
On the performance of on-line algorithms for partition problems* 

ULRICH FAIGLE,1 WALTER KERN 1 a n d GYÖRGY TÚRÁN 2 , 3 

1 Faculty of Applied Mathematics, University of Twente NL-7500 AE Enschede, 
The Netherlands 

2Department of Mathematics, Statistics and Computer Science 
University of Illinois at Chicago, Chicago, IL, 60680, USA 

and 
3Automata Theory Research Group of the Hungarian Academy of Sciences, Szeged, 6720, Hungary. 

Abstract 

We consider the performance of the greedy algorithm and of on-line algorithms 
for partition problems in combinatorial optimization. After surveying known results 
we give bounds for matroid and graph partitioning, and discuss the power of non-
adaptive adversaries for proving lower bounds. 

1. Introduction 

There are several combinatorial optimization problems where a set is to be parti-, 
tioned into a minimal number of classes having certain properties. Examples of such 
problems are graph coloring and bin packing. A general heuristic to find an approxi-
mate solution is the greedy (or first-fit) method where the partition is constructed by 
processing the elements in some order and placing each element into the first class it 
fits into.' 

A partitioning algorithm is on-line if it considers the elements one after the 
other and puts each element into a class at the time when it is considered according to 
some rule, based on information about elements processed earlier (thus the greedy 
method is a special case). The main feature of an on-line algorithm is that the deci-
sion made about an element cannot be modified later on. An on-line algorithm in 
general does not have to be polynomial time computable or even computable.. 

There are several interesting results about the performance of on-line algorithms 
for various partition problems. After giving a general problem formulation in Sec-
tion 2. we survey these results in Section 3. 

* Supported by Hungarian Academy of Sciences. (OTKA Nr. 1135) 
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In Section 4. we consider the matroid partitioning problem and the special cases 
of graphic matroids and graphs. There are polynomial time algorithms solving this 
problem (Edmonds [6], see also Lawler [18]), but these algorithms are not on-line. 
We show that the performance ratio of the greedy algorithm on n element matroids 
is 0(log n) and that the performance ratio of every on-line matroid partitioning algo-
rithm is fl(log «/log log n). We also show that bounded performance is not possible 
even in the special case when we want to partition a graph into forests. 

All known lower bound proofs for on-line algorithms are based on the construc-
tion of an adversary which plays against the algorithm by providing the new elements 
of the input so that the algorithm is forced to produce more classes than necessary. 
In many cases the adversary satisfies a condition called non-adaptiveness. In Section 
5. we consider examples comparing the power of non-adaptive adversaries and general 
ones for lower bound proofs. 

Section 6. contains some further remarks and open problems. 

2. Partition problems, definitions 

First we give a list of partition problems discussed later on. For definitions not 
given here see Bollobás [2], Lawler [18], Lovász [22], Welsh [30]. 

MATROID PARTITIONING: given a matroid M=(E, 3?), partition the 
ground set E into a minimal number of independent subsets. 

GRAPHIC MATROID PARTITIONING: the same as above for a graphic 
matroid M. 

(As the complexity of the algorithms is not taken into consideration we may 
assume that the matroids are presented by listing their independent subsets.) 

GRAPH PARTITIONING: given a graph G=(V,E), partition E into a 
minimal number of forests. 

GRAPH COLORING: given a graph G=(V, E), partition V into a minimal 
number of independent subsets. 

CHAIN DECOMPOSITION OF ORDERED SETS: given an ordered set 
P=(V, < ) , partition V into a minimal number of chains. 

GRAPH EDGE COLORING: given a graph G=(V, E), partition E into a 
minimal number of matchings. 

BIN PACKING: given A = {aly ..., a„} ( 0 < a ; S l ) , partition A into a minimal 
number of . sets each having sum s i . 

GRAPH BIN PACKING: given a fixed "pattern" graph G0=(V0, E0) and a 
graph G=(V, E), partition E into a minimal number of sets each being a subgraph 
of G„. 

A common framework for considering these problems can be described using 
independence systems. 

An independence system is a pair I=(E, where E is the ground set and 
&<g0>{E) is a set of subsets of E such that if F£ & and F'QF then OF. An 
independence system is ordered if in addition there is a linear ordering < on E. All 
ordered independence systems considered here are finite, we write I„=(E„, á*,), 
E„={e1, ..., en}, . . .<e„. An ordered independence system Ik=(Ek,&r

k) is an 
initial segment of /„ (denoted by / f c < / J if t á n , Ek — , ..., ek) and for every 
FcgEk it holds that F£^k iff F<iFn. 
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An independent partition of I=(E, ¿F) is an ordered partition (F1, ..., F,) 
of £ such that 37 (1Sz '^/ ) . Let p ( / ) m i n {/: there is an independent partition 
(Fly ...,F,) of E). 

Let J be a class of finite independence systems. The PARTITION PROBLEM 
FOR is the following problem: given I=(E, find an independent partition 
of E into p{I) sets. 

Assume that furthermore J consists of ordered independence systems and is 
closed under taking initial segments (i.e. /£</, / ' < / imply /'€</)• 

An on-line algorithm A for the partition problem f o r i s a function defined on J 
such that for every I=(E, ¡F) £ £ A (I) is an ordered independent partition o f / a n d 
if / ' = ( £ " , J t h e n A{I')=A{I)\E' i.e. A(I') is the restriction of A(I) to E\ or 
equivalently, A(I) is an extension of A(I'). Thus A provides an approximate solution 
to the partition problem for J . 

For the greedy algorithm Agr, Agr(I„) is obtained from y4gr(/„_i) by placing e„ 
into the first subset in the ordered partition Agt(l„_which remains independent if e„ 
is added to it, and opening a new set for en if there is no such set. 

For an on-line algorithm A let M(/) | be the number of subsets in the partition 
A(I) and let (with some abuse of notation) 

A(n):= max {\A(I)\/p(I): J = (E, SF)<Lf, \E\ = n} 

be the performance ratio function of A. A has bounded performance with bounding 
func t ion / : N - N if for every /€</ it holds that \A(I)\^f(p(I)). (Thus if Ain)-^ 
by considering inputs with p(I) bounded by some constant then A does not have 
bounded performance.) The performance ratio of A is 

rA:= inf{r s 1: s rp(I) for every l^J} 

and the asymptotic performance ratio of A is 

r°X\= inf{r s i : 3c: A(l) ^ rp{I)+c for every 

(thus rA, r j eRUi««}) . Let 
rj/:= inf {rA: A is an on-line algorithm for the partition problem for J}, 
rj inf {rj : A is an on-line algorithm for the partition problem for ./}. 

For matroid partitioning (resp. graphic matroid partitioning) the class J could 
be the class of all finite ordered matroids (resp. finite ordered graphic matroids) on a 
fixed countable set. For graph partitioning the class J could consist of all finite 
(edge-)ordered subgraphs of a countable complete graph. For bin packing the class J 
could consist of all finite ordered subsets of countably many copies of (0, 1]. 

There is a difference between the first two and the last two examples. For matroid 
partitioning and graphic matroid partitioning we may assume that if / ! < / 2 < . . . < / „ , 
/ j < /2 < . . . < and Ij=Ij (1 =«) then the partitions determined by A are 
also isomorphic, in particular \A(I^\ = \A(I'n)\. Thisholds because J is homogeneous, 
i.e. every isomorphism of two inputs I and / ' can be extended to an automorphism 
of J . With other words on-line algorithms for these problems can only use informa-
tion about independence. 

For the other two problems there is additional information provided by specify? 



110 U. Faigle, W. Kern and Gy. Túrán 

ing edges resp. numbers: 2 edges with or without a common endpoint are isomorphic 
as independence systems but none of their isomorphisms can be extended to an auto-
morphism of J ; resp. there is no automorphism of £ for bin packing mapping a 
copy of 1/2 to a copy of 1/3. 

3. A survey of results about on-line algorithms 

a) Graph coloring 
Johnson [12] observed that AgT(n)=Q(n) even for bipartite graphs. Szegedy [25] 

showed that for every on-line graph coloring algorithm A(n) = Q(n/(log«)2). Lo-
vász, Saks and Trotter [23] gave an on-line algorithm with A(n) = 0(nlk>g* n)=o(n). 
For trees Bean [1] and Gyárfás and Lehel [11] noted that j4(n) = fi(log n) for every 
on-line algorithm. Kierstead and Trotter [16] gave an on-line algorithm coloring inter-
val graphs with r ~ = 3 and showed that this is best possible. Kierstead [15] showed 
that for this problem Gyárfás and Lehel [11] showed that r j g r < ° ° for 
several special classes of graphs such as split graphs, complements of bipartite graphs 
and complements of chordal graphs. 

b) Chain decomposition of ordered sets 
Kierstead [14] proved that there is an on-line algorithm for this problem which 

has bounded performance with bounding function (5"—1)/4. This appears to be the 
first result on on-line algorithms formulated in the language of recursion theoretic 
combinatorics. For the greedy algorithm AgT(n) — Q(n). Szemerédi [26] showed 
that for every on-line algorithm A and every w there are orders P with width w 
and \A(P)\ = Q(wi) thus for every on-line algorithm A r¿=°An order is an 
interval order if it is isomorphic to a set of intervals {J15 ..., /„} on a line with 
Ji^Jj iff/,- is completely to the left of J¡. Kierstead and Trotter [16] gave an on-line 
algorithm for interval orders with r°X = 3 and showed that this is optimal. (We note 
that the difference between the chain decomposition problem and the graph coloring 
problem for incomparability graphs is that comparable pairs form an ordered resp. 
an unordered pair.) An order is series-parallel if it can be obtained from orders on 
one element by repeated application of series composition ("place order P1 above 
P2") and parallel composition ("let all elements of Px be incomparable to all elements 
of P2"). If the orders are restricted to be series-parallel then the greedy algorithm 
always gives an optimal solution [7]. 

c) Graph edge coloring 
If A is the maximal degree of the graph G=(V, E) then clearly &A colors 

are needed for an edge coloring of G (by Vizing's theorem [29] (see also Bollobás [2]) 
A + 1 colors are always sufficient). It is easy to see that the greedy algorithm never 
uses more than 2 A — 1 colors. On the other hand every on-line algorithm A uses 
S 2 A — 1 colors for some forest with maximal degree A (here the minimal number of 
colors needed is easily seen to be A). TO see this, consider first a forest of (A — 1) • 

(2 ^ 
1 + 1 S T A R S WITH A — 1 edges. Then A either uses S 2 A - 1 colors or 

there will be A stars colored with the same set of A — 1 colors. Add A new edges by 
connecting a new root to the root of these stars to get a forest with maximal degree A. 
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Every new edge must be colored with a color not occurring in the stars selected and 
thus s 2 a —1 colors will be used. 

d) Bin packing 
Johnson, Demers, Ullman, Garey and Graham [13] showed that r ~ r = 1.7. 

Yao [31] gave an on-line algorithm with rA = 5/3. The on-line algorithm of Lee and 
Lee [19] has r j ^ 1.692 and it also satisfies the additional requirement of having only 
a bounded number of active bins at any time. Brown [4] and Liang [20] showed that 
r ^ s 1.536 for every on-line algorithm. This result is generalized by Galambos [8] 
to the case when items are from (0, a] (a< 1). We note that there are polynomial time 
algorithms Ae (which are not on-line) with rA< l + e for every s^O (de la Vega 
and Lueker [28]). On-line algorithms for dual bin packing (where the aim is to fill as 
many bins as possible) are considered by Csirik and Totik [5]. For the graph bin pack-
ing problem it is shown in [27] that for complete bipartite graphs G0=KkJ, k^l, 
r^ s r=@(max (k, l/k)), thus for fixed / the greedy algorithm has the best performance 
guarantee when k~]/L 

We note that there are results about on-line algorithms for problems of a dif-
ferent nature than the ones discussed here (see Borodin, Linial and Saks [3], Manasse, 
McGeoch and Sleator [24] and the further references in these papers). 

4. Matroid partitioning 

First we consider the performance of the greedy algorithm. The upper bound 
holds for matroids in general, the lower bound already holds in the special case of 
graphs. 

Theorem 1. a) For the matroid partitioning problem Agr(n)sln (n). 
b) For the graph partitioning problem ^4gr(n)s[log nj/2. 

Proof, a) Let I„=(E„, J^) be a matroid and (F l s ..., F,) be the partition formed 
by the greedy algorithm. Then f j is a maximal independent set in E„\(F1 U... 
...UFi_1). As /„ restricted to í „ \ ( / i U . . . U i j - O is again a matroid, F( is also a 
maximum independent set in E^F-lU... Ufl-x). Thus (Ft, ..., F,) is a greedy 
solution of the set covering problem for /„. The performance ratio of the greedy algo-
rithm for set covering is S in («) (Johnson [12], Lovász [21]). 

b) For 1 let Gk:=(Vk,Ek), where 

k-1 
Vk = H , ..., Ek = U Pit 

¡=o 

Pi = fe, %+i)2'): j = 0 , . . . , 2k~1~i— 1}. 

For later use let v0 be the initial vertex of Gk and v2«-i be the terminal vertex of Gk. 
Order the edges in Gk in such a way that edges in Pt precede edges in Pi+1 ( O s / s 
^k—2). Then the greedy algorithm gives a different color to each P, (we refer to 
this partition of Ek as the greedy partition), hence for this ordering |Agr(Gk)\ =k. 
Note that 1^1 =2k—1. On the other hand coloring the edges of Pt alternatingly red 
and blue (for every i) gives a partition of Ek into 2 trees and so p(Gk)=2. • 
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Theorem 1. can be generalized to the case when J consists of independence 
systems that are the intersections of k matroids (thus for every I=(E, 
there are k matroids I'=(E, J5"*) ( l s / s f c ) such that for every FQE, iff 

OF1. for every i = l , ..., k). 

Corollary 2. Assume that for every K J , I is the intersection of k matroids. 
Then for the partitioning problem for J it holds that A g I (n)^k • In («). 

Proof. Korte and Hausmann [17] showed that if I=(E, is the intersection of 
k matroids, F is a maximal independent set in 2F and F' is a maximum independent 
set in SF then |F | s ( l jk) • |F ' | . Thus the partition given by the greedy algorithm is a 
"l/£-greedy" solution to the set covering problem on I in the sense that we always 
choose a set which has size s i \k times the size of a largest set in the system. The 
proof of Johnson [12] and Lovász [21] can be applied to this case to show that the 
number of sets used in the covering is ^ k • In («) times the optimal. • 

Now we turn to the discussion of on-line algorithms. 

Theorem 3. For every on-line matroid partitioning algorithm A A(n) = 
=í2(lög w/log log n). 

Proof. For Gi constructed in the proof of Theorem 1. let s • Gt be the graph ob-
tained by taking a sequence of s copies of and identifying the terminal vertex of 
each copy (except the last one) with the initial vertex of the next one. 

For a graph G let M(G) be the cycle matroid of G. 
Then M(sGi) is the direct sum of s copies of M(G i). (The direct sum of matroids 

on disjoint ground sets is obtained by taking the union of the ground sets as the new 
ground set and letting a subset be independent if its intersection with each ground set 
is independent.) If M is a matroid isomorphic to M(sG{) then it has a unique decom-
position into s matroids isomorphic to M(Gi), called the components of M. An or-
dered partition of M into independent subsets is called the greedy partition if on 
each component it corresponds to the greedy partition of (?,. 

The graph 2Gt is a subgraph of Gi+1 and therefore a matroid M^M(Gt) © M(Gt) 
(where © denotes the direct sum) can be extended to a matroid isomorphic to 
M(Gi+1) by adding one more element to it. 

Now let g( 1):=1, ^ ( fc ) := (A: - l ) (2^ (A: - l ) - l ) + l for £ > 1 and f(k):= 
: = 2 s i i ) f o r ¿ S i . 

isk 
We show that the algorithm A uses Sfc colors to partition some 2-partitionable 

matroid on f(k) elements. 
Using an adversary strategy we prove that giving g(k)+...+g(k—i) elements 

(O^i^k—2) to A it can be forced either to use sA: colors or to form the greedy 
partition on a submatroid isomorphic to M(2g(k—i—\)Gi+i). 

For i = 0 , giving g(k) independent elements to A it either uses Sfc colors or it 
assigns the same color to 2g(k— 1) elements and M(GX) consists of a single element. 

For the induction step assume that after adding g(k)+...+g(k—i+1) ele-
ments to A it formed the greedy partition on a submatroid Mi^M(2g(k—i)Gl). 
Pair the components of M{ and add g(k—i) elements (one to each pair) to extend 
each pair to a matroid isomorphic to M(Gi+1). As A cannot use any of the / colors 
used for Mi it either uses sfc—/ colors different from these or it assigns the same 
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color to 2g(k—i— 1) new elements. The union of these components is M i + 1 = 
= M(2g(k—i— 1)(J,+I) and A formed the greedy partition on Mi+1. 

For i=k—2 we get M f c _ 1 ^M(2G k _ 1 ) such that A formed the greedy partition 
on M t _ 1 . Adding a new element to obtain Mk=M(Gk) forces A to use the kth 

color. 
As the components of the matroid M formed by all elements given to A are 

isomorphic to M(G,) for some i, M is 2-partitionable. 
Finally the bound follows from noting that g(k)s2kg(k—l), thus g(k)s 

2k -k\. Hence f(k)^2k -k-k\ and so fc = i2(log n/log log n). • 

Corollary 4. For every on-line algorithm A partitioning graphic matroids 
A (n)=Q (log njlog log n). 

Proof. All matroids constructed in the previous proof are graphic. • 

We remark that the proof of Theorem 3. does not work for graphs. This is related 
to the remarks made following the definitions in Section 2. For graphs the adversary 
is in a more difficult situation as e.g. 2 independent elements in the first phase of the 
construction can be completed to a triangle by adding a new element if we are dealing 
with general (or graphic) matroids but in graphs this can only be done if the 2 edges 
have a common endpoint. 

Let g - ( l ) := l , < ?(A:) :=(2A:) ( t- 1 ) ( 2^- 1 )- 1>+ 1- l for and f(k):= £ g(i) 
isk 

for k ^ l . 

Theorem 5. Every on-line graph partitioning algorithm A forms at least k classes 
for some 2-partitionable graph having f ( k ) edges. 

Proof. We describe an adversary strategy by induction on k, for k=1 the state-
ment is obvious. First we prove a lemma. 

Lemma 6. For every I (2slsk), by building a forest on #( / ) + 1 vertices A 
can be forced either to use at least / colors or to form a monochromatic path P of 
length 2g(l—l). 

Proof. A forest is rooted if each of its components has a distinguished vertex 
called the root. An /-edge colored rooted forest with j roots is an (/,_/)-forest if there 
are numbers tlt . . . , / , with /! + . . . + / , = / such that for every root v and every r 
(1 S r S / ) v is the endpoint of a monochromatic path of color r and length tr. 

We show that for every i=0, ..., (l—\)(2g(l— 1)—1) + 1 by building a forest A 
can be forced either to use s / colors or to form an (/, (#(/)+l)/(2/) ' )-forest . 

For / = 0 the empty graph on g(l) + 1 vertices is a (0, g(l) + l)-forest. Assume we 
constructed an ( i - l , (g(/) + l)/(2/)( ,-1>)-forest. Add (^( / ) + l)/(2(2/)('-1>) new 
edges forming a matching of the roots. Then A either uses s / colors to color these 
edges or s ( g ( / ) + l)/(2/)' new edges get the same color. In this case select an end-
point of each of these edges and let them be the new roots. Deleting the components. 
without a selected root we get an (/, (g(l)+l)/(2/)')-forest and the whole graph built is 
a forest. 

For / = ( / - l ) ( 2 ^ ( / — 1 ) - 1 ) + 1 we get an (/, l)-forest, i.e. a tree with ?! + ... 
. . .+ / ,= ( / -= l ) ( 2 g ( / - l ) - l ) + l . Thus f o r s o m e r ( l s r s i / ) it holds that tr^2g(l-\). 
The path P required can be chosen to be the corresponding path of color r. • 
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Now we describe the adversary strategy Sk. 

1) Force A either to use ^k colors or to form a monochromatic path P of 
length 2g{k— 1) by building a forest on a set Vk of g(k) +1 vertices. (This can be done 
by Lemma 6.) 

2) Apply iSfe_! to the set Vk_1 consisting of every second vertex of P (thus 

Note that after completing phase 1) Vk_1 is an independent set of vertices and 
in later stages the color of the path P cannot be used as otherwise a monochromatic 
cycle is created. Thus by induction Sk indeed forces A to use s f c colors and the 
construction implies that the graph G built by the adversary has ^ f ( k ) edges. 

Finally we claim that G is 2-partitionable. This follows by induction. Assume 
that the graph G' built on is 2-partitionable and let (Fx, F2) be a partition of its 
edges into 2 forests. Then adding the edges of P to F1 and F2 alternatingly and adding 
the remaining edges of G arbitrarily we get a 2-partition of G. • 

By definition, Theorem 5. implies the following. 

Corollary 7. For every on-line graph partitioning algorithm A A(n)-+ °° and A 
does not have bounded performance. • 

5. Non-adaptive adversaries 

Several lower bounds for on-line algorithms are based on the existence of ins-
tances / such that for every independent partition of J there is an initial segment 
of / for which the restriction of the partition is far from being optimal. This shows 
that no on-line algorithm can have good performance on every initial segment of I. 

Thus the adversary providing I is non-adaptive in the sense that for every algo-
rithm A it provides a counterexample which depends on A in a very restricted way 
only through the choice of the initial segment of I. With other words the only liberty 
the adversary has is to decide when to stop giving new elements. 

All known lower bounds for bin packing are non-adaptive. On the other hand 
the lower bounds for graph coloring and chain decomposition (e.g. [25], [14], [16]), 
and the lower bounds of the preceding section are adaptive, i.e. when the adversary 
determines the next extension of the current instance it takes into consideration the 
previous decisions made by the algorithm. 

For /„=(£„, let / ! < . . . < / „ be the initial segments o f / „ , Pn=(F1, ..., F,) 
be an independent partition of E„ and Pk=P„\Ek (l^k^n) be the restriction of P„ 
to Ek. With these notations let 

£ : = i n f { r : 3cV/ne./3PnVP*: \Pk\ ^ rp(Ik)+c) 

(jjr could be defined analogously). By the argument above s y ^ r y . We consider the 
question of how good a lower bound is sy to ry. 

For graph coloring restricted to forests clearly sy = l and as mentioned in 
Section 3. = (as A (n) = Q (log ?i) for every on-line algorithm). We mention 
another example where both sy and ry are finite but different. 
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As it is mentioned in Section 3., Kierstead and Trotter [16] showed that r y = 3 
for the chain decomposition problem restricted to interval orders. 

Proposition 8. For the chain decomposition problem restricted to interval 
orders 

Proof. The bound follows directly from the proof of Kierstead and Trotter [16]. 
Let P be an interval order of width w on the ground set V = {t^, ..., t>„}. Then V 
is partitioned into w sets ..., Lw by considering the elements ..., v„ one after 
the other and putting each element into the first set so that the conditions 
w i d t h ^ l Z ^ U . . . U L t ) = i remain satisfied for every i^w such that L^Q- It is 
shown in [16] that then width(L ;)^2 for every / s w . The proposition follows by 
considering a chain decomposition of P which consists of the chain Lx and 
chains covering L ; for 2 s i ^ w . • 

Now we give an example where s y = r y . 
Let RESTRICTED BIN PACKING be the bin packing problem restricted to 

items with sizes (1/2)—e and ( l /2)+e (for some fixed e-== 1/6). We denote (1/2)—s 
by a and (1/2)+e by b. 

Theorem 9. For the restricted bin packing problem j J = r ^ = 4 / 3 . 

Proof. The lower bound is noted e.g. in Liang [20]. Consider / ' < / 
where I contains n a-i terns followed by n ¿-items and / ' is the first half of /. If an 
algorithm A fills k bins with 2 a-items each after processing / ' then 

\A{I')\lp{n = 2-2(k/n), \A(I)\/p(I) s i + (k/n) 
which implies the bound for sy. 

To prove the upper bound we describe an on-line algorithm with r J = 4 / 3 . 
We distinguish 4 types of bins: a-bins, ¿»-bins, aa-bins and «¿-bins, corres-

ponding to the items contained in the bin. The algorithm will also pair some bins, 
the possible bin-pair types will be (aa, a), (aa, b), and (aa, ab). If a bin is not paired 
with any other bin it is called unpaired. 

A new element is processed according to the following rules: 
a) for a new element a*: 

if there is a ¿-bin B then put a* into B 
else if there is an unpaired a-bin B then put a* into B 

else if there is an unpaired aa-bin B then put a* 
into a new bin B' and pair B and B' 

else open a new bin B for a*; 
b) for a new element b*:. 

if there is an a-bin B then put b* into B 
else if there is an unpaired aa-bin B then put b* into a 

new bin B' and pair B and B' 
else open a new bin B for b*. 

If there are several bins satisfying a condition then the choice is arbitrary, for 
definiteness let us always choose the first one. 

It is easy to see that all possible bin-pair types that may be formed by the algo-
rithm are indeed (aa, a), (aa, b) and (aa, ab). 
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Let us assume thatafter processing a list / the algorithm created cx unpaired a-
bins, c2 unpaireb ¿-dins, c3 impaired aa-bins, c4 unpaired «¿-bins, c5 (aa, a) bin-pairs, 
cg (aa, b) bin-pairs and c7 (aa, ab) bin-pairs. 

By definition 

= c1 + c 2 +c 3 +c 4 + 2c5 + 2c6 + 2c7, (1) 

as the number of ¿-items is a lower bound to /?(/) 

p(I) S c 2 + c 4 + c 6 + c 7 , (2) 

and as the half of the number of items is a lower bound to p ( I ) 

p(I) s (1 /2 ) C l +(1 /2 )c 2 +c 3 +Q + (3/2)c5+(3/2)ce+2c7 . (3) 

Subtracting (2) resp. (3) from (1) we get 

M ( / ) | - p O O s C l + c 3 + 2 c 5 + c 6 + c 7 , (4) 

\A(I)\ - p ( I ) S (l/2)c1 + (l/2)c2 + (l/2)c5 + (l/2)c6 . (5) 

We note that there cannot be both an a-bin and a ¿-bin in the packing as in this 
case the item arriving later would not be put into a separate bin. 

Lemma 10. cj + c 3 + c 6 s 1. 

Proof. We consider 6 different cases. 
1) There cannot be 2 unpaired a-bins as otherwise the a-item arriving later would 

not have to be put in a separate bin. 
2) There cannot be an unpaired a-bin B and an unpaired aa-bin B'. Indeed, if 

the a-item in B comes last, then B could be paired with B', if one of the a-items in B' 
comes last then before the arrival of this element we get a contradiction to 1). 

3) There cannot be 2 unpaired aa-bins as otherwise before the arrival of the last 
item we get a contradiction to 2). 

4) There cannot be an unpaired a-bin and an (aa, b) bin-pair by the remark 
preceding the lemma. 

5) There cannot be an unpaired aa-bin and an (aa, b) bin-pair. Again by the 
remark preceding the lemma the item coming last must be the ¿-item. But then before 
the arrival of this item v/e get a contradiction to 3). 

6) There cannot be 2 (aa, b) bin-pairs. Again, the last item arriving must be a b-
item. But then before the arrival of this item we get a contradiction to 5). • 

In the proof of the theorem we distinguish 2 cases. 

Case 1. c2=0. 

Then using Lemma 10., (5) and c5s(2/3)/>(/) following from (3) we get 

\A(I)\-p(I) S (1/2)cs+(1/2) s ( l /3) /? ( / )+( l /2) hencc 
\A(I)| S (4/3)/>(/)+(l/2). 
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Case 2. c 2 >0. 
From the remark preceding Lemma 10. in this case c 5 = 0 and so we get from 

(4) and (5) using Lemma 10. 

\A(I)\-p(I)S i + c7 (6) 

\A(I)\-p{l) s (1/2)+(1/2)c2. (7) 

Adding (7) twice and (6) and using c2+c7^p(I) (cf. (2)) 

3 ( M ( / ) | - / ? ( / ) ) S 2 + C 2 + C 7 2+p(I) 
and so 

| ^ ( / ) | == ( 4 / 3 ) P ( / ) + ( 2 / 3 ) . • 

6. Some remarks and problems 

1. (Greedy algorithm vs. on-line algorithms.) 
The chain decomposition problem for series-parallel orders is an example where 

the greedy algorithm gives an optimal solution. For the edge coloring problem =2 
and no on-line algorithm can have better performance. Thus for these problems on-
line algorithms cannot perform better than the greedy algorithm. 

On-line algorithms give a large improvement for the general chain decomposition 
problem (where AgI(n)=Q(n) and there is an on-line algorithm with bounded per-
formance), for the graph coloring problem (where Agr(n) = Q(n) and there is 
an on-line algorithm with A(n) = o(n)) and for the bin packing problem (where 
rX r =1.7 and there is an on-line algorithm with r J=5 /3 ) . 

There appears to be no example known where the greedy algorithm is not opti-
mal but there is an on-line algorithm giving an optimal solution. Also for none of the 
examples considered does it hold that r j r = ° ° but there is an on-line algorithm A 
with /-j<oo. 

2. (Bounds for particular problems.) 
It would be interesting to improve the bounds for the performance of on-line 

algorithms for matroid and graph partitioning, in particular to decide if on-line 
algorithms can perform better than the greedy algorithm for partitioning graphs. 

Concerning adversaries it appears to be not known if adaptive adversaries can 
lead to stronger lower bounds for the bin packing problem. Another question is the 
following: is = for the graph coloring problem? (Coloring optimally with i 
new colors those initial segments for which the chromatic number is i gives a coloring 
which uses s / ( / + l ) / 2 colors for every initial segment of chromatic number /.) 

A related partition problem which does not fit into the class of problems dis-
cussed here, but which would be interesting to study in the context of on-line algo-
rithms is the. m-machine scheduling problem: given n tasks with execution times 
tlt ..., t„ find a schedule for m machines to minimize finishing time (thus here the 
number of the classes is fixed and we want to minimize the maximal weight). The 
greedy algorithm has performance ratio 2—(1 ¡m) (Graham [10]). No on-line algorithm 
appears to be known which improves this for any m. The lists (1, 1, 2) and (1, 1, 1, 
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3, 3, 3, 6) show that no improvement is possible for m=2 and m=3. The list (1 m 
times, 1 + / 2 / Í ! times, 2(1 + / 2 ) once) shows that 1 +(1 / / 2 ) is a lower bound for the 
performance ratio of on-line algorithms for every m s 4 . 

Acknowledgement. We thank Collette Coullard, János Csirik, Gábor Galambos 
and László Lovász for their valuable remarks. 
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