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Summary 

The class S) contains the (0, l)-matrices having row and column sum 
vectors R and S, respectively. The problem of the structure of sf(R,S) is considered, 
that is the problem of determining the sets of invariant l's, invariant 0's and variant 
positions. Two methods are given, whereby the structure can be determined if an 
element of s/(R, S) or the vectors R and S are known. Furthermore, a new proof is 
given to Ryser's theorem constructing the variant and invariant positions of the class 
j / . 

1. Definitions 

Let A be a (0, l)-matrix of size n by m. The sum of row i of A is denoted by r, : 

m 
rt= 2 au 0 = 2' •••> ")> 

J = I 

and the sum of column j of A is denoted by Sj: 

n 
S j = 2 0ij ( j — 1, 2 , . . . , tri). 

We call R=(r1,ri, ..., r„) the row sum vector and S=(s1, s2, ..., sm) the column 
sum vector of A. R and S are also called the projections of A. There is an extensive 
literature on different questions concerning binary matrices and their projections (for 
surveis see e.g. [9] and [l]). Let s4(R, S) denote the class of nXm (0, l)-matrices with' 
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row sum vector R and column sum vector S. Gale [2] and Ryser [6] have proved that 
the class st(R, S) is non-empty if and only if 

k k 
Z s j 

j=i ;=l 

for all k = l, 2, ..., m, where S=( s j , s2, •••> sm) is the column sum vector of binary 
matrix A defined as 

where 

M 
A = h 5 

A, 
S, = (1, 1, - 1,0, 0, 

with rf number of l's and (m—/•,) number of O's ( 0 g r . ^ w ) . There is exactly one 
matrix in s?(R, S) if and only if 

k k 
2 h = 2 *j j=i 

for all ¿ = 1 , 2 , . . . ,m (see e.g. [10]). 
Consider the matrices 

A, = (J i ) and A, = ( J ¿) • 

An interchange is a transformation of the elements of A that changes a minor of 
type Ay into type A2 or vica versa and leaves all other elements of A unaltered. We 
say that the four elements of the minor form a switching component in A. The inter-
change theorem of Ryser [6] says that if A and A' are in si{R, S), then A is transfor-
mable into A' by a finite sequence of interchanges. 

Let A$_si(R, S). A is ambiguous (with respect to R and S) if there is a dif-
ferent A'£ s/(R, S) (A'?±A). In the other case, A is unambiguous. It is easy to prove 
(see e.g. [2]) that A is ambiguous if and only if it has a switching component. 

An element a^ = 1 (or 0) of A is called an invariant 1 (or 0) if there is no sequ-
ence of interchanges which, when applied to A, replaces it by 0 (or 1). Otherwise, au 
is a variant element of A. By the interchange theorem, if au is an invariant 1 (or 0) 
of A£ si(R, S), then ay is also an invariant 1 (or 0) of every A'£ s/(R, S). In this 
sense, we can speak about the invariant 1, invariant 0 and variant (i,j) positions of the 
class sf(R, S). 

Without loss of generality, we can suppose that 

and 
rx S r2 rn > 0 

Si È . . . Ë Î , > 0, 

(1.1) 

(1.2) 
because this situation can be reached by excluding zero rows and zero columns and 
Hy permuting rows and columns so that the row-sums and the column-sums are non-
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increasing. A non-empty class si(R, S) with R and S satisfying (1.1) and (1.2) is said 
to be normalized. 

In the determining of the invariant positions of the normalized class si(R, S), 
a useful device is the structure matrix [8]. Let A be in the normalized class si (R, S) 
and let us write 

A = (Y Z}> 

where Wis o f size eXf (O^e^n, Osf^m). L e t Q be a (0, l ) -ma t r ix , a n d let N0(Q) 
denote the number of 0's in Q, let N^Q) denote the number of l 's in Q. Now let 

tef = *om+N1(Z) 

e=0, 1, ...,n\ / = 0 , 1, ...,m. W e call t he (n + l ) X ( w + l ) m a t r i x 

T = (te/) 

the structure matrix of si(R, S). It is easy to see that 

n I 
te/ = e-f+ 2 ri~ 2sJ-

i = e+1 j = 1 

Ryser proved the following 

Theorem 1.1 [7]. The normalized class sd{R, S) is with invariant 1 's if and only if 
the matrices in si (R, S) are of the form 

-(is)-
Here O is a zero matrix and J is a matrix of l's of size eXf (0<esn. m) 

specified by 
tef = 0. 

(The integers e and / are not necessarily unique, but they are determined by R and S 
and are independent of the particular choice of A in 

By Theorem 1.1, one can construct the structure of class s4 (R, S) with the help 
of matrix T. In this paper, another way is given to construct the invariant and variant 
positions of class s i . First, the structure of the variant elements of the (not necessarily 
normalized) class s i is given. From the determination of the positions of the variant 
elements, it is also possible to give the whole structure of si. In Section 3, the case of 
the normalized class is discussed applying the idea of double-projection used earlier 
in characterization problems of binary matrices [5]. A direct and demonstrative 
relation between the structure of si and the vectors R and S is given in Section 4, 
from which the mode of construction of the structure of si follows. 
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2. The structure of the class st(R, S) 

First, consider the variant elements of sf(R, S). 

Lemma 2.1. Let A be a matrix in s/(R, S), and let 

aih' aih> •••» 

aiii' ahJ' • • • >
 aiii-> 

be variant elements of yi such that l^ij, i2, ..., 
0*1» • ••» 'ih j t l / i ' J s , • - 'Ah where l < / s « and Then, a r J . is 

variant for all ( i " , / ) 6 { / l f / „ '/}X{A (see Fig. 1/a). 

V £ v 

V £ 
V V V v V V V 

V 

v v V V 

V v V V 4 

V V V V V V V 

£ 0 1 H 
fifr/i/v /. The variant elements a induced by the variant elements 0 according to 

a) Lemma 2.1, h) Lemma 2.2 and c) Lemma 2.3 

Proof. The assumptions of Lemma 2.1 include that au is a variant element of A. 
Let ( / ' , / ) O'V/, 7'Vy) be an otherwise arbitrary element of ft, /2, ..., i,}x 
X-UiJz, —,jk}- if 

(2.1) 

(2.2) 
(2.3) 

then atJ, aVj, air and aVj. form a switching component in A, and hence arj. is variant. 
If any of the equalities (2.1)—(2.3) is not satisfied, then, since atJ, arj and atj. are 

avr = 1 -at.j, 

arr = 1 -air, 
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variant, it is possible to alter any of them (occasionally all of them) by a suitable 
interchange in order to get a switching component at {/', i'}X{j,j'}. That is, 
( / ' , / ) is a variant position in si(R, S). A simple consequence of Lemma 2.1 is the 
following 

Lemma 2.2. Let A be a matrix in si (R , 5 ) , and let 

J = {/i> Jii •••>jk}> 3' = { j i ' j L • ••>.//}> 

JC\J' 0, 

such that ahh,ailh, ...,ahJk and a-^,..., aij; are variant. Then, atJ is 
variant for all ( i j ) 6 {/ls /2}x(/U7') (see Fig. 1 ¡b). 

Proof. By Lemma 2.1, the elements of A at {¡i, i2}XJ and {/j, / 2 }X/ ' are 
variant. 

Lemma 2.3. Let A be a matrix in s/(R, S), and let J={h,j2, ...,jk) be the 
indices of variant elements in row / ( l ^ ' S n ) . If there is a row i' (i'^i) such that 
the elements a i V l , ai,Ji, ..., arjk also include 0 and 1, then aVh, aVji, ..., aVJk are 
variant elements (see Fig. 1/c). 

Proof. Let us suppose that arh=0 and ai,h = 1 (by a suitable rewriting of the 
indices, we can always reach such a situation). We shall construct a switching com-
ponent at {/, ;"}X {j\,j2}'- If a th = 1 and a l h = 0 , then we are ready. If a i j i = 1 
and aih — \, then, since aih is variant, there is a switching component whereby alJt 
will be 0 (alh and remain unchanged). Similarly, if alh=0 and aijt=0, then 
there is a switching component whereby aih will be 1 (in this case aih and aVn remain 
unchanged). In the last case, if a O l = 0 and aijl = 1, then we can change aih and 
aiJt by at most two interchanges (without changing aVh and arjl). 

Theorem 2.1. The variant positions of class si (R, S), if there are any, are in 
sets r l s T2,..., Tp (p=0 is also possible) such that 

Ts = ISXJ„ 

s=l, 2, ...,p, where Is are pairwise disjunct subsets of {1,2, . . . ,«} and Js are pair-
wise disjunct subsets of (1,2, ..., m}. 

Proof. Consider the set of column indices of the variant elements in row i, denoted 
by /¡. Let 

/, = {/|/,n7, * 0}, 
and let _ • . • -

J, = U Ji-

By Lemma 2.2, every position (i,j) is variant for which (/,./ ')£/¡xJf. By definition, 
it is clear that (i,j), ( / ' , / ) ( : / ¡ X J j if and only if 

IiXJ, = IVXJV. 
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That is, by applying the procedure for all / = 1,2, . . . ,«, we get disjoint subsets 
/ l 5 / 2 , ..., Ip and Jx, J 2 , ..., Jp, and the sets 

Ts = ISXJS, 

i = l , 2, ...,p, contain all of the variant positions of si{R, S). 

3. The structure of the normalized class si(R, S) 

Henceforth, we take si(R, S) normalized. 

Lemma 3.1. Let A be a binary matrix in the normalized class si (R, S), and let 

{max {jWij = 1}, if atj = 1 for some j — 1, 2, ..., m 

0, if atJ= 0 for all / = 1 , 2 , . . . ,m and 

{min {/|fly = 0}, if fly = 0 for some j=\,2,...,m 

m +1 , if fly = 1 for all y ' = l , 2 , ..., m 
for all / = 1 , 2 , ..., n. If z^Ui for some /, then a^ is variant for all /', z^j^Ui. 

Proof. If there is an i, l s / s « , such that fly=0, a y = l, / = / ' , then, since 
Sj^Sy, there is an / ' , l s / ' ^ w , such that avj = l, aVy=0. That is, ay , air, aVJ 
and arJ> form a switching component. Therefore, all of the positions between z ; 
and ut are variant. 

An analogous lemma is true for the columns: 

Lemma 3.2. Let A be a (0, l)-matrix in the normalized class si (R, S), and let 

{max {/|fly = 1}, if fly = 1 for some i = 1, 2, ..., n 
0, if fly = 0 f o r a l l i=\,2,...,n 

and 

{min {/|fly = 0}, if fly = 0 for some i = 1,2, ..., n 
n +1, if fly = 1 for all / = 1 , 2 , . . . , « 

for all 7 = 1, 2 , . . . , m. If Wj<Vj for some /', then fly is variant for all /, W j ^ i ^ V j . 

Theorem 3.1. The variant positions of the normalized class si(R, S) are in the 
sets 7 i , r 2 , ..., Tp (p = 0 is also possible) such that 

Ts = I s X J s y 
5 = 1 , 2 , ...,/>, where 

is = №,is+1,..Q, i / r < 4 < / 2 • / ; ^ « , 

= { ; ; , n , i s y ; < r ; < < y ; _ i ^• • • <a' < x ^ m. 

Proof We know that the variant elements of ^ ( R , S), which are recognized by 
Lemmas 3.1 and 3.2, follow in rows and in columns consecutively.Following the same 
idea as in the Proof of Theorem 2.1, we have that the sets TS=ISXJS, j = 1 , 2, ...,p, 
are the places of variant elements, where /s and Js contain the indices of consecutive 
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rows and columns, respectively. Furthermore, /SO/S .=0 and Jsf]Js.=Q if s^s'. 
From this construction, it is clear that ({1, 2,,..., i's — 1}XJS)U(ISX {1,2, ...,7/ — 1}) 
contains only l 's and ({/s" + l, £ + 2 , . . . , m}X/ s)U(/ sX{7,f+ 1, ¿ " + 2 , ..., w}) con-
tains only 0's. Since the elements of R and S are in decreasing order, 1 S r , 
s ^ p , if and only if j r^ j ' s - That is, if T1, T2, ...,TP are indexed so that 

It is easy to see that the set {1, 2, . . . ,«} X {1, 2 , . . . , m}\ U STS contains only invariant 
positions and so U s r s is the set of the variant positions of the normalized class 
ji(R, S). 

The following algorithm can be used to determine the sets of the indices of the 
variant elements, Is={i's, i's + 1,. . . , i's"} and Js= {j's,j's +1, ...,ys"}: 

Step 1: First, the indices zf and Wj are computed for each row i. It is clear that 
Z ^ M j + l (1 Si^n). 

Step 2: The sequence of indices is modified taking the rows from down to up 
such that if M1+1>M,- then let M,=M,+I (n — l s / > l ) . 

Step 3: The rows are scanned one by one from / = 1 to /=»« with an initial 
value J=0. If z ts-u t then there is no variant element in the row /. In the other 
case, i.e. if z t s u t , theii there are variant elements in this row and let S=J + 1, 
i's=i, j's—Zi (initially) and j'i =u t . The indices j's and i'J can be determined by scan-
ning the rows further while _// ̂  ut such that meanwhile if j ' s >z i then let j ' t=Zi. 
In the row, where let i'^—i—l (this condition will be satisfied at least once 
if we set w„+i—zn+1 = —1 at the beginning of the procedure). 

Let us see two examples: 

Example 3.1. Let the (0, l)-matrix A be defined as 

/ = 1 ,2 , . . . ,« , 7 = 1 , 2 , . . . , « . In this case «¡=z, z , = l , i = l ,2 , ...,n (with the 
exception that z1=2). Applying the algorithm, we get that the set 7i containing the 
indices of the variant elements is 

then 
1 % < i'2 < ii < i'P < ^ n, 

•1, if i=j 
.0, if / 7 

7; = {1,2, ..., n}X{l, 2, ..., n}, 

that is the whole matrix. 

Example 3.2. Let A be given by Figure 2. Then 

ux = 13, zx = 14, w2 = 11, z2 = 12, M3 = 10, z3 = 11, 

«4 = 10, z4 = 11, w 6 = l l , z5 = 9, m6 = 7, ze = 8, 

«7 = 5, z7 = 3, M8 = 6, z8 = 4, «9 = 1, Zg = 2, 

i'l = 3, /T = 5, 7'i = 9, jx = 1 1 
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11 
10 
10 
9 

1 1 1 1 1 
71 1 1 1 0 0 

p 0 0 
g 0 0 

a & i 0 0 
0 0 0 0 0 0 

4 1 1 m p T O p i O p 0 0 o 0 o 
I M 1 0 1 0 1 ö l o j o l o I o I o f o I o I o I o I 

9 8 7 7 7 7 6 5 4 4 3 1 1 

and 

That is, 

Figure 2. The structure of the normalized 
class Jtf(R, S) of Example 3.2 

i'% = 7, i'i = 8, j 2 ' = 3 , j? = 6. 

71 = {3, 4, 5}x{9, 10, 11}, T2 = {7, 8}x{3 ,4 , 5, 6}, 

4. Determination of the structure of class S) from the projections 

Consider the matrices and A(y> defined by R and S as 

fO, if y > 

and 

fU, 
a.(?) = I , J l l , 

fO. 
» H i , 

otherwise, 

0, if / > Sj; 
otherwise, 

(4.1) 

/ = 1 , 2, ...,n, j= 1, 2, ..., m (see [5]). The projections of A(x) are (R(x>, S(x>), where 
R(x)=R. The projections of A(y) are (RM, SM), where S(y)=S. Similarly, the 
matrices A(xy) and A(yx) are defined by S(x) and R(y) as 

fO, if / : 

and 

fU, 
affy) = i 

" 11, otherwise, 

** = 11, 

0, if j 
otherwise 

(4.2) 

/ = 1 , 2 , y'= 1, 2, ..., m. The projections of A(xy) and A(yx) are denoted by 
(R(xy), S(xy)), and (R'yx), S(yx)), respectively. It is easy to see that A(xy) and A(yx) 

are unambiguous (they have no switching component). From the construction, it 
follows that R(xy> consists of the elements of R in decreasing order and S(yx) consists 
of the elements of S in decreasing order. That is, by constructing a (0, l)-matrix B 
with projections (R(xy\ S{yx)) and making a suitable permutation of its rows and 
columns, we get a binary matrix of stf(R, S). 
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If A(xy)=A(yx), then let B=A(xy)(=A(yx)). As B is uniquely determined by its 
projections, it has no variant element, and so there is no variant element of A that 
can be constructed from B by suitable row and column permutations. 

If A(xy) A(yx), then from matrix A(xy) the matrix B can be constructed by suc-
cessively shifting the l 's from the left to the right in the rows of A(xy\ similarly as in 
[10]: 

Procedure to construct (0, l)-matrix B: 

Step 1: j:= 1, B:=A<**K 
Step 2: Consider they'th column of B. If the number of l 's in this column is 

greater than sjyx) , then find the first row, begin from the bottom position upward, 
which contains a 1 in the y'th column and a 0 nearest to the right. Interchange the 1 
and the 0 in B. Repeat in this fashion until only s(jyx) l 's are left in this column. 

Step 3: j:=j+l. If j—m, stop. Otherwise, go to Step 2. 

The result of this Procedure is a (0, l)-matrix B having row and column projec-
tions R(xy) and S(yx), respectively. 

If A(xy)^A(yx), then S(xy)^S(yx\ but even in this case 

2 *(jxy) ^ 2 $ x ) 

j=i J = I 

for all k, l g f c g m , so that there is inequality for at least one k. Let < 
« = / p _ x ^ j p ( p = 1) be the column indices such that 

> 2 s ? * (4.3) 
i=i J=i 

if for all j = 1 , 2, ...,p, and 

= 2 s ( / x ) 

i j=I 

otherwise. It is easy to see that during the Procedure only they'th columns of B can be 
modified, where It is also clear that, if a = 1 was the bottom 1 in the 
j's th column, then finally it will be in the y's" column of B: £>,«y=0 and bi»j»= 1. 
Applying Lemma 3.1, we have =j's' and z,» = j ' s . Hence, the elements of 

Ts = I,XJ, 
are invariant, where 

/ . = { « , < + 1, - . £ } 
and 

During the Procedure, the column j is unaltered if j ^ j s j i ' is not satisfied for 
any j'„ a n d 1 ^s^p. These columns of B are the same as these columns of A(xyK 
Therefore, all of the variant elements of si (R(xy\ Slyx)) are in the columns j, where 
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for an s, 1 Ss^p. From the definition of A(xy\ it follows that 

W j : = sfS>+\ = / ; 

and ' ' (4.4) 
(xy) .// 

v j : = sk = 

where w,» and t>,» are defined for the class S(yx)), as in Lemma 3.2. An 'f Jm 
analogous procedure and philosophy for the rows gives that all of the variant elements 
of s/(R(xy\ Siyx)) are in the rows i, where 

i s / s C , 

s=\,2,...,p, where ip=\) are the row indices 
such that 

2 rp x ) > 2 *\xy) (4-5) ;=i ¡=i 

if J=1, 2, ...,/?, and 

2 r[yx) = 2 rixy) 

¿=1 • i=i 
otherwise. That is, from the projections S(xy) and 5,(yjc) we can give the sets of the 
variant elements of B, Ts, s=\,2, ...,p, by (4.3) and (4.4) (or equivalently by (4.3) 
and (4.5)) explicitly, as they are described in Theorem 3.1. 

Let 7tx denote a permutation of S^yx) such that Kx(S^yx))=S, and let ny denote a 
permutation of R(xy) such that ny(R<xy))=R. Let 

ny(Q = KO'D, + « , (£)} 
and 

= K U ' ) , nAj!)}. 

Since the sets T,=ISXJ„ s=l, 2, ...,p, contain the indices of the variant elements 
of . a f ( R l x y \ S(yx)), the sets 

n(Ts) = ny(I,)XKx(J,), (4.6) 

s= 1,2, ...,/>, contain the indices of the variant elements of the class si(R, S). 

Theorem 4.1. The variant elements of the class s/(R, S), if there are any, are in 
the sets n(Ts), s=l, 2, ...,/> (p=0 is also possible), defined by (4.1)—(4.6). 

Let us see two examples. 

Example 4.1. Let R=( 1 ,1 , . . . , 1) and S = ( l , 1, ..., 1). Then 

S^ = (n, 0 , 0 , . . . , 0 ) , Siyx) = (1, 1, ..., 1), Ji = 1, X = n, /i = l, i'i = 1, 

p = 1, A = {1,2, ..., «}, / , = {1, 2 , . . . , n}, Ji = (1, 2, ..., n), 

Hy(Ii) = {1, 2, ..., n), n ^ J J = {1, 2, ..., «}, 7i(T,) = {1, 2, ..., H}X{1, 2, ..., «}. 

Example 4.2 (see Figure 3). 
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>(xl M S ) 
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— — 

i 1 H i 
1 

1 1 I i 
- j 1 1 i 1 - j f j _ MM , 

7 4 7 9 8 5 7 7 6 1 3 4 ) 
I 

S(y)-
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T 
1 

A(yJ 

Figure 3. Determination of the structure of s?(R, S) from the projections R and S, • and 0 denote 
the invariant 0's and the variant positions, respectively 

Consequence 4.1. The ( i j ) elements, / = 1 , 2 , . . . , n, j—\, 2, ..., m, can be 
divided into three sets: the positions of invariant 0's, invariant l 's and variant ele-
ments. From the construction of Tx, T2,..., Tp from R(xy) and S( j ,J°, it follows that 

the set of invariant l 's of the class st(Rixy\ S(yx)) is 

{ ( i j M j x y ) = 1 } \ U Ts; 
S = 1 

the set of variant elements of the class sf(R<-xy), S(yx)) is 

U Z -, 
s=1 

t he set o f inva r i an t 0 ' s o f t h e class ssf(R<xy\ S(yx)) is 

{1, 2, ..., n } x { l , 2, ..., m}\{(i,j)\a^ = 1 } \ ( U Ts). 
S = 1 
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Similarly, the set of invariant l 's of the class s/(R, S) is 

{('> J)\aij = 1 } \ U n(T3); s=1 
the set of variant elements of the class s/(R, S) is 

U <Tsy, 5 — 1 
the set of invariant 0's of the class sf(R, S) is 

{1, 2, ..., и}х{1 ,2 , ..., m}\{(i,j)\au = 1 } \ ( U n(Ts)), 
5=1 

where A is an arbitrary element of the class s4(R, S). 

Consequence 4.2. From Ryser's Theorem [6], we know that if A, A% S), 
then A is transformable into A' by a finite sequence of interchanges. From the struc-
ture of sf{R, S) given by Theorem 4.1, it is also clear that the four elements of an 
interchange are in one of the sets n(Ts). That is, if A, A'£ s2(R, S), then A is trans-
formable into A' by a finite sequence of separate interchanges in я(7j) , u(T^), ... 
..., я(Гр). Let ns denote the number of different binary matrices generated from an 
A£jrf(R,S) by interchanges only in tc(Ts), s=l, 2, ...,p. The number of elements 
of sf(R,S) is an interesting unsolved problem (see [4] and [11]), which can be reduced 
to the determination of the numbers ns, 5=1 ,2 , . . . , / » , in the following way: 

5 = 1 

The author thanks Mrs. S. Siloczki and Mrs. E. Vida for the technical assistance 
in the preparing of the manuscript. 
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