An approach to automata schemes synthesis

A. S. Podkolzin, Š. M. Ušćumlić

The function of a finite automaton can be described on both abstract and structural levels. In the first case, only some interrelation between input and output sequences of an automaton is pointed out without showing its structure (we call sucb automata - abstract). In the second case, an automaton is represented by a scheme, constructed of a set of "elementary" automata, defining a process of conversion of input sequences into output ones (we call such automata structural) [1]. One of the widely used languages, describing the functioning of finite automata on an abstract level is the language of regular expressions [2, 3], which can define time events, distinguishable by automata. In considering structural automata, we shall limit ourselves to schemes constructed out of the following elements: disjunction, conjunction, negation and delay. The problem of constructing a structural automaton V representing an event defined by a regular expression R (in this paper called the problem of synthesis of an automaton V), can be solved by constructing, in an intermediate stage, a Moore diagram of the automaton V [4]. The number of vertices of this diagram in many cases considerably exceeds both the complexity of the scheme of the automaton V and the length of the regular expression R. Corresponding estimation of the number of vertices depends exponentially on the given parameters. In such cases, regardless of a relatively simple scheme definition of an automaton V and a regular expression R, the given method of synthesis becomes in fact, non- applicable, and so arises the necessity of developing "direct" methods of synthesis of the automaton V, which are not based on the construction of its Moore diagram. A direct method of synthesis of automaton schemes, which is in fact an improvement of the synthesis method from [5], is suggested. (From now on these two methods will be reffered to as S_{2} and S_{1}, respectively).

Let us describe the method S_{1}. The source information in this method is a regular expression R, obtained by application of operations U, \cdot, and $<>$ over the alphabet $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ (see [3]). Symbols of the alphabet A are supposed to be encored by binary strings of length $m^{\prime}=\left[\log _{2} m\right.$], so that a symbol a_{i} is encoded by the string $\left.\tilde{a}_{i}=\tilde{a}_{i j}, \ldots, a_{i m}\right) ; a_{i j} \in\{0,1\} ; i=1,2, \ldots, m ; j=1, \ldots, m^{\prime}$. The regular event defined by a regular expression R is denoted by $|R|$. Let us also introduce the notation $\|R\|=\left\{\tilde{a}_{i 1} \ldots \tilde{a}_{i_{s}}\left|a_{i 1} \ldots a_{i s} \in\right| R \mid, s \geqq 1\right\}$. The problem of synthesis consists of constructing an automaton scheme Σ with m^{\prime} inputs $x_{1}, \ldots, x_{m^{\prime}}$ and one output y, having $V, \&-$ and delay elements (with 0 or 1 initial state) and representing the event $\|R\|$ by means of the output symbol 1. It means that the appearance of 1 as an output of
the scheme Σ, at a moment t, is equivalent to the belonging of the word $\tilde{a}_{i 1} \tilde{a}_{i 2} \ldots \tilde{a}_{i t}$, to the event $\|R\|$, where $\tilde{a}_{i j}$ is a string arriving at the input of the scheme Σ at a moment $j ; j==1, \ldots, t$ (we assume that the first moment of time is assigned number 1). Note that in such an approach the empty word e, which generally speaking could be included in $|R|$, is not taken into account.

Fig. 1.

Fig. 2.

According to the method S_{1}, the scheme Σ is presented in the form given in Fig. 1. The scheme Σ_{1} is constructed without using delay elements, its output z_{0} is identical to 0 , and an output $z_{i}(i=1, \ldots, m)$ equals 1 if and only if $\left(x_{1}, \ldots, x_{m}\right)=\tilde{a}_{i}$. Let us denote $\hat{a}_{i}^{\alpha}=(\alpha, 0, \ldots, 0,1,0, \ldots, 0) ; \alpha \in\{0,1\} ; i=1, \ldots, m$. By means of the symbol 1, the scheme Σ_{2} represents the' event $R=\left\{\hat{a}_{i 1}^{a_{1}} \hat{a}_{i 2}^{a_{2}} \ldots \hat{a}_{i r}^{\alpha_{r}} \hat{a}_{i r+1}^{\alpha_{r}+1} \ldots \hat{a}_{i s}^{\alpha_{s}}\left|a_{i r} \ldots a_{i s} \in\right| R \mid\right.$; $s \geqq r\}$ and it is defined by induction on the construction of the regular expression R. Let us further denote $\Sigma_{2}=\Sigma_{2}(R)$. The initial state of the delay element in Figure 1 equals 1 . Construction of the scheme $\Sigma_{2}(R)$ is implemented in the following way.

1. R has the form a_{i}. In that case $\Sigma_{2}(R)$ has the form shown in Fig. 2.
2. R has the form $\left(R, \cup R_{2}\right)$. In that case $\Sigma_{2}(R)$ has the form shown in Fig. 3.
3. R has the form $\left\langle R_{1}\right\rangle$. In that case $\Sigma_{2}(R)$ has the form shown in Fig. 4.
4. R has the form $\left(R_{1} \cdot R_{2}\right)$. In that case $\Sigma_{2}(R)$ has the form shown in Fig. 5.

If the regular expression R consists of k_{1} occurrences of symbols from the alphabet A, k_{2} occurrences of the symbol U, k_{3} occurrences of the symbol - and k_{4} ocurrences of the symbol $<>$, then the scheme $\Sigma_{2}(R)$ has the least $k_{1}+k_{2}+k_{3}+2 k_{4}$ elements.

The scheme Σ_{1}, which is essentially a decoder, can be constructed, for instance, as follows:

1) An input of the negation element is joined with each input $x_{1}, \ldots, x_{m}^{\prime}$. As a result, the values $\bar{x}_{1}, \ldots, \bar{x}_{m^{\prime}}$ are computed.
2) Let us consider the oriented tree T shown in Fig. 6. Every vertex w of the tree T, differing from w_{0}, w_{1}, w_{2} is connected to the conjunction element. Let an edge marked x_{i}^{σ} lead from a vertex w^{\prime} to a vertex w (where $x_{i}^{0}=\bar{x}_{i}$ and $x_{i}^{1}=x_{i}$).
Then the first input of this conjunction element is connected to an input x_{i}, if $\sigma=1$, and to an output element computing \bar{x}_{i}, if $\sigma=0$. If $w^{\prime} \notin\left\{w_{1}, w_{2}\right\}$, then the second input of the conjunction element is connected to an output of the element associated

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.
with the vertex w^{\prime}. Otherwise, the second output of the conjunction element is connected to an input x_{1}, if $w=w_{1}$, and to an output of element computing \bar{x}_{1}, if $w=w_{2}$.
3) Conjunction elements, associated with terminating vertices of the tree T, compute all the possible functions of the logic algebra $x_{1}^{\sigma_{1}} \ldots x_{m}^{\sigma_{m^{\prime}}}$. Let us remove those elements for which $\left(\sigma_{1}, \ldots, \sigma_{m}\right) \notin\left\{\tilde{a}_{1}, \ldots, \tilde{a}_{m}\right\}$. The output of the conjunction element, computing the function $x_{1}^{a_{11}} \ldots x_{m}^{a_{m} m^{\prime}}$, is the output z_{i} of the scheme $\Sigma_{1}(i=1,2, \ldots, m)$.
4) A conjunction element whose inputs are connected to the input x_{1} and to the output of the negation element computing \bar{x}_{1}, is introduced. This conjunction element computes the 0 - function, and its output is the output z_{0} of the scheme Σ_{1}.

It is not difficult to check out that the number of elements of the scheme Σ_{1} is $m^{\prime}+\left(2^{m^{\prime}}-4\right)+m+1$ and that it is not larger then $3 m+\log _{2} m-2$.

Let us describe the method S_{2}. Unlike the method S_{1}, let us assume that the initial regular expression R may contain an empty word symbol e and that $|R| \neq\{e\}$. In the preliminary step, a regular expression R is simplified by the use of the following transformations:
a) $e R^{\prime} \rightarrow R^{\prime} ; R^{\prime} \cdot e \rightarrow R^{\prime}$.
b) $R^{\prime \prime} \rightarrow e$, if $\left\|R^{\prime \prime}\right\|=\{e\}$ and $R^{\prime \prime} \neq e$.
c) Let the expression R include R^{\prime}, which is of the form $\left\langle R_{1} \cup \ldots \cup R_{n}\right\rangle ; n \geqq 1$. If any R_{i} equals e, then expression $\left\langle R_{1} \cup \ldots \cup R_{i-1} \cup R_{i+1} \cup \ldots \cup R_{n}\right\rangle$ is substituted for the expression R^{\prime}. If an R_{i} has the form $\left\langle R_{i}^{\prime}\right\rangle$, then R^{\prime} is replaced by $\left\langle R_{1} \cup \ldots\right.$ $\left.\ldots \cup R_{i-1} \cup R_{i}^{\prime} \cup R_{i+1} \cup \ldots \cup R_{n}\right\rangle$. If any R_{i} has the form $R_{i}^{\prime} R_{i}^{\prime \prime}$ and $e \notin\left|R_{i}\right|$, then $\left\langle R_{1} \cup \ldots \cup R_{i-1} \cup R_{i}^{\prime} \cup R_{i}^{\prime \prime} \cup R_{i+1} \cup \ldots \cup R_{n}\right\rangle$ is substituted for R^{\prime}.
d) $R_{1} \cdot R_{2} \cup R_{1} \cdot R_{3} \rightarrow R_{1} \cdot\left(R_{2} \cup R_{3}\right) ; R_{2} \cdot R_{1} \cup R_{3} \cdot R_{1} \rightarrow\left(R_{2} \cup R_{3}\right) \cdot R_{1} \quad$ (In order to apply this transformation, it is possible to preliminary reorganize disjunctive elements of the expression).

Let us denote using \tilde{R}, the result of the described process of simplification of the expression R^{\prime}. It is not difficult to notice that for any subexpression having the form $\langle Q\rangle$ in \tilde{R} we have $e \notin|Q|$.

A scheme Σ, representing an event $|\tilde{R}|$ is constructed as shown in Fig. 7. where Σ_{1} is a scheme constructed in the description of the method S_{1} and Σ_{3} is a scheme

Fig. 7.
representing, using the symbol 1 , the event

$$
\begin{gathered}
\left.B(\widetilde{R})=\hat{a}_{i 1}^{\alpha_{1}} \hat{a}_{i 2}^{\alpha_{2}} \ldots \hat{a}_{i s}^{\alpha_{s}}\left|a_{i 1} \ldots a_{i s} \in\right| \widetilde{R} \mid, s \geqq 1\right\} \cup C(\tilde{R}), \\
\left.C(\widetilde{R})=\hat{a}_{i 1}^{\alpha_{1}} \hat{a}_{i 2}^{\alpha_{2}} \ldots \hat{a}_{i r}^{\alpha_{r}} \hat{a}_{i r+1}^{\alpha_{r}+1} \ldots \hat{a}_{i s}^{\alpha_{s}}\left|\hat{a}_{i 2} \ldots \hat{a}_{i s} \in\right| \widetilde{R} \mid ; s \geqq r\right\} .
\end{gathered}
$$

To construct the scheme Σ_{3}, let us define, by induction over the construction of the regular expression \widetilde{R}, an axilliary scheme $\Sigma_{4}(\widetilde{R})$ representing, by the use of 1 , the same event $B(\widetilde{R})$ as the scheme Σ_{3} :

1) \tilde{R} has the form e. Then the scheme $\Sigma_{4}(\tilde{R})$ has the form given in Fig. 8.
2) \tilde{R} has the form $a_{i} ; i \in\{1, \ldots, m\}$. Then $\Sigma_{4}(\tilde{R})$ has the form given in Fig. 9, where the initial state of the dealy element equals 1 .
3) \widetilde{R} has the form ($R_{1} \cup R_{2}$). Then $\Sigma_{4}(\widetilde{R})$ has the form given in Fig. 10.
4) \tilde{R} has the form $\left\langle R_{1}\right\rangle$. Then $\Sigma_{4}(\tilde{R})$ has the form given in Fig. 11.
5) \tilde{R} has the form $R_{1} \cdot R_{2}$. Then, in case that $e \in\left|R_{1}\right|$, the scheme $\Sigma_{4}(\tilde{R})$ has the form given in Fig. 12 and in case that $e \ddagger\left|R_{1}\right|$, it is derived from the scheme in Fig. 12

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.
by substituting all the 1 - initial states of dealy elements in block $\Sigma_{4}^{\prime}\left(R_{2}\right)$ for 0 initial state. It is not difficult to see that the resulting block $\Sigma\left(R_{2}\right)$ represents, by means of 1 , an event $C\left(R_{2}\right)$.

The scheme Σ_{3} derives from the scheme $\Sigma_{4}(\tilde{R})$ by means of the following transformations:
a) All the delay elements, having the same initial state, inputs of which are associated with an output of the same element or with the same input z_{0} of the scheme $\Sigma_{4}(\widetilde{R})$ become identical.
b) All conjunction elements whose inputs are connected to the same output of a delay element and to an input Z_{i}, become identical.
c) If one of the inputs of the disjunction element E turns out to be associated with the input z_{0} of the scheme $\Sigma_{4}(\tilde{R})$, then the second input of E is identified with the output of this element, and the element itself is removed. If no input of an element of the scheme Σ_{3} has been associated with the output z_{0} of the scheme Σ_{1}, then the conjunction element whose output is z_{0}, is removed.

Let us denote the results of the application of the synthesis methods S_{1} and S_{2} to a regular expression R by $S_{1}(R)$ and $S_{2}(R)$, respectively. We call the number of elements of the scheme Σ the complexity of that scheme and denote it by $L(\Sigma)$. In order to compare the complexity of the schemes $S_{1}(R)$ and $S_{2}(R)$, let us define a few auxiliary notions. (Such comparison is possible only for regular expressions R, not containing the symbol e.)

An occurrence an expression of the form $\langle 0\rangle$ in a regular expression \widetilde{R}. Let a regular expression $R_{1} \cup \ldots \cup R_{s}, s \geqq 2$, occur in \tilde{R}, where each R_{i} has the form $\langle Q\rangle$ or $\langle Q\rangle R_{i}^{\prime}$. Then an occurrence of $\langle Q\rangle$ in \tilde{R} we call a disjunctive occurrence of iteration. All other occurrences of iterations in \widetilde{R} we call no-disjunctive.

Theorem 1. If a regular expression R does not contain the symbol e, then the following inequality holds: $L\left(S_{2}(R)\right) \leqq L\left(S_{1}(R)\right)-N$, where N is the number of nondisjunctive occurrences of iteration in a regular expression \tilde{R}.

Proof. If a regular expression R does contain the e symbol, then the transition to expression \widetilde{R} is performed only by means of the transitions given in (c) (see above):

The number of iterations doesnot increase, and total number of operations U remains the same. Therefore, $L\left(S_{1}(\tilde{R})\right) \leqq L\left(S_{1}(\widetilde{R})\right)$. Let us denote by k_{1} - the number of occurrences of symbols from the alphabet A in a regular expression R, by k_{2} the number of occurrences of the symbol \cup, by k_{3} - the number of the occurrences of the symbol \cdot, and by k_{4} - the number of the occurrences of the symbol $<>$. We have

$$
\begin{aligned}
& L\left(S_{1}(\tilde{R})\right) \geqq L\left(\Sigma_{1}\right)+k_{1}+k_{2}+k_{3}+2 k_{4}+1 ; \\
& L\left(S_{2}(R)\right) \geqq L\left(\Sigma_{1}\right)+2 k_{1}+k_{2}+k_{4}-k_{1}^{\prime} ;
\end{aligned}
$$

where k_{1}^{\prime} is the number of delay elements removed from the scheme $\Sigma_{4}(\widetilde{R})$ during its transformation into the scieme Σ_{3}. It is not difficult to notice that the number of occurrences of letters in the regular expression is one more than the number of occurrences of binary operations, i.e., $k_{1}=k_{2}+k_{3}+1$. Therefore $L\left(S_{1}(\tilde{R}) \geqq L\left(\Sigma_{1}\right)+2 k_{1}+\right.$ $+2 k_{4}$. Thus, for the proof of the theorem it is enough to prove the inequality $L\left(\Sigma_{1}\right)+2 k_{1}+k_{2}+k_{2}+k_{4}-k_{1}^{\prime} \leqq L\left(\Sigma_{1}\right)+2 k_{1}+2 k_{4}-N$, or after reduction: $k_{2}-k_{1}^{\prime} \leqq$ $\leqq k_{4}-N$. Let Π be an occurrence of the expression \widetilde{R} having the form $R_{1} \cup R_{2}$; $i \in\{1,2\}$, where each R_{i} has the form $R_{i 1} \cdot R_{i 2} \ldots R_{i s} ; s \geqq 1 ; R_{i 1}$ is not of the form of $R^{\prime} \cdot R^{\prime \prime}$. In that case we say that the occurrence of the expression $R_{i 1}$ in \widetilde{R} is subordinated to the occurrence of Π. Let us connect, with a regular expression \widetilde{R}, an oriented graph G, whose vertices are the occurrence of the expression $R_{1} \cup R_{2}$ in R and also the occurrences subordinated to them. An edge leads from a vertex v to a vertex w in the graph G, if and only if the occurrence w is subordinated to the occurrence v. It is not difficult to notice that every occurrence in a regular expression \tilde{R} is subordinated to not more than one occurrence. Therefore, the graph G represents the union of a finite number of oriented trees G_{1}, \ldots, G_{r}. Let q_{i} denote the number of nonterminating vertices of the tree $G_{i} ; i=1, \ldots, r$. Evidently, $\sum_{i=1}^{r} q_{i}=k_{2}$. As from each nonterminating vertex of the tree G_{i} exactly two edges leave, the number of terminating vertices of the tree G_{i} equals $q_{i}+1$. Let q_{i}^{\prime} be the number of terminating vertices of the tree G_{i} representing the occurrences of letters from the alphabet A. Then $q_{i}+1-q_{1}^{\prime}$ is the number of terminating vertices of the tree G_{i} representing occurrences of iterations and all these occurrences are disjunctive. It is not difficult to see that delay elements corresponding to the occurrences of letters from the alphabet A in \widetilde{R},
which are terminating vertices of the tree G_{i}, become identical through the transformation of the scheme $\Sigma_{4}(\tilde{R})$ into the scheme Σ_{3}. Therefore, denoting $q_{i}^{\prime \prime}=q_{i}^{\prime}$ when $q^{\prime}=0$, and $q_{i}^{\prime \prime}=q_{i}^{\prime}-1$ when $q_{i}>0$, we have: $\sum_{i=1}^{r} q_{i}^{\prime \prime} \leqq q_{i}^{\prime}$. Consequently, $q_{2}-k_{1}^{\prime} \leqq$ $\leqq \sum_{i=1}^{r}\left(q_{i}-q_{i}^{\prime \prime}\right)$. On the other hand, $k_{4}-N$ is equalto the number of occurrences of disjunctive iterations in \tilde{R}, and consequently, $\sum_{i=1}^{r}\left(q_{i}+1-q_{i}^{\prime}\right) \leqq k_{4}-N$. When $q_{i}^{\prime}=0$ we have: $q_{i}-q_{i}^{\prime \prime}=q_{i} \leqq q_{i}+1=q_{i}+1-q_{i}^{\prime}$; however, if $q_{i}>0$ then $q_{i}-q_{i}^{\prime}=$ $=q_{i}-q_{i}^{\prime}+1$. This implies the inequality $\sum_{i=1}^{r}\left(q_{i}-q_{i}^{\prime \prime}\right) \leqq \sum_{i=1}^{r}\left(q_{i}+1-q_{i}^{\prime}\right)$. The theorem is proved.

Construction of the scheme Σ_{3} by the method S_{2} is realized by induction on the structure of a regular expression \widetilde{R}, with further transformations of the scheme. Let us give a more convenient constructing procedure of the scheme Σ_{3}, based on a preliminary marking of a regular expression \tilde{R}. The marking gives the possibility to follow directly a series of removals of elements from the scheme $\Sigma_{4}(\tilde{R})$ during its transformation into the scheme Σ_{3}, as well as the joining together of the elements of that scheme.

Let us define a series of auxiliary notions connected to a regular expression \widetilde{R}. Occurrences of letters Π_{1} and Π_{2} from the alphabet A in the regular expression \tilde{R} are called similar if there exist such sequences of occurrences $\Pi_{0}, \Pi_{1}, \ldots, \Pi_{\mathrm{s}}=\Pi$ and $\Pi_{0}, \Pi_{1}^{\prime}, \ldots, \Pi_{r}^{\prime}=\Pi$ in \widetilde{R}, in which every next occurrence is subordinated to the previous one. Similar occurrences of the same letter in \widetilde{R} we call adjacent. Therefore, every class of similar occurrences of letters in \widetilde{R} is devided into a number of subclasses of adjacent occurrences.

Let Π be an occurrence of a regular expression R^{\prime} in the regular expression \widetilde{R}. We shall now define occurrences in \tilde{R}, referred to as the basis and the predecessor of the occurrence Π :

1. If $R^{\prime}=e$, then the basis of Π is equal to the predecessor of Π.
2. If $R^{\prime}=a_{i}, \quad i \in\{1, \ldots, m\}$, then the basis of Π represents a distinguished element of the class of occurrences of the letter a_{i}, occurrences being adjacent with Π (all elements of this class have the same basis). The occurrence of a letter is called basic if this occurrence is included in the basis.
3. If $R^{\prime}=R_{1} \cup R_{2}$ and if the predecessor of Π is defined or both expressions R_{1} and R_{2} differ from e, then the basis of the occurrence Π is Π. If the predecessor of the occurrence Π is undefined and $R_{i 1}=e ;\left\{i_{1}, i_{2}\right\}=\{1,2\}$, then the basis of the occurrence Π is equal to the basis of the occurrence of $R_{i 2}$ in \widetilde{R}. In all the enumerated cases the predecessors of the occurrences of R_{1} and R_{2} in \tilde{R} are equal to the predecessor of the occurrence Π.
4. If $R^{\prime}=\left\langle R_{1}\right\rangle$, and the predecessor of the occurrence Π is defined, then the basis of the occurrence Π equals Π; otherwise it is equal to the basis of the occurrence of R_{1} in \widetilde{R}. If the predecessor of the occurrence Π is defined, then the predecessor of the occurrence of in \widetilde{R} is Π; otherwise it is equal to the basis of the occurrence of R_{1} in \widetilde{R}.
5. If $R^{\prime}=R_{1} \cdot R_{2}$, then the basis of the occurrence Π is equal to the basis of the occurrence of R_{2} in \widetilde{R}. The predecessor of the occurrence R_{2} in \widetilde{R} is equal to the basis of the occurrence R_{1} in \tilde{R}; the predecessor of the occurrence R_{1} in \tilde{R} is equal to the predecessor of the occurrence Π.
6. If $R^{\prime}=\widetilde{R}$, then the predecessor of the occurrence Π is undefined (at the some time all the predecessors as well as basis of the occurrences in \tilde{R}, which, according to p. $1-5$ are equal to the predecessor of the occurrence Π, are undefined).

It is not difficult to check out that, in accordance with p. $1-6$, for any occurrence of a regular expression in \tilde{R}, it is possible to unambigously find (in a finite number of steps), the basis and the predecessor of that occurrence, or their absence can be confirmed.

Next, let us define initial occurrences in the expression \tilde{R} :

1. An occurrence of the expression \widetilde{R} in itself is initial.
2. If an occurrence of the expression $\left\langle R_{1}\right\rangle$ in \tilde{R} is initial, then an occurrence of the expression R_{1} in \widetilde{R} is also initial.
3. If an occurrence of the expression $R_{1} \cup R_{2}$ in \tilde{R} is initial, then the occurrences of the expressions R_{1}, R_{2} in \tilde{R} are initial.
4. If an occurrence of the expression $R_{1} \cdot R_{2}$ in \tilde{R} is initial, then the occurrence of the expression R_{1} in \tilde{R} is initial. If at the same time, $e \in\left|R_{1}\right|$, then the occurrence of the expression R_{2} in \widetilde{R} is initial.

Let us describe, using the notions given above, the process of construction of the scheme Σ_{3}^{\prime} obtained from $\Sigma_{4}(\widetilde{R})$ by applying a portion of the transformations a)-c). The scheme Σ_{3} will be obtained from Σ_{4} by applying the unused of the transformations a) and b). The scheme Σ_{3} is constructed in the following way:

1) For each class x of similar occurrences of letters in \tilde{R}, a delay element, denoted by $G(x)$, is introduced. If all the occurrences from $火$ are initial then the initial state of this element equals 1 , otherwise it is euqal to 0 .
2) For each basis occurrence Π of a letter in an expression \tilde{R}, an element of conjunction, denoted by $E(I I)$, is introduced.
3) For each occurrence Π in the expression \tilde{R} of the expression $R_{1} \cup R_{2}$, such that $R_{1} \neq e$ and $R_{2} \neq e$ or the predecessor of Π is defined, an element of disjunction, denoted by $E(\Pi)$, is introduced.
4) For each occurrence Π having a predecessor, in expression \tilde{R} of the expression $\left\langle R_{1}\right\rangle$, an element of disjunction, denoted by $E(\Pi)$, is introduced.
5) The input of the element $G(x)$ is associated with the output of the element $E\left(\Pi^{\prime}\right)$ where Π^{\prime} is a predecessor of an arbitrary occurence Π belonging to the class x. If the occurrence from x do not have predecessors, then the input of the element $G(\Pi)$ is associated with the input z_{0}.
6) If Π is a basic occurrence of the letter a_{i}, which belongs to the class ψ of similar occurrences of letters, then one of the inputs of the element $E(\Pi)$ is joined to the output of the element $G(x)$ and the other is joined to the input z_{i}.
7) If Π is an occurrence of the expression in \widetilde{R} and the element $E(\Pi)$ is defined, then the inputs of that element are connected with the outputs of the elements $E\left(\Pi_{1}\right)$ and $E\left(\Pi_{2}\right)$, where Π_{1} and Π_{2} are the basis of the occurrences of R_{1} and R_{2} in \widetilde{R}.
8) If Π is an occurrence of the expression $\left\langle R_{1}\right\rangle$ in \tilde{R} and the element $E(\Pi)$ is defined, then the inputs of this element are connected with the inputs of the elements $E\left(\Pi_{1}\right)$ and $E\left(\Pi_{2}\right)$, where Π_{1} is the predecessor of occurrence of Π and Π_{2} is the basis of occurrence of R_{1} in \widetilde{R}.
9) The output of the scheme Σ_{3}^{\prime} is the output of the element $E(\Pi)$, where Π is the basis of occurrence of \widetilde{R} in \tilde{R} (this basis is defined as $|\widetilde{R}|=\{e\}$).

Let us illustrate the method S_{2} for a regular expression $R=\langle\langle a\rangle b \cup c\langle a\rangle\rangle$ in a three - letter alphabet $A=\{a, b, c\}$. Let us encode the symbols a, b, c, by binary strings $00,01,10$ respectively. In this case the decoder Σ_{1} has the from given in Fig. 13. There are no similar occurrences of letters in the expression R and therefore, delay and conjunctinn elements correspond to each occurrence of a letter. The form of the scheme Σ_{3}^{\prime} is given in Fig. 14. Scheme Σ_{3} is obtained from the scheme Σ_{3}^{\prime} by the unifi-. cation of delay element corresponding to the initial occurrences of letter a and letter b. Since no element in Σ_{3} is connected to the output z_{0} of Σ_{1}, the corresponding conjunction element in Σ_{1} is to be removed. The form of the scheme Σ is given in Fig. 15.

Let us note by $L(\widetilde{R})$ the least complexity of the schemes, representing, by the symbol 1, an event $|R|$ defined by a regular expression R. The complexity of the regular expression R is the number of occurrences of the letters and operation symbols
$U, \ldots,\langle \rangle$ within this expression. Let us consider the Shenon function $L(m, n)=$ $=\max _{R \in R_{m, n}} \tilde{L}(R)$, where $R_{m, n}$ is the class of all regular expressions in an m - letter alphabet A with complexity not greater than n. According to the synthesis method S_{2}, an estimation $\tilde{L}(m, n) \leqq 3 m+\log _{2} m-2+2 n$ holds. In the paper [6], there is an example of a regular expression - with complexity n in a two - letter alphabet, for

Fig. 13.

Fig. 14.

Fig. 15.
which the minimal number of delay elements in the corresponding scheme is asymptotically not less than $\frac{n}{5}$. It turns out that, for a fixed $m \geqq 2$ and $n \rightarrow \infty$, the following asymptotical inequalities hold: $\frac{n}{5} \lesssim \tilde{L}(m, n) \leqq 2$, i.e., the order of the entity $\tilde{L}(m, n)$ equals n.

As a conclusion, let us describe one of the methods of simplifying the scheme $\Sigma_{4}(\tilde{R})$, used in the process of realization of the method S_{2} without marking the expression \widetilde{R}. Let Π_{1}, \ldots, Π_{k} be non - initial occurrences of the same regular expression R^{\prime} in \tilde{R}. We call the occurrences Π_{1}, \ldots, Π_{k} alternative, if for any letter p in the alphabet A, the set of pre-main positions of the expression \widetilde{R}, p - following its starting positions (see [3]) has an empty intersection with the set of pre-main positions of not more then one of the occurrences Π_{1}, \ldots, Π_{k}. For example, the first and the second occurrences of the expression $(b\langle a\rangle \cup c)$ in the regular expression $a(b\langle a\rangle \cup c) \cup$ $U\langle b\langle a\rangle\rangle \cup c\rangle$ are alternative.

Let $\Sigma_{4}(\tilde{R})$ be a scheme constructed by using the method S_{2} for a regular expression \widetilde{R} and let Π_{1}, \ldots, Π (be the alternative occurrences of a regular expression R^{\prime} in \tilde{R}. Let us determine, in the scheme $\Sigma_{4}(\tilde{R})$, the blocks B_{1}, \ldots, B_{k} corresponding to the occurrences Π_{1}, \ldots, Π_{k}. Each such block represents the scheme $\Sigma_{4}^{\prime}\left(R^{\prime}\right)$ and at any instant of time t, all the blocks B_{1}, \ldots, B_{k}, except possibly one, have a zero state of delay elements. This enables us to use, in the scheme $\Sigma_{4}(\widetilde{R})$, only one block $\Sigma_{4}\left(\widetilde{R}^{\prime}\right)$ instead of k samples of such blocks. This block switches its input z_{0} and output according to the positions of blocks $B_{i} ; i=1, \ldots, k$. This switching will be realized using the scheme W given in Fig. 16. If $e \notin\left|R^{\prime}\right|$ then the first input of the conjunction

Fig. 16.
element K_{i} is joined to the output of the element $z_{i} ; i=1, \ldots, k$. The input v_{i} of this scheme is joined either to the same element, or the input of $\Sigma_{4}(\widetilde{R})$, as well as the input \dot{z}_{0} of the block \dot{B}_{i}. The input \dot{w}_{i} is joined to the inputs of the same elements or the output of the scheme $\Sigma_{4}(\widehat{R})$, as well as the output of the block $B_{i} ; i=1, \ldots, k$. At the initial instant of time, states of the dalay element $z_{1}^{\prime}, \ldots, z_{k}$ of the scheme W equal 0 . When 1 arrives to the input v_{i}, the block $\Sigma_{4}^{\prime}\left(R^{\prime}\right)$ begins to participate in the functioning of the scheme $\Sigma_{4}(\widetilde{R})$ as a block B_{i}, while the delay element z_{i} turns into state 1 and others into state 0 . The complexity of the scheme W is $5 k+L\left(\Sigma_{4}^{\prime}\left(R^{\prime}\right)\right)$ and therefore, applying the described process of exchange of block B_{1}, \ldots, B_{k} to the scheme W is usseful only in case that $5 K+L\left(\Sigma_{4}^{\prime}\left(R^{\prime}\right)\right) \leqq k \cdot L\left(\Sigma_{4}^{\prime}\left(R^{\prime}\right)\right)$, i.e., when $\ddot{L}\left(\Sigma_{4}^{\prime}\left(R^{\prime}\right)\right)^{\prime}>-\frac{5 k}{k-1}$.

АЛЕЕКСАХДАР СЕРЕЕЕВЙप ПОДКОЛЗИН̈
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНЙВЕРСИТЕТ̆ЙН. М. В. ЛОМОНОСОВВА
МЕХАНИКО-МАТЕМАТИЧЕСКИЯ ФАКУЛЬТЕТ
СССР, 117234 МОСКВА, В-234, ЛЕНИНСКИЕ ГОРЫ, МГУ
Ścepan uscumlie
UNIVERSITET U BEOGRADUU
TEHNOLOŠKO-MEFALURSKI FAKULTEET
KATEDRA-ZA MATEMATIĆKE NAUKE

Bibliography

[1] Кудряяццев, В: Б;, Алёшйн, С. В., Пोодиколїйн, А. С.: Элементйі теории автоматов; Москва, Изд-во Моск. университета, 1978.
[2] Клини, С. К.: Представление событий в нервных сетях и конечных автоматах, В книге «Автоматы", Москва, ИЛ, 1956, стр: 15-67.
[3] Кудрявцев, В. Б., Подколзин, А. С., Ушчум'лйч, ІІ. М.: Введение в теорию абстрактных автоматов, Москва, Изд-во Моск. университета, 1985.
[4] Глушков, В. М.: Синтез цифровых автоматов, Москва, Физмат., 1962.
[5] Копи, И. М., Элгот, К. С., Райт, Д. Б.: Реалйзацияя событий логическйми сетями. В книзе Кибернетический сборник, Вып. З, М. ИЛ, 1961, 147-166.
[б] Гринберг, В. С.: Дегерминизацйя систем графов и синтез конечнных автоматов, Сиб. матем. журиай, Том 7, N. 6, 1966, 1260-1267.
(Received Dec. 8, 1987).

