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We investigate the fully initial version of context-free grammars added with 
various control devices: regular control, matrices, programming, random context, 
Indian parallelism and ordering, each of them with or without A-rules and (when 
appropriate) appearance checking. It is shown that the fully initial feature decreases 
the generative power of programmed, random context ¿-free grammars with or 
without appearance checking, and of ordered and Indian parallel ones. In all remain-
ing cases the generative capacity is not modified. On the other hand, regulated rew-
riting increases the generative capacity of fully initial context-free grammars. 

1. Definitions and notations 

The fully initial (fi, for short) variant of context-free grammars was defined by 
S. Horváth and investigated in [2], [3]. Such a grammar is a usual context-free gram-
mar (cfg, for short) having no distinguished start symbol. The language generated in 
this way by a grammar G=(VN,VT,P) is L(G)={x£Vf\A^> x for some A£VN}. 
(As usual, VN is the nonterminal vocabulary, VT is the terminal vocabulary and P is 
the set of rewriting rules; V* denotes the free monoid generated by V under the ope-
ration of concatenation and X is the null element.) Inclusion and strict inclusion are 
denoted by £ and c , respectively. 

Similar to regulated rewriting for context-free grammars [1], [4], we consider 
here the languages generated by fi regular control, matrix, programmed, random 
context, Indian parallel and ordered cfg's. We give only informal definitions and 
refer to [1], [4] for details. 

Given a grammar G as above, Lab (P) denotes the set of labels of rules in G 
(each rule has a distinct label). 
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A fi regular control (fic, for short) grammar G=(VS, VT, P, K, F) consists of 
a fi cfg (V/f, VT, P), a regular control language K over Lab (P) and a set F of labels. 
We write y in G if there exists a string pLp2...p„£K, ^ ¡ i Lab (P), such that 
A=x0=> *!...=> xn=y, and for each i we have either Xi_x=> Xi or x¡_j=Xi, 

PI Pn Pi 
the rule p{ is not applicable to and p^F. 

A fi matrix (fim, for short) grammar G=(VN,VT, P, M, F) consists of a cfg 
(^N>f/r> a finite set M of matrices and a finite set F of occurrences of produc-
tions in matrices of M. A matrix is a sequence m=(A1—u1, ...,An-*un), « s i , of 
productions in P. We write x => y for a matrix m as above if there are x±=x, x2, ... 

m 
..., xn=y such that either xj=xj+1, the rule r}\ Aj—Uj is in Fand it is not appli-
cable to X: or X: => X:+1. rJ 

In a programmed (fip, for short) grammar G=(VN, VT, P) the rules are of the 
form (b: A-*-u, S(b), F(b)) , where b is the label of the production, S(b) and F(b) 
are sets of labels referred to as the success and the failure field. If A-*u is appli-
cable to a string x, then, after applying it, we continue the derivation with a rule 
having the label in S(b); if A-»u is not applicable to x, then we pass to a rule with 
its label in F(b) (the string x remains unchanged). 

A fi random context (fire, for short) grammar G=(VN,VT, P) has the rules of 
the form (A—u, Q, R), where Q, R are subsets of VN, referred to as permitting and 
forbidding sets of symbols, respectively. Such a rule is applicable to a string x iff 
x contains all nonterminals of Q and contains no nonterminal in R. 

A fi Indian parallel (flip, for short) grammar is a cfg grammar in which each rule 
A—w is used in a derivation u=>v for rewriting all occurrences o[A in w, thus obtain-
ing v. 

A fi ordered (fio, for short) grammar (G, > ) consists of a fi cfg G and a partial 
order > on P. A rule A—u is applicable to a string x iff no rule B—v is applicable 
to x and B->-v>A-+u. 

We denote by F I „ FlCac,x, FIM f l C ,„ F I P ^ , FIRCac>A, F I I P „ and FIO* the 
families of languages generated by fi, fic, fim, fip, fire, flip and fio grammars, res-
pectively. The corresponding families generated in the usual mode are denoted by 
Qc,a> PaCjA, RCaCiA, IP^, Ox, respectively. When the appearance checking 
feature is not present, that is when F=& for fic and fim, F(b)=0 for fip and R=& 
for fire grammars, we erase the subscript ac; when no A-rules are allowed we erase 
also the subscript X. As usual, the families of recursively enumerable, context sensiti-
ve, context-free and regular languages are denoted by i?0, SPlt Z£2, respectively. 

Two languages are identified if they differ by at most the empty string. 

2. The generative capacity of fully initial regulated grammars 

Lemma 1. FlCac X = C„CiX, FIC, = FlCac=Cac, F I C = C . 

Proof. Let G=(Vn. Vt, S, P, K, F) be a regular control grammar. We consider 
the fic grammar G'=(VN, VT, P, K', F), where K'=KC\T-Lab (P)*, 7 being the 
set of labels of rules of the form u in P. Clearly, L(G)=L(G') and G' is of the 
same type as G. 
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Conversely, for a fic grammar G=(VN,VT, P, K, F) we consider the regular 
control grammar VT, S, P', K', F), where S is a new nonterminal, 
P' =P\J {S*A\A£Vn}, K'=I-K and I is the set of labels of rules S^A, A£VN. 
Obviously, L(G)=L(G'). 

Lemma 2. FIMac>A = Moc>A, FIMA = MA, FIMflC = M0C, FIM = M. 

Proof. Let G=(Vn,Vt, P, M, F) be a fim grammar. We construct the grammar 
G'=(VNU{S},VT,S,P,M', F), where S is a new symbol and M'=M\J{{S^A)\ 
A£Vn}. Clearly, L(G)=L(G'), hence we have the inclusions Q. 

Conversely, let LQV* be a matrix language in a family M^p, a=ac or it is 
empty, [>=?. or it is empty. We write 

L = U { f l R ( L ) . U { * € L | | * | ^ l } 
aiV 

(da(L) is the left derivative of L with respect to a). Each language da(L) is a matrix 
language of the same type as L; let Ga=(VN,a, V, Sa, Pa, Ma, Fa) be a matrix 
grammar for each. Without loss of generality we may suppose that the vocabularies 
VN,a are pairwise disjoint and that each Ma contains matrices m=(r1, ..., r„) with at 
least one occurrence of productions not in Fa (otherwise we remove m and the corres-
ponding occurrences of rules from Ma and Fa, respectively, and we introduce all 
matrices mi=(r1, ..., r„), 1 sisn, containing the same rules as m but with the rule 
occurring on the position i not in Fa). 

A fim grammar generating L is G'=(V^, V, P', M', F'), where 

Vt = U (*5r..U{[a]})U{S}, S is a new symbol, 
a£V 

P' = U (PaV{S-*[a]Sa, [a] - [à], [a] - a})U{S - x\x€L, \x\ S 1}, 

and M' is constructed as follows: 
a) (S-+ x), x£L, S1 , is in M', 
b) for each aÇV we introduce in M' the matrices 

b.2) ([a] - [a], rx, ..., rn), for (rx, ..., r„)£Ma, 

b-3) ([a] - a, rx, ..., r„), for (r}, ..., r„)£Ma. 

Finally, F'= U Fa. 
a£ V 

It is easy to see that in each derivation of a string x£L, |* |>1, all sentential 
forms are of the form [a]w, moreover, no derivation can start from a symbol dif-
ferent from S (remember that for all a£ V, each matrix in Ma contains a rule not in 
Fa). In conclusion, L(G')=L, hence M a i iQFIM a >p, a,/? as above. 

Lemma 3. FIPac> ,=Pac>A , F I P , = P „ FIPo egP f l C , F I P ^ P . 

Proof. Let G=(Vn,Vt, P) be a fip grammar and consider the programmed 
grammar G'=(VN(J {S},VT, S, P'), where S is a new symbol and P'=PU{(rA: 
S-»A, Lab (P), 0)\A£Vn}. We have L(G)=L{G'), hence F l P ^ g P ^ , a=ac 
or it is empty, or it is empty. 
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Conversely, let G=(VN,VT, S, P) be a programmed grammar. We construct 
the fip grammar G'=(V£,VT,P), where 

V£=VnU{X, Y,N}, X, Y, N are new symbols, and P' contains the next rules: 

a) (s: X SY, S(s), 0), i i L a b ( P ) , S ( j ) = { / | ( / : S — w, S(i), F(ij)tP), 

b) (r: A - uN, S(r) U {/}, F(r)), / $ L a b ( P ) and 

(r: A - u, S(R), F(r))£P, 

c) ( / : Y X, {/„}, 0), 

d) ( f N : N-* A, {/„}, 0), M Lab (P). 

It is easy to see that the symbol N cannot be erased without erasing first symbol Y. 
Therefore, no rule in group b) can be successfully used without starting the deriva-
tion by the rule of type a). In consequence, L(G)—L(G'), hence Pa A g F I P a A, 
where a is as above. 

Lemma 4. FIRC o c , A =RC a c , A , F I R C ^ R Q , F I R C a c i « o c , F I R C Q R C . 

Proof. Given a fire grammar G=(VN, VT, P), we construct the random context 
grammar G'=(VNU {5}, VT, S, P'), where S is a new symbol and P' =PU { ( S - A 
0, ®)\A£Vn}. We have L(G)=L(G'), hence F I R Q ^ R C ^ , a=ac or it is empty, 
/}=A or it is empty. 

Conversely, for a random context grammar G—(VN,VT,S,P), we construct 
the fire grammar G' =(VN\J {X, Y},VT, P'), where X, Y are new symbols and P' 
contains the following rules: 

a) (X - SY, 0, 0), 

b) (Y - A, 0, 0), 

c) (A - u, QU{Y}, R), for (A - u, Q, R)£P. 

Obviously, L(G)=L(G'), which completes the proof. 

Lemma 5. — F l O x ^ 9 . 

Proof. Let us consider the regular language L = {ab"a\n SO} and suppose that L 
is generated by the fio grammar (G, > ) , G=(VN, {a, b}, P). Define / c=max {|w| 
\A-~uÇ_P) and consider a derivation A=u0=>u1=>... =>up=abka in (G, >), AÇ.VN. 
As \abka\>k, we have Let i be the greatest index such that ut=u[Bu" and 
u't => A, A and B => abka in (G, > ) . It follows that B=>uCv=> abka, abka— 
=xyz, x, C => y, z and y^X. Clearly, y^abka, hence ydL(G, >) 
and y is a proper subword of abka, contradiction. 

Corollary. F I O ^ c O * , and F I O c O . 

Lemma 6. ¿ f 3 - ( F I P a c U F I R C J ? i 0 . 

Proof. Let us consider the language L={ab"a\n^0} as above and suppose that 
L is generated by a fip (fire) grammar G=(VN, VT,P) without A-rales. Let k = 
= m a x {\u\\A—u£P} and take x—abkaÇ.L(G). There exists a derivation A =>Xj =>•... 
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...=>x„=abla, ÀÇVN. The lastly used rule is 2?—u, with u=ab', or u=bqa ,OT 
u—b", 0 S t , q<k, isssk. It follows that u£L(G), a contradiction. 

Corollary, (i) ¿ ? 2 - ( F I P « U F I R C o c ) ^ 0 , (ii) ' F I P « C P „ , FIPCZP, F I R C a c c 
c R C a c , F I R C c R C . 

Lemma 7. Let L be a language over a vocabulary V and let c be a symbol not 
in V. a) If L€Pac (L£P), then L{c}UFU {c}6FIPac (FIP, respectively), b) If 
L£RC a c ( ¿€RC) , then L{c}U{c}6 FIRCa c (FIRC, respectively). 

Proof, a) For a programmed A-free grammar G=(VN, V, S, P) generating !,, 
we construct the fip grammar G'=(V^, VU{c},P') with V^ = VNU {a'{a£V}U 
U {X, F} where X, Y are new symbols, and with P' containing the next produc-
tions : ' . 

a) (s: X—SY, S(s), 0), with si Lab (P) , 5 ( i ) = { i | ( i : S—-u, S(i), F(i))£P} 
b) (r: A-*u', 5 ( r )U{/} , F(r)), for each (r: A^u, S(r), F(r))eP; f$Lab(P) 

and u' is obtained from u by replacing each a€V by a'Ç M> 
c ) ( / : Y-*c, № € F } , 0 ) , 
d)(fa:a'-~a, {/„|6€K},0), for all a€V; / .$Lab(/»). 

The equality L(G')=L {c}UFU {c} is obvious, hence we have proved the first part 
of the lemma. 

b) If G=(Vn, V, S, P) is a random context grammar generating L, then we 
construct the fire grammar G'=(V£, FU{c}, P'), where 

V£ = VN\J{X, y}, with new symbols X and Y, 
P' = {(X - SY, 0, 0), (Y - c, 0, 0)} U 

U{(̂ < - fiU{r>, - M, Q, 
We obviously have L(G')=L{c}\J {c}, which completes the proof. 

Corollary 1. FIP - ¿?2^0, F I R C - S C ^ Q . 
Proof. Follows from R C — t h e above lemma and the closure 

properties of 
Corollary 2. FIRC—FIPa c?i0. 
Proof. The language L = {abna\ri^Q}{c}U {c} is in FIRC, but not in FIP a c 

(this follows as in the proof of Lemma 6). 
Lemma 8. F I P - F I O ^ 0 . 
Proof. The language L={abnac\n^0}\J {a, b, c J Ç F I P - F I i V The relation 

LCFIP follows from Lemma 7, and L$FIOA can be proved as in the proof of 
Lemma 5. 

Corollary. F I R C - F I O . ^ 0 , F I P a c - F I O ? i 0 . 
Lemma 9. F I O c F I P a e . 
Proof. Let (G, >), G=(Vn, Vt, P), be a fio grammar. Without loss of gene-

rality we may assume that whenever A—u and A—v are both in P, then these rules 
are incomparable. We construct the fip grammar G' =(VN U {X}, VT, P') , where X 
is a new symbol and P' is constructed as follows. For any rule r: A P write 
g(r) = {A1^-u1, ...,A„~u„}, where A^u^A^u, lsisn. 
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For every rule r: A-+u in P, introduce in P' all the rules (r ( , ) : A^UiX, 
0, {r(i+1)}), l s / s n - l , as well as the rule (r ( n ) : An~unX, 0, {r'}); then, add also 
to P' the rule (r' : A-*u, E, 0), with E={pm\p: B-vÇP, g(p)*0}U{p'\p: 
B ^ v t P , g(p)=0}. 

A derivation in G' develops as follows: the use of a rule (r': A — u, E, 0) is 
preceeded by the application with appearance checking of all the rules r ( i ) , l ^ i ' S 
Scard (g(r)); if such a rule r ( i ) can be applied, then the derivation is blocked. There-
fore L(G, > )=L(G ' ) , hence FIOQFIP a c . The proper inclusion follows from the 
corollary to Lemma 8. 

Lemma 10. FIP01.cFIRC f l c. 

Proof. Let G=(Vn,Vt,P) be a fip grammar. We construct the fire grammar 
G'={Vs,VT,P'\ where 

K = {M, r]\A£VK, r€Lab(P)}U{(U, r)|(r. A - u, S(r), F(r))€P} 
and, for every rule (r: A-*-u, S(r), E(r))ÇP, the set P' contains the following ran-
dom context rules: 

a) ([A, r ] ' - (u,r), 0, Cr), for any jÇS(r), 

• :b) ([5, r] - [B, S], {(M, S)}, Cr>s —{(M, J)}), for any s£S(r) and B£VN, 

c) ((«, s) - [w, s] ,0 ,C s -{(w, s)}), for any s£S(r), 

d) ([B, r] - [.B,f ], 0, C r>/U.{M, r]}), for any / € F ( r ) , 
and B ?£ A, 

with C r=^-{[X,r]}JZ<EF„}, ^[A-ÇÏ^} and if 
^ ¡ e ^ ; « ë 0 , then [m, 

An arbitrary derivation v=> w in G is simulated in G' as follows. If r is not appl -
i-

cable to1 tv then simply apply thè rules of the form d) and continue according to the 
failure field F(r). Otherwise, a rule of the form a) is applied, provided all nontermi-
nals are marked with the label r. The new by introduced nonterminal, (u, i), enables 
us to continue the derivation according to the success field S(r); it assists the appli-
cation of the rules of thé form b) until all nonterminals are marked by s. Next, the 
rewriting of A by u is simply accomplished by a rule of the form c); note that all 
nonterminals of the sentential form must be marked by s. The process continues with 
the rules derived from the rule s£S(r). Obviously, L(G)QL(G'). Similarly, each 
derivation in G'corresponds to one in G, hence L(G')QL(G), hence FIPo cQFIRC a ( ; . 
Thè inclusion is proper, as it follows from Corollary 2 of Lemma 7. 

Let us investigate now the Indian parallel grammars. 
Similarly to the equality IP=IP A , we also have FI IP=FIIP^ . 
Lemma 11. F I I P c I P and F I I P c F I P « . 
Proof. If G=(VN,VT, P) is a fiip grammar, we construct G '=(J^U {S}, VT, 

SiP'), S a new symbol, P'=P{J {S-~A\A£VN}, for proving F H P g l P , and 
G" = (VNU{A'\AeVN},VT,P"), 

P" = {(r: A^xA,{r),{rA))\r. A-xiP}YJ{(rA. A'-A, {r^ Lab 
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for proving FIIPQFIP„C (xA is the string obtained by replacing each occurrence 
of A in x by A'). 

As {a6"a|MS0}(|IP—FIPac and the Dyck language over {a, b} is in FI (it is 
generated by the cfg ({S}, {a, b), {S^SS, S-^X, S^aSb})), but not in IP, both 
inclusions above are proper. 

Corollary 1. JSP-FIHV0 for all families J§?€ {FI, ¿?2, FIO}. 

Corollary 2. IP is incomparable with all families FI, J§?2, FIO, FIP, FIP a c , 
FIRC, FIRCac . 

Lemma 12. FI IP-J? 2 7i0 , F I I P - F I ^ O . 

Proof. L = {a2"|"=0} is in FIIP as it is generated by the grammar ({51}, {a}, 
{S-+SS, S—a}), but it is not context-free, hence nor is it in FI. 

Summarizing the results in the previous lemmas, we obtain: 
Theorem 1. The following diagram holds: 

F l C ^ . i = C a f l i = FIMac,* = M^.A = 

= FIPflC.A = P„c,x = FIRC,,,* = RCflfi<l = 

\ 
o 

FIIP = FIIPA FI = FI, 
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where — • indicates strict inclusion and — • points out an inclusion which is not 
known to be strict. 

Theorem 2. a) The families in the next pairs are incomparable : (i?2, FIO), 
(¿ f 2 ,FIO,) , (¿?2 ,FIPo c), (¿?2,FIRC f l c), (JSP,, FIIP), (FI, FIIP) , (IP, FI), (IP, FIO), 
(IP, FIP), (IP, FIPa c), (IP, FIRC), (IP, FIRCa c), (IP, if2) . b) The following rela-
tions hold: F I P a c - F I O ^ 0 , F I R C f l C - F I O A ^ 0 , J S P . - F I R C « ^ , ¿ f 3 - F I P a c ? i 0 , 
i f 3 - F I O F I O - F I I P 5 * 0 . 

Theorem 3. The following diagram holds 

FI = FI, 
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Theorem 4. a) The families in the next pairs are incomparable: (JS?2,FIP) 
(i?2 ,FIRC). b) The following relations hold: F I R C - F I P f l C ^ 0 , F I P - F I O ^ 0 
F I R C - F I O A ? i 0 . 

3. Final remarks and open problems 

As it may be noticed from the previous results, any recursively enumerable set 
can be generated by fully initial context-free grammars with the following regulated 
rewriting: matrices, programming, regular control and random context, provided 
that the appearance checking mode of derivation is present. If A-rules are not allowed, 
then the fully initial regular control and matrix grammars are weaker than the con-
text sensitive grammars and they are stronger than the context-free ones. Moreover, 
the fully initial context-free ordered, programmed, random context and matrix 
A-free grammars give a hierarchy of languages (appearance checking is supposed). The 
family of context-free languages strictly includes the fully initial corresponding family, 
but it is strictly contained in the family of fully initial regular control and matrix 
languages. Both the families of regular and context-free languages are incomparable 
with the families of fully initial ordered and of Indian parallel languages, as well as, 
with the families of fully initial A-free programmed and random context languages. 
The incomparability of the fully initial ordered family (with A-rules) with the fully 
initial random context and programmed families is only partially solved: we said 
nothing about FIO*—FIPflC and FIO*—FIRCoc. Without appearance checking 
but with A-rules, it seems that the fully initial random context grammars are weaker 
than the regular control, the matrix and the programmed grammars. Moreover, in 
the A-free case, the fully initial programmed and random context grammars are 
stronger than the fully initial context-free grammars, but the relation between them 
remains open (we know only that FIRC—FIP;¿0). As these open problems corres-
pond to some unsettled questions about usual regulated grammars, the answers are 
not expected to be easy. 

Similarly to the usual case, the Indian parallel family has a "lateral" position 
(incomparable with FI, i f 2 etc.). 
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