Determination of the structure of the class $\mathscr{A}(R, S)$ of $(0,1)$-matrices

A. Kuba
Kalmár Laboratory of Cybernetics József Attila University
Szeged, Árpád tér 2. H-6720 Hungury

Summary

The class $\mathscr{A}(R, S)$ contains the (0,1)-matrices having row and column sum vectors R and S, respectively. The problem of the structure of $\mathscr{A}(R, S)$ is considered, that is the problem of determining the sets of invariant l's, invariant 0 's and variant positions. Two methods are given, whereby the structure can be determined if an element of $\mathscr{A}(R, S)$ or the vectors R and S are known. Furthermore, a new proof is given to Ryser's theorem constructing the variant and invariant positions of the class \mathscr{A}.

1. Definitions

Let A be a $(0,1)$-matrix of size n by m. The sum of row i of A is denoted by r_{i} :

$$
r_{i}=\sum_{j=1}^{m} a_{i j} \quad(i=1,2, \ldots, n)
$$

and the sum of column j of A is denoted by s_{j} :

$$
s_{j}=\sum_{i=1}^{n} a_{i j} \quad(j=1,2, \ldots, m)
$$

We call $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ the row sum vector and $S=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ the column sum vector of $A . R$ and S are also called the projections of A. There is an extensive literature on different questions concerning binary matrices and their projections (for surveis see e.g. [9] and [1]). Let $\mathscr{A}(R, S)$ denote the class of $n \times m(0,1)$-matrices with
row sum vector R and column sum vector S. Gale [2] and Ryser [6] have proved that the class $\mathscr{A}(R, S)$ is non-empty if and only if

$$
\sum_{j=1}^{k} \bar{s}_{j} \geqq \sum_{j=1}^{k} s_{j}
$$

for all $k=1,2, \ldots, m$, where $\bar{S}=\left(\bar{s}_{1}, \bar{s}_{2}, \ldots, \bar{s}_{m}\right)$ is the column sum vector of binary matrix \bar{A} defined as

$$
\bar{A}=\left(\begin{array}{c}
\delta_{1} \\
\delta_{2} \\
\vdots \\
\delta_{n}
\end{array}\right),
$$

where

$$
\delta_{i}=(1,1, \ldots, 1,0,0, \ldots, 0)
$$

with r_{i} number of 1 's and ($m-r_{i}$) number of 0 's ($0 \leqq r_{i} \leqq m$). There is exactly one matrix in $\mathscr{A}(R, S)$ if and only if

$$
\sum_{j=1}^{k} \bar{s}_{j}=\sum_{j=1}^{k} s_{j}
$$

for all $k=1,2, \ldots, m$ (see e.g. [10]).
Consider the matrices

$$
A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

An interchange is a transformation of the elements of A that changes a minor of type A_{1} into type A_{2} or vica versa and leaves all other elements of A unaltered. We say that the four elements of the minor form a switching component in A. The interchange theorem of Ryser [6] says that if A and A^{\prime} are in $\mathscr{A}(R, S)$, then A is transformable into A^{\prime} by a finite sequence of interchanges.

Let $A \in \mathscr{A}(R, S) . A$ is ambiguous (with respect to R and S) if there is a different $A^{\prime} \in \mathscr{A}(R, S)\left(A^{\prime} \neq A\right)$. In the other case, A is unambiguous. It is easy to prove (see e.g. [2]) that A is ambiguous if and only if it has a switching component.

An element $a_{i j}=1$ (or 0) of A is called an invariant 1 (or 0) if there is no sequence of interchanges which, when applied to A, replaces it by 0 (or 1). Otherwise, $a_{i j}$ is a variant element of A. By the interchange theorem, if $a_{i j}$ is an invariant 1 (or 0) of $A \in \mathscr{A}(R, S)$, then $a_{i j}^{\prime}$ is also an invariant 1 (or 0) of every $A^{\prime} \in \mathscr{A}(R, S)$. In this sense, we can speak about the invariant 1 , invariant 0 and variant (i, j) positions of the class $\mathscr{A}(R, S)$.

Without loss of generality, we can suppose that
and

$$
\begin{align*}
& r_{1} \geqq r_{2} \geqq \ldots \geqq r_{n}>0 \tag{1.1}\\
& s_{1} \geqq s_{2} \geqq \ldots \geqq s_{m}>0, \tag{1.2}
\end{align*}
$$

because this situation can be reached by excluding zero rows and zero columns and by permuting rows and columns so that the row-sums and the column-sums are non-
increasing. A non-empty class $\mathscr{A}(R, S)$ with R and S satisfying (1.1) and (1.2) is said to be normalized.

In the determining of the invariant positions of the normalized class $\mathscr{A}(R, S)$, a useful device is the structure matrix [8]. Let A be in the normalized class $\mathscr{A}(R, S)$ and let us write

$$
A=\left(\begin{array}{ll}
W & X \\
Y & Z
\end{array}\right)
$$

where W is of size $e \times f(0 \leqq e \leqq n, 0 \leqq f \leqq m)$. Let Q be a $(0,1)$-matrix, and let $N_{0}(Q)$ denote the number of 0 's in Q, let $N_{1}(Q)$ denote the number of 1 's in Q. Now let

$$
t_{e f}=N_{\mathbf{0}}(W)+N_{\mathbf{1}}(Z)
$$

$e=0,1, \ldots, n ; f=0,1, \ldots, m$. We call the $(n+1) \times(m+1)$ matrix

$$
T=\left(t_{e f}\right)
$$

the structure matrix of $\mathscr{A}(R, S)$. It is easy to see that

$$
t_{e f}=e \cdot f+\sum_{i=e+1}^{n} r_{i}-\sum_{j=1}^{f} s_{j} .
$$

Ryser proved the following
Theorem 1.1 [7]. The normalized class $\mathscr{A}(R, S)$ is with invariant l's if and only if the matrices in $\mathscr{A}(R, S)$ are of the form

$$
A=\left(\begin{array}{ll}
J & * \\
* & O
\end{array}\right)
$$

Here O is a zero matrix and J is a matrix of l's of size $e \times f(0<e \leqq n, 0<f \leqq m)$ specified by

$$
t_{e f}=0
$$

(The integers e and f are not necessarily unique, but they are determined by R and S and are independent of the particular choice of A in \mathscr{A}.)

By Theorem 1.1, one can construct the structure of class $\mathscr{A}(R, S)$ with the help of matrix T. In this paper, another way is given to construct the invariant and variant positions of class \mathscr{A}. First, the structure of the variant elements of the (not necessarily normalized) class \mathscr{A} is given. From the determination of the positions of the variant elements, it is also possible to give the whole structure of \mathscr{A}. In Section 3, the case of the normalized class is discussed applying the idea of double-projection used earlier in characterization problems of binary matrices [5]. A direct and demonstrative relation between the structure of \mathscr{A} and the vectors R and S is given in Section 4, from which the mode of construction of the structure of \mathscr{A} follows.

2. The structure of the class $\mathscr{A}(R, S)$

First, consider the variant elements of $\mathscr{A}(R, S)$.
Lemma 2.1. Let A be a matrix in $\mathscr{A}(R, S)$, and let

$$
\begin{aligned}
& a_{i i_{1}}, a_{i j_{2}}, \ldots, a_{i j_{k}}, \\
& a_{i_{1} j}, a_{i_{2} j}, \ldots, a_{i, j}
\end{aligned}
$$

be variant elements of A such that $1 \leqq i_{1}, i_{2}, \ldots, i_{l} \leqq n, 1 \leqq j_{1}, j_{2}, \ldots, j_{k} \leqq m$, $i \in\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}, j \in\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$, where $1<l \leqq n$ and $1<k \leqq m$. Then, $a_{i^{\prime} j^{\prime}}$ is variant for all $\left(i^{\prime}, j^{\prime}\right) \in\left\{i_{1}, i_{2}, \ldots, i_{l}\right\} \times\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ (see Fig. $1 / a$).

Figure 1. The variant elements induced by the variant elements according to a) Lemma 2.1, b) Lemma 2.2 and c) Lemma 2.3

Proof. The assumptions of Lemma 2.1 include that $a_{i j}$ is a variant element of A. Let $\left(i^{\prime}, j^{\prime}\right)\left(i^{\prime} \neq i, j^{\prime} \neq j\right)$ be an otherwise arbitrary element of $\left\{i_{1}, i_{2}, \ldots, i_{l}\right\} \times$ $\times\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$. If

$$
\begin{gather*}
a_{i^{\prime} j^{\prime}}=a_{i j}, \tag{2.1}\\
a_{i^{\prime} j^{\prime}}=1-a_{i^{\prime} j}, \tag{2.2}\\
a_{i^{\prime} j^{\prime}}=1-a_{i j^{\prime}}, \tag{2.3}
\end{gather*}
$$

then $a_{i j}, a_{i^{\prime} j}, a_{i j^{\prime}}$ and $a_{i^{\prime} j^{\prime}}$ form a switching component in A, and hence $a_{i^{\prime} j^{\prime}}$ is variant. If any of the equalities (2.1)-(2.3) is not satisfied, then, since $a_{i j}, a_{i^{\prime} j}$ and $a_{i j^{\prime}}$ are
variant, it is possible to alter any of them (occasionally all of them) by a suitable interchange in order to get a switching component at $\left\{i^{\prime}, i^{\prime}\right\} \times\left\{j, j^{\prime}\right\}$. That is, $\left(i^{\prime}, j^{\prime}\right)$ is a variant position in $\mathscr{A}(R, S)$. A simple consequence of Lemma 2.1 is the following

Lemma 2.2. Let A be a matrix in $\mathscr{A}(R, S)$, and let

$$
\begin{gathered}
J=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}, \quad J^{\prime}=\left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{l}^{\prime}\right\} \\
J \cap J^{\prime} \neq \emptyset
\end{gathered}
$$

such that $a_{i_{1} j_{1}}, a_{i_{1} j_{2}}, \ldots, a_{i_{1} j_{k}}$ and $a_{i_{2} i_{2}}, a_{i_{2} j_{2}^{\prime}}, \ldots, a_{i_{2} j_{i}^{\prime}}$ are variant. Then, $a_{i j}$ is variant for all $(i, j) \in\left\{i_{1}, i_{2}\right\} \times\left(J \cup J^{\prime}\right)$ (see Fig. $1 / b$).

Proof. By Lemma 2.1, the elements of A at $\left\{i_{1}, i_{2}\right\} \times J$ and $\left\{i_{1}, i_{2}\right\} \times J^{\prime}$ are variant.

Lemma 2.3. Let A be a matrix in $\mathscr{A}(R, S)$, and let $J=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ be the indices of variant elements in row $i(1 \leqq i \leqq n)$. If there is a row $i^{\prime}\left(i^{\prime} \neq i\right)$ such that the elements $a_{i^{\prime} j_{1}}, a_{i^{\prime} j_{2}}, \ldots, a_{i^{\prime} j_{k}}$ also include 0 and 1 , then $a_{i^{\prime} j_{1}}, a_{i^{\prime} j_{2}}, \ldots, a_{i^{\prime} j_{k}}$ are variant elements (see Fig. 1/c).

Proof. Let us suppose that $a_{i j^{\prime} j_{1}}=0$ and $a_{i^{\prime} j_{2}}=1$ (by a suitable rewriting of the indices, we can always reach such a situation). We shall construct a switching component at $\left\{i, i^{\prime}\right\} \times\left\{j_{1}, j_{2}\right\}$: If $a_{i j_{1}}=1$ and $a_{i j_{2}}=0$, then we are ready. If $a_{i j_{1}}=1$ and $a_{i j_{2}}=1$, then, since $a_{i j_{2}}$ is variant, there is a switching component whereby $a_{i j_{z}}$ will be 0 ($a_{i j_{1}}$ and $a_{i^{\prime} j_{2}}$ remain unchanged). Similarly, if $a_{i j_{1}}=0$ and $a_{i j_{2}}=0$, then there is a switching component whereby $a_{i j_{1}}$ will be 1 (in this case $a_{i j_{2}}$ and $a_{i^{\prime} J_{1}}$ remain unchanged). In the last case, if $a_{i j_{1}}=0$ and $a_{i j_{2}}=1$, then we can change $a_{i j_{1}}$ and $a_{i j_{2}}$ by at most two interchanges (without changing $a_{i^{\prime} j_{1}}$ and $a_{i^{\prime} j_{2}}$).

Theorem 2.1. The variant positions of class $\mathscr{A}(R, S)$, if there are any, are in sets $T_{1}, T_{2}, \ldots, T_{p}$ ($p=0$ is also possible) such that

$$
T_{s}=I_{s} \times J_{s}
$$

$s=1,2, \ldots, p$, where I_{s} are pairwise disjunct subsets of $\{1,2, \ldots, n\}$ and J_{s} are pairwise disjunct subsets of $\{1,2, \ldots, m\}$.

Proof. Consider the set of column indices of the variant elements in row i, denoted by J_{i}. Let
and let

$$
I_{i}=\left\{l \mid J_{l} \cap J_{i} \neq \emptyset\right\}
$$

$$
\bar{J}_{l}=\bigcup_{l \in I_{t}} J_{l}
$$

By Lemma 2.2, every position (i, j) is variant for which $(i, j) \in I_{i} \times J_{i}$. By definition, it is clear that $(i, j),\left(i^{\prime}, j^{\prime}\right) \in I_{i} \times \bar{J}_{i}$ if and only if

$$
I_{i} \times \bar{J}_{i}=I_{i^{\prime}} \times \bar{J}_{i^{\prime}}
$$

That is, by applying the procedure for all $i=1,2, \ldots, n$, we get disjoint subsets $I_{1}, I_{2}, \ldots, I_{p}$ and $J_{1}, J_{2}, \ldots, J_{p}$, and the sets

$$
T_{s}=I_{s} \times J_{s}
$$

$s=1,2, \ldots, p$, contain all of the variant positions of $\mathscr{A}(R, S)$.

3. The structure of the normalized class $\mathscr{A}(R, S)$

Henceforth, we take $\mathscr{A}(R, S)$ normalized.
Lemma 3.1. Let A be a binary matrix in the normalized class $\mathscr{A}(R, S)$, and let

$$
u_{i}=\left\{\begin{array}{lll}
\max \left\{j \mid a_{i j}=1\right\}, & \text { if } \quad a_{i j}=1 & \text { for some } j=1,2, \ldots, m \\
0, & \text { if } \quad a_{i j}=0 & \text { for all } j=1,2, \ldots, m
\end{array}\right.
$$

and

$$
z_{i}= \begin{cases}\min \left\{j \mid a_{i j}=0\right\}, & \text { if } \quad a_{i j}=0 \quad \text { for some } j=1,2, \ldots, m \\ m+1, & \text { if } a_{i j}=1 \quad \text { for all } j=1,2, \ldots, m\end{cases}
$$

for all $i=1,2, \ldots, n$. If $z_{i}<u_{i}$ for some i, then $a_{i j}$ is variant for all $j, z_{i} \leqq j \leqq u_{i}$.
Proof. If there is an $i, 1 \leqq i \leqq n$, such that $a_{i j}=0, a_{i j}=1, j \leqq j^{\prime}$, then, since $s_{j} \geqq s_{j^{\prime}}$, there is an $i^{\prime}, 1 \leqq i^{\prime} \leqq n$, such that $a_{i^{\prime} j}=1, a_{i^{\prime} j^{\prime}}=0$. That is, $a_{i j}, a_{i j^{\prime}}, a_{i^{\prime} j}$ and $a_{i^{\prime} j} j^{\prime}$ form a switching component. Therefore, all of the positions between z_{i} and u_{i} are variant.

An analogous lemma is true for the columns:
Lemma 3.2. Let A be a (0,1)-matrix in the normalized class $\mathscr{A}(R, S)$, and let

$$
v_{j}= \begin{cases}\max \left\{i \mid a_{i j}=1\right\}, & \text { if } \quad a_{i j}=1 \quad \text { for some } \quad i=1,2, \ldots, n \\ 0, & \text { if } \quad a_{i j}=0 \quad \text { for all } i=1,2, \ldots, n\end{cases}
$$

and

$$
w_{j}= \begin{cases}\min \left\{i \mid a_{i j}=0\right\}, & \text { if } \quad a_{i j}=0 \quad \text { for some } i=1,2, \ldots, n \\ n+1, & \text { if } \quad a_{i j}=1 \quad \text { for all } i=1,2, \ldots, n\end{cases}
$$

for all $j=1,2, \ldots, m$. If $w_{j}<v_{j}$ for some j, then $a_{i j}$ is variant for all $i, w_{j} \leqq i \leqq v_{j}$.
Theorem 3.1. The variant positions of the normalized class $\mathscr{A}(R, S)$ are in the sets $T_{1}, T_{2}, \ldots, T_{p}$ ($p=0$ is also possible) such that
$s=1,2, \ldots, p$, where
$I_{s}=\left\{i_{s}^{\prime}, i_{s}^{\prime}+1, \ldots, i_{s}^{\prime \prime}\right\}, \quad 1 \leqq i_{1}^{\prime}<i_{1}^{\prime \prime}<i_{2}^{\prime}<i_{2}^{\prime \prime} \ldots<i_{p}^{\prime}<i_{p}^{\prime \prime} \leqq n$,
$J_{s}=\left\{j_{s}^{\prime}, j_{s}^{\prime}+1, \ldots, j_{s}^{\prime \prime}\right\}, \quad 1 \leqq j_{p}^{\prime}<j_{p}^{\prime \prime}<j_{p-1}^{\prime}<j_{p-1}^{\prime \prime}<\ldots<j_{1}^{\prime}<j_{1}^{\prime \prime} \leqq m$.
Proof. We know that the variant elements of $\mathscr{A}(R, S)$, which are recognized by Lemmas 3.1 and 3.2, follow in rows and in columns consecutively. Following the same idea as in the Proof of Theorem 2.1, we have that the sets $T_{s}=I_{s} \times J_{s}, s=1,2, \ldots, p$, are the places of variant elements, where I_{s} and J_{s} contain the indices of consecutive
rows and columns, respectively. Furthermore, $I_{s} \cap I_{s^{\prime}}=\emptyset$ and $J_{s} \cap J_{s^{\prime}}=\emptyset$ if $s \neq s^{\prime}$. From this construction, it is clear that $\left(\left\{1,2, \ldots, i_{s}^{\prime}-1\right\} \times J_{s}\right) \cup\left(I_{s} \times\left\{1,2, \ldots, j_{s}^{\prime}-1\right\}\right)$ contains only 1 's and $\left(\left\{i_{s}^{\prime \prime}+1, i_{s}^{\prime \prime}+2, \ldots, m\right\} \times J_{s}\right) \cup\left(I_{s} \times\left\{j_{s}^{\prime \prime}+1, j_{s}^{\prime \prime}+2, \ldots, n\right\}\right)$ contains only 0 's. Since the elements of R and S are in decreasing order, $i_{r}^{\prime \prime}<i_{s}^{\prime}, 1 \leqq r$, $s \leqq p$, if and only if $j_{r}^{\prime}>j_{s}^{\prime \prime}$. That is, if $T_{1}, T_{2}, \ldots, T_{p}$ are indexed so that

$$
1 \leqq i_{1}^{\prime}<i_{1}^{\prime \prime}<i_{2}^{\prime}<i_{2}^{\prime \prime}<\ldots<i_{p}^{\prime}<i_{p}^{\prime \prime} \leqq n
$$

then

$$
1 \leqq j_{D}^{\prime}<j_{p}^{\prime \prime}<j_{p-1}^{\prime}<j_{D-1}^{\prime \prime}<\ldots<j_{1}^{\prime}<j_{1}^{\prime \prime} \leqq m
$$

It is easy to see that the set $\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \backslash \cup_{s} T_{s}$ contains only invariant positions and so $U_{s} T_{s}$ is the set of the variant positions of the normalized class $\mathscr{A}(R, S)$.

The following algorithm can be used to determine the sets of the indices of the variant elements, $I_{s}=\left\{i_{s}^{\prime}, i_{s}^{\prime}+1, \ldots, i_{s}^{\prime \prime}\right\}$ and $J_{s}=\left\{j_{s}^{\prime}, j_{s}^{\prime}+1, \ldots, j_{s}^{\prime \prime}\right\}$:

Step 1: First, the indices z_{i} and u_{i} are computed for each row i. It is clear that $z_{i} \leqq u_{i}+1 \quad(1 \leqq i \leqq n)$.

Step 2: The sequence of indices u_{i} is modified taking the rows from down to up such that if $u_{i+1}>u_{i}$ then let $u_{i}=u_{i+1}(n-1 \geqq i>1)$.

Step 3: The rows are scanned one by one from $i=1$ to $i>n$ with an initial value $s=0$. If $z_{i}>u_{i}$ then there is no variant element in the row i. In the other case, i.e. if $z_{i} \leqq u_{i}$, then there are variant elements in this row and let $s=s+1$, $i_{s}^{\prime}=i, j_{s}^{\prime}=z_{i}$ (initially) and $j_{s}^{\prime \prime}=u_{i}$. The indices j_{s}^{\prime} and $i_{s}^{\prime \prime}$ can be determined by scanning the rows further while $j_{s}^{\prime} \leqq u_{i}$ such that meanwhile if $j_{s}^{\prime}>z_{i}$ then let $j_{s}^{\prime}=z_{i}$. In the row, where $j_{s}^{\prime}>u_{i}$, let $i_{s}^{\prime \prime}=i-1$ (this condition will be satisfied at least once if we set $u_{n+1}=z_{n+1}=-1$ at the beginning of the procedure).

Let us see two examples:
Example 3.1. Let the (0,1)-matrix A be defined as

$$
a_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

$i=1,2, \ldots, n, j=1,2, \ldots, n$. In this case $u_{i}=i, z_{i}=1, i=1,2, \ldots, n$ (with the exception that $z_{1}=2$). Applying the algorithm, we get that the set T_{1} containing the indices of the variant elements is

$$
T_{1}=\{1,2, \ldots, n\} \times\{1,2, \ldots, n\}
$$

that is the whole matrix.
Example 3.2. Let A be given by Figure 2. Then

$$
\begin{gathered}
u_{1}=13, \quad z_{1}=14, \quad u_{2}=11, \quad z_{2}=12, \quad u_{3}=10, \quad z_{3}=11, \\
u_{4}=10, \quad z_{4}=11, \quad u_{5}=11, \quad z_{5}=9, \quad u_{6}=7, \quad z_{6}=8, \\
u_{7}=5, \\
z_{7}=3, \quad u_{8}=6, \quad z_{8}=4, \quad u_{9}=1, \quad z_{9}=2, \\
i_{1}^{\prime}=3, \quad i_{1}^{\prime \prime}=5, \quad j_{1}^{\prime}=9, \quad j_{1}^{\prime \prime}=11
\end{gathered}
$$

Figure 2. The structure of the normalized class $\mathscr{A}(R, S)$ of Example 3.2
and
That is,

$$
i_{2}^{\prime}=7, \quad i_{2}^{\prime \prime}=8, \quad j_{2}^{\prime}=3, \quad j_{2}^{\prime \prime}=6
$$

$$
T_{1}=\{3,4,5\} \times\{9,10,11\}, \quad T_{2}=\{7,8\} \times\{3,4,5,6\}
$$

4. Determination of the structure of class $\mathscr{A}(R, S)$ from the projections

Consider the matrices $A^{(x)}$ and $A^{(y)}$ defined by R and S as

$$
a_{i j}^{(x)}= \begin{cases}0, & \text { if } j>r_{i} \\ 1, & \text { otherwise }\end{cases}
$$

and

$$
a_{i j}^{(j)}= \begin{cases}0, & \text { if } i>s_{j} \tag{4.1}\\ 1, & \text { otherwise }\end{cases}
$$

$i=1,2, \ldots, n, j=1,2, \ldots, m$ (see [5]). The projections of $A^{(x)}$ are ($R^{(x)}, S^{(x)}$), where $R^{(x)}=R$. The projections of $A^{(y)}$ are $\left(R^{(y)}, S^{(y)}\right)$, where $S^{(y)}=S$. Similarly, the matrices $A^{(x y)}$ and $A^{(y x)}$ are defined by $S^{(x)}$ and $R^{(y)}$ as

$$
a_{i j}^{(x y)}= \begin{cases}0, & \text { if } i>s_{j}^{(x)} \\ 1, & \text { otherwise }\end{cases}
$$

$$
a_{i j}^{(y x)}= \begin{cases}0, & \text { if } j>r_{i}^{(y)} \tag{4.2}\\ 1, & \text { otherwise }\end{cases}
$$

$i=1,2, \ldots, n, j=1,2, \ldots, m$. The projections of $A^{(x y)}$ and $A^{(y x)}$ are denoted by ($R^{(x y)}, S^{(x y)}$), and ($\left.R^{(y x)}, S^{(y x)}\right)$, respectively. It is easy to see that $A^{(x y)}$ and $A^{(y x)}$ are unambiguous (they have no switching component). From the construction, it follows that $R^{(x y)}$ consists of the elements of R in decreasing order and $S^{(y x)}$ consists of the elements of S in decreasing order. That is, by constructing a (0,1)-matrix B with projections ($R^{(x y)}, S^{(y x)}$) and making a suitable permutation of its rows and columns, we get a binary matrix of $\mathscr{A}(R, S)$.

If $A^{(x y)}=A^{(y x)}$, then let $B=A^{(x y)}\left(=A^{(y x)}\right)$. As B is uniquely determined by its projections, it has no variant element, and so there is no variant element of A that can be constructed from B by suitable row and column permutations.

If $A^{(x y)} \neq A^{(y x)}$, then from matrix $A^{(x y)}$ the matrix B can be constructed by successively shifting the 1 's from the left to the right in the rows of $A^{(x))}$, similarly as in [10]:

Procedure to construct (0,1)-matrix B :
Step 1: $j:=1, B:=A^{(x y)}$.
Step 2: Consider the j th column of B. If the number of 1 's in this column is greater than $s s^{(y x)}$, then find the first row, begin from the bottom position upward, which contains a 1 in the j th column and a 0 nearest to the right. Interchange the 1 and the 0 in B. Repeat in this fashion until only $s(y x) 1$'s are left in this column.

Step 3: $j:=j+1$. If $j=m$, stop. Otherwise, go to Step 2.
The result of this Procedure is a (0,1)-matrix B having row and column projections $R^{(x y)}$ and $S^{(y x)}$, respectively.

If $A^{(x y)} \neq A^{(y x)}$, then $S^{(x) y} \neq S^{(y x)}$, but even in this case

$$
\sum_{j=1}^{k} s_{j}^{(x y)} \geqq \sum_{j=1}^{k} s_{j}^{(y x)}
$$

for all $k, 1 \leqq k \leqq m$, so that there is inequality for at least one k. Let $1 \leqq j_{p}^{\prime}<j_{p}^{\prime \prime}<$ $<j_{p-1}^{\prime}<j_{p-1}^{\prime \prime}<\ldots<j_{1}^{\prime}<j_{1}^{\prime \prime} \leqq m$ ($p \geqq 1$) be the column indices such that

$$
\begin{equation*}
\sum_{j=1}^{k} s_{j}^{(x y)}>\sum_{j=1}^{k} s_{j}^{(y x)} \tag{4.3}
\end{equation*}
$$

if $j_{s}^{\prime} \leqq k<j_{s}^{\prime \prime}$ for all $s=1,2, \ldots, p$, and

$$
\sum_{j=1}^{k} s_{j}^{(x y)}=\sum_{j=1}^{k} s_{j}^{(y x)}
$$

otherwise. It is easy to see that during the Procedure only the j th columns of B can be modified, where $j_{s}^{\prime} \leqq j \leqq j_{s}^{\prime \prime}$. It is also clear that, if $a_{i_{s}^{\prime} j_{s}}^{(x y)}=1$ was the bottom 1 in the j_{s}^{\prime} th column, then finally it will be in the $j_{s}^{\prime \prime}$ column of $B: b_{i_{j}^{\prime \prime} ;} j_{g}=0$ and $b_{i_{s}^{\prime \prime} j_{q}}=1$. Applying Lemma 3.1, we have $u_{i_{i}^{\prime \prime}}=j_{s}^{\prime \prime}$ and $z_{i_{s}^{\prime}}=j_{s}^{\prime}$. Hence, the elements of

$$
T_{s}=I_{s} \times J_{s}
$$

are invariant, where

$$
I_{s}=\left\{i_{s}^{\prime}, i_{s}^{\prime}+1, \ldots, i_{s}^{\prime \prime}\right\}
$$

and

$$
J_{s}=\left\{j_{s}^{\prime}, j_{s}^{\prime}+1, \ldots, j_{s}^{\prime \prime}\right\}
$$

During the Procedure, the column j is unaltered if $j_{s}^{\prime} \leqq j \leqq j_{s}^{\prime \prime}$ is not satisfied for any j_{s}^{\prime} and $j_{s}^{\prime \prime}, 1 \leqq s \leqq p$. These columns of B are the same as these columns of $A^{(x y)}$. Therefore, all of the variant elements of $\mathscr{A}\left(R^{(x y)}, S^{(x x)}\right)$ are in the columns j, where

$$
j_{s}^{\prime} \leqq j \leqq j_{s}^{\prime \prime}
$$

for an $s, 1 \leqq s \leqq p$. From the definition of $A^{(x))}$, it follows that

$$
w_{j:}^{a}=s_{j:}^{(x y)}+1=i_{s}^{\prime}
$$

and

$$
\begin{equation*}
v_{j,}=s_{j}^{(x y)}=i_{s}^{\prime \prime} \tag{4.4}
\end{equation*}
$$

where $w_{j ;}$ and $v_{j ;}$, are defined for the class $\mathscr{A}\left(R^{(x)}, S^{(y x)}\right)$, as in Lemma 3.2. An analogous procedure and philosophy for the rows gives that all of the variant elements of $\mathscr{A}\left(R^{(x y)}, S^{(y x)}\right)$ are in the rows i, where

$$
i_{s}^{\prime} \leqq i \leqq i_{s}^{\prime \prime}
$$

$s=1,2, \ldots, p$, where $1 \leqq i_{1}^{\prime}<i_{1}^{\prime \prime}<i_{2}^{\prime}<i_{2}^{\prime \prime}<\ldots<i_{p}^{\prime}<i_{p}^{\prime \prime} \leqq n(p \geqq 1)$ are the row indices such that

$$
\begin{equation*}
\sum_{i=1}^{k} r_{i}^{(p x)}>\sum_{i=1}^{k} r_{i}^{(x y)} \tag{4.5}
\end{equation*}
$$

if $i_{s}^{\prime} \leqq k<i_{s}^{\prime \prime}, s=1,2, \ldots, p$, and

$$
\sum_{i=1}^{k} r_{i}^{(y x)}=\sum_{i=1}^{k} r_{i}^{(x y)}
$$

otherwise. That is, from the projections $S^{(x y)}$ and $S^{(x x)}$ we can give the sets of the variant elements of $B, T_{s}, s=1,2, \ldots, p$, by (4.3) and (4.4) (or equivalently by (4.3) and (4.5)) explicitly, as they are described in Theorem 3.1.

Let π_{x} denote a permutation of $S^{(y x)}$ such that $\pi_{x}\left(S^{(y x)}\right)=S$, and let π_{y} denote a permutation of $R^{(x y)}$ such that $\pi_{y}\left(R^{(x y)}\right)=R$. Let
and

$$
\pi_{y}\left(I_{s}\right)=\left\{\pi_{y}\left(i_{s}^{\prime}\right), \pi_{y}\left(i_{s}^{\prime}+1\right), \ldots, \pi_{y}\left(i_{s}^{\prime \prime}\right)\right\}
$$

$$
\pi_{x}\left(J_{s}\right)=\left\{\pi_{x}\left(j_{s}^{\prime}\right), \pi_{x}\left(j_{s}^{\prime}+1\right), \ldots, \pi_{x}\left(j_{s}^{\prime \prime}\right)\right\}
$$

Since the sets $T_{s}=I_{s} \times J_{s}, s=1,2, \ldots, p$, contain the indices of the variant elements of $\mathscr{A}\left(R^{(x y)}, S^{(y x)}\right)$, the sets

$$
\begin{equation*}
\pi\left(T_{s}\right)=\pi_{y}\left(I_{s}\right) \times \pi_{x}\left(J_{s}\right), \tag{4.6}
\end{equation*}
$$

$s=1,2, \ldots, p$, contain the indices of the variant elements of the class $\mathscr{A}(R, S)$.
Theorem 4.1. The variant elements of the class $\mathscr{A}(R, S)$, if there are any, are in the sets $\pi\left(T_{s}\right), s=1,2, \ldots, p$ ($p=0$ is also possible), defined by (4.1)-(4.6).

Let us see two examples.
Example 4.1. Let $R=(1,1, \ldots, 1)$ and $S=(1,1, \ldots, 1)$. Then

$$
\begin{gathered}
S^{(x y)}=(n, 0,0, \ldots, 0), \quad S^{(x x)}=(1,1, \ldots, 1), \quad j_{1}^{\prime}=1, \quad j_{1}^{\prime \prime}=n, \quad i_{1}^{\prime}=1, \quad i_{1}^{\prime \prime}=1, \\
p=1, \quad I_{1}=\{1,2, \ldots, n\}, \quad J_{1}=\{1,2, \ldots, n\}, \quad \pi=(1,2, \ldots, n), \\
\pi_{y}\left(I_{1}\right)=\{1,2, \ldots, n\}, \quad \pi_{x}\left(J_{1}\right)=\{1,2, \ldots, n\}, \quad \pi\left(T_{1}\right)=\{1,2, \ldots, n\} \times\{1,2, \ldots, n\} .
\end{gathered}
$$

Example 4.2 (see Figure 3).

Figure 3. Determination of the structure of $\mathscr{A}(R, S)$ from the projections R and S, \square and \square denote the invariant 0 's and the variant positions, respectively

Consequence 4.1. The (i, j) elements, $i=1,2, \ldots, n, j=1,2, \ldots, m$, can be divided into three sets: the positions of invariant 0 's, invariant 1 's and variant elements. From the construction of $T_{1}, T_{2}, \ldots, T_{p}$ from $R^{(x y)}$ and $S^{(y x)}$, it follows that
the set of invariant 1's of the class $\mathscr{A}\left(R^{(x y)}, S^{(y x)}\right)$ is

$$
\left\{(i, j) \mid a_{i j}^{(x y)}=1\right\} \backslash \bigcup_{s=1}^{p} T_{s} ;
$$

the set of variant elements of the class $\mathscr{A}\left(R^{(x y)}, S^{(y x)}\right)$ is

$$
\bigcup_{s=1}^{p} T_{s} ;
$$

the set of invariant 0 's of the class $\mathscr{A}\left(R^{(x y)}, S^{(y x)}\right)$ is

$$
\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \backslash\left\{(i, j) \mid a_{i j}^{(x y)}=1\right\} \backslash\left(\bigcup_{s=1}^{p} T_{s}\right)
$$

Similarly, the set of invariant l's of the class $\mathscr{A}(R, S)$ is

$$
\left\{(i, j) \mid a_{i j}=1\right\} \backslash \bigcup_{s=1}^{p} \pi\left(T_{3}\right)
$$

the set of variant elements of the class $\mathscr{A}(R, S)$ is

$$
\bigcup_{s=1}^{p} \pi\left(T_{s}\right)
$$

the set of invariant 0 's of the class $\mathscr{A}(R, S)$ is

$$
\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \backslash\left\{(i, j) \mid a_{i j}=1\right\} \backslash\left(\bigcup_{s=1}^{p} \pi\left(T_{s}\right)\right),
$$

where A is an arbitrary element of the class $\mathscr{A}(R, S)$.
Consequence 4.2. From Ryser's Theorem [6], we know that if $A, A^{\prime} \in \mathscr{A}(R, S)$, then A is transformable into A^{\prime} by a finite sequence of interchanges. From the structure of $\mathscr{A}(R, S)$ given by Theorem 4.1, it is also clear that the four elements of an interchange are in one of the sets $\pi\left(T_{s}\right)$. That is, if $A, A^{\prime} \in \mathscr{A}(R, S)$, then A is transformable into A^{\prime} by a finite sequence of separate interchanges in $\pi\left(T_{1}\right), \pi\left(T_{2}\right), \ldots$ $\ldots, \pi\left(T_{p}\right)$. Let n_{s} denote the number of different binary matrices generated from an $A \in \mathscr{A}(R, S)$ by interchanges only in $\pi\left(T_{s}\right), s=1,2, \ldots, p$. The number of elements of $\mathscr{A}(R, S)$ is an interesting unsolved problem (see [4] and [11]), which can be reduced to the determination of the numbers $n_{s}, s=1,2, \ldots, p$, in the following way:

$$
|\mathscr{A}(R, S)|=\prod_{s=1}^{p} n_{s} .
$$

The author thanks Mrs. S. Silóczki and Mrs. E. Vida for the technical assistance in the preparing of the manuscript.

References

[1] R. A. Brualdi: Matrices of zeros and ones with fixed row and column sum vectors Linear Algebra and Its Applications 33, 159-231 (1980).
[2] S.-K. Chang: The reconstruction of binary patterns from their projections Comm. ACM 14, 21-25 (1971).
[3] D. Gale: A theorem on flows in networks Pacific J. Math. 7, 1073-1082 (1957).
[4] W. HonghuI: Structure and cardinality of the class $\mathscr{A}(R, S)$ of (0,1)-matrices J. Math. Res. Exposition 4, 87-93 (1984).
[5] A. Kúba: On the reconstruction of binary matrices Pubbl. Ist. Anal. Globale Apply., Serie „Problemi non ben posti ed inversi", No. 28. Firenze (1986).
[6] H. J. Ryser: Combinatorical properties of matrices of zeros and ones Canad. J. Math. 9, 371377 (1957).
[7] H. J. Ryser: The term rank of a matrix Canad. J. Math. 10, 57-65 (1958).
[8] H. J. Ryser: Traces of matrices of zeros and ones Canad. J. Math. 12, 463-476 (1960).
[9] H. J. Ryser: Matrices of zeros and ones Bull. Amer. Math. Soc 66, 442-464 (1960).
[10] Y. R. WANG: Characterization of binary patterns and their projections IEEE Trans. Computers C-24, 1032-1035 (1975).
[11] W.-D. Wer: The class $\mathscr{A}(R, S)$ of (0,1)-matrices Discrete Mathematics 39, 301-305 (1982).

