be input-induced iff there exist a state v and two words J,, J, of
equal length such that (v, J;)=s and d(v, J)=t. The partition (relation) = is
said to be corresponding to the input-induced errors iff  is the smallest (i.e. most
refined) partition such that for any input-induced error (s, t) we have (s, t)en. All
these concepts were introduced by J. Hartmanis and R. E. Stearns in [2].

Thes next proposition actually was a base of our consideration in the previous
section of the paper.

Proposition 3. Let A be an arbitrary (possibly infinite) automaton. Then the
partition n corresponding to the input-induced errors is equal to the minimal auto-
nomous partition 7, (4).
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Note added in Proof. If a connected graph G has at least one semiwalk with
positive net length, p of the (unique) cycle of G/n.;, is equal to the greatest com-
mon divisor of all closed semiwalk net lengths of G (G. S. Bloom and S. A. Burr
[7, Theorem 3.2)). Elsewise, G/n.;, has no cycles and consequently G{m, is a direc-
ted path (cf. [7, Theorem 3.3]).
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Pezrome

PaccMatpuBaroTca opuenTHpoBaunsie rpadsl G=(V,E), rne V — MHOXECTBO BEPIUMH M
E — MHOXecTBO Iyr. Pas6menne 7n={B,} MHOKecTBa BepIIMH rpada Ha Henepecekatommecs Goxa
B,S V Ha3bIBACTCA aBTOHOMHBIM, €CIH IJIs1 KaXIOro Onoxa B,, conepxkalnero Xxors 6l onHy Bep-
IUHHY ¢ HEHYJIEBOI IIOMYCTENEHbIO UCX0Aa, HallmeTca Takoi 670K B;, 4TO BCE BEPIIHHEBI, JOCTHXHA-
Mbi€ U3 B, 3a OmuH 1uar, jexat B B, . MUHMMaNbHOE aBTOHOMHOE pa3Guenue (M.a.p.) rpada — 310
TaKOE €ro aBTOHOMHOE pa30mMeHne, KOTOPOE ABJIAETCS COOCTBEHHBIM Nonpa3fueHmeM JroGoro
ApYroro aBTOHOMHOrO pa3f6ueHus 3Toro rpaga. AHaAsorm M.a.p. XOpOIDO H3BECTHBI — 3TO pas-
OHEHHS] COCTOSHMI MapKOBCKMX lieneil ¥ aBTOMaTOB Ha LIMKJIMYECKHE Kiaccel. B Hamell paboTe u3y-
YaeTCH CTPOEHHE M.a.p. IR pa3MMYHbLIX THIIOB OPHEHTAPOBAHHBIX FPa¢oB. MBI IPHBENH AOCTATOYHO
ROoAPOGHOE OIHMCaHue CTPYKTYPHI M.a.p. s rpadoB C KOHEYHEIM YACIIOM CTOKOB, rpados, He comep-
JKalllMX MCTOKOB M CTOKOB, 4 TAKXKE JJIsS CHJIBHO CBA3HBIX rpadoB. MoOXHO moKa3arh, YTO M.a.p.
rpada ¢ KOHCYHBLIM YHCITOM CTOKOB MOXHO IIOJNYYHTH M3 TPHBHAJIBHOTO pa3OmeHms sToro rpada
(1.e. pa3bueHua, Kaxaplii GIOK KOTOPOTO CONEPXUT B TOYHOCTH OAHY BEPINWHY) MyTEM NMpPHMEHE-
HMs K HEMY KOHEYHOIO YMCia OHNEpalyii TPAH3IUTHBHOIO M aBTOHOMHOTO 3aMBIKaHMi, a WMEHHO,
JIOCTATOYHO 2X n-2 TAKHX OlNEpauHii, re n-4uciio crokos rpada. Ilpu 3ToM s NpOM3BOIBHBIX
rpadoB Bceraa OOCTATOYHO CYETHOTO uucia omepauuit. KonmyecTBo HEOOXOOMMBIX onepaumit —
BaXXHasl XapakTCPUCTHKA M.a.p. H €r0 OLEHKAM COOCTBEHHO M IOCBAIICHA NEpBas 4acTb HACTORLIEH
CTaThH.

C moMopBIO M.A.p. 0Ka3anock YOOOHBIM ONMCBHIBATE CTPOCHHE aBTOMATOB, YCTONYMBBIX K
. MHOYUMPOBAHHBLIM BXOJHBIMH MCKaXXEHMsIMHM OIIKHOKaM. ITHM BOIPOCaM NOCBAILIEHA BTOpas 4actb
CTaThy, IA€, B YaCTHOCTH, PEIIACTCS 3a7ja4Ya O JEKOMIIO3MLMH TAKHX aBTOMAaTOB.
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