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Abstract

The purpose of this paper is to investigate the characteristic semigroup of a
Mealy automaton. We show that there exists a bijection from the set of regular
P-classes of a characteristic semigroup S’(M) of a Mealy automaton M onto the
set of regular 2-classes of the semigroup S(M™*) of the projection M™*.

1. Introduction

For a set I, the cardinality of I is denoted by |I|. I* is the free monoid with an
identity ¢ generated by I, and I*=I*—{e}. If wel* is a nonempty word, then we
denote by w the last letter of w. We use the symbol @ for the empty set.

Let 6: S—S, and "1: S;—.S5, be mappings of S and S, respectively. We read
a product A from left to right: (s)6A=((s5)6)4, s€S. Theset(S)d is called the image
of 6 and it is denoted by Im 6. The equivalence relation Ker é defined on S by
(51, s2)€Ker 6 if and only if (s,)0=(s,)d is called the kernel of 4.

An automaton A is a triple A=(S, 1,6), where S is a nonempty set of states, I
is a nonempty set of inputs, § is a state transition function such that &(s, xy)=
=6(6(s,x),y) and 8(s,e)=s for all s€S and all x, ycI*.

A Mealy automaton M is a quintuple M=(S, I, U, 8, 1), where M*=(S, I, )
is an automaton, U is a nonempty Set of outputs, A: SXI-U is an output function.
The output function is also used in the extended sence; for s€ S and xy€l * such that
x€I* and y€l, A(s,e)=¢ and A(s;xp)=A(s, x)l(é(s, x), y)-

The automaton M* mentioned above is called the projection of the Mealy auto-
maton M.

Let M= (S, 1,U,38,1) be a Mealy automaton. To each x€l* we assign the
transformation &, on S, where &,: s—4(s,x), s€S. Let S(M*)={d.|xeI+}.



174 G. Tanaka

Then S(M*)is a subsemigroup of the full transformation semigroup on S. To each

x€I'* we assign the mapping A,: s—~A(s,x), s€S. If xp is an element of 7* such
that both x and y are in I, then (s5)4,,=(5)0,4,.

The congruence ¢ on It is defined by xg¢y if and only if §,=6, and A,=41,.
Put S*“(M)={(1,,,)Ix€I*}. In §’(M) we introduce the multiplication as follows:

(}xa 5::)(’1)»9 6 ) = (63: ‘¥ 6 6y)

Since (0,4, 0,0,)=(2yy, 0,,)€S’ (M), the set S"(M) forms a semigroup which is
isomorphic to I */p. In this paper S’ (M) is called the characteristic semigroup of M.
We note thatif 1,=/, and 6,=96, (x,y, z€I*), then (4,,d,)=(4,, ;) as a pair of
mappings and (2,, 6,)€S’(M).

We shall remark on another aspect of the characteristic semigroup of a finite
Mealy automaton.

Remark. Assume that Sisa ﬁmte set. On the output set U we define a mu1t1p11-
cation by ab_u, {(a, b€ U). In such a way we obtain a right zero semigroup U. To
each (i, dy) in S” (M ) we define the |S IXIS | row-monomial matrix M(4,, d,)
by : .

(s))l if (3)6 =1,

M (lx, Ox)e = _{0 . otherwise.

Two matrices are multiplied in the obvious way, and the set of all matrices forms a
semigroup. Since the mapping (4, d,)—~M(4,,d,) is an isomorphism, S’ (M) is
isomorphic to a subsemlgroup of the wreath product UwrS (M *) of U and
S(M*) (see [7]) : _

2. Regular Z2-class

On a semigroup T Green’s relations are defined by
aRb « aT* = bT', -a¥b< T a=T'b,
a@b o a%c and c@b for some »_cET .

The intersection of two equivalences # and .# is denoted by . An element x of
a semigroup T is called regular if there exists y in T with xyx=x. If D is a Dclass,

then either every element of D.is regular.or no element of D is regular. Therefore we
call a @-class regular if all its elements are regular. In a. regular @-class each -
class and each #-class contains at least one idempotent.

Let T be a-subsemigroup of the full transformation semlgroup on a set S, and
let D be a regular 9-class of T. If x, y€D, then we have xfy in Telmx=Imy,
and x%y in .TeKer x=Kery (see 2, p 39]) -

The proof of the. next lemma is omitted.

“Lemma 1. Let § be a transformation on a set S such that 52—5 and let A be
a mapping from S, to S2 ‘Then dA=1 if and only if Ker 6&Ker A.

_In- what follows M means a- Mealy automaton such .that M=(S,1, U, 6, A).
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Theorem 1. (2., 6,)€S'(M) is a regular element if and only if §, is a regular
element of S(M*) and Kero,EKer 4,.

Proof. “only if” part. Since (4, J,) is a regular element, there exists some (4,, 5,)
in S’(M) such that 6,6,0,=9J, and 6,0,A,=A,. This implies that Kerd,E
EKer d,0,4,=Ker A,. “if” part. Since J, is a regular element, 6,9, 5. =5 for
some d, ln S(M *). Frorn 0,0,%0, we have Ker d,,=Ker éxEKerA

Smce 0,y is an 1dempotent by Lemma 1, 6,y Ac /1 Therefore we have (Agy 0y)

(9, 8,) Az, 3:)=(Ay 8,). QE.D.
For a subset H of S’ (M) we define the sets of mappmgs by
H® = {LI(h, 6)€H}, H® = {8,|(A,, 5,)¢H).

Theorem 2. If L is an -class contained in a regular @-class of S’(M), then
L® is an P-class of S(M*).

. Proof. 1t is clear that there exists some regular P-class L* of S(M™*) such that
L®CL*, Now we show the vahdlty of the reverse inclusion. Let (1., §,)€L be an
idempotent of S”(M). Then §, is an idempotent of L* and §, is a right identity for L*.
Hence for every 8, in L* we have 0,0.=90, and 6p6x:<Se for some d, in S(M™*).
Consequently,  (0;A; 0x)=(Ase, 0)€S" (M) and (9,4, 6)(Ae, 8)=(0: 4, 05).
Moreover, we have (4,, 6,)(6;4,,6,)=(2,, 6,). This yields that (2,, 52)2(5 2es Ox)
in 8’(M), and therefore 6,‘EL(2’ Q.E.D.

Theorem 3. If L is an #-class contained in a regular 9-class of S’(M), then
(A, 6, )0, is a bijection from L onto L™,

Proof. An ldempotent (%> 0.)in L is a right identity for L. If (4,, 8,), (44, 6,)6 L,

Ay, 6) = (A, 6:)(Aes 0e) = (8xAc» 65) = (g5 6:) (e 62) = (A4 85)-

then

Q.E.D.

Let H, and H, be #-classes contained in the same Z-class of S’ (). Then,
using Green’s lemma, it can be seen that |H{®|=|H{?| holds (see [5]). However,
there are examples that show that in general the equality {H®| = |HP| does not
hold. Therefore, in the next theorem, the condition that boht H, and H,are in the
same “Z-class is indispensable.

Theorem 4. Let L be an ZL-class in a regular @-class of S'(M). If H, and H,
are two #-classes contained in L, then |H®|=|H®)|.

Proof. Let (1., 6,) be an idempotent of L, and let H be an #-class of (4., 4,).
If 1,6 HY, then 6,4,=41, since (4,,8,) is an identity of H. Let 1., 1,6 H® and
/1,¢,1y. Then (s)d.4,#(s)d.4, for some s€S, therefore A, and A, are distinct
mappings on Im é,. Let H, be an arbitrary #-class in L. Then (Ap, 6 ) H=H,; for
some (4,,8,) in s (M). Thus H®V={5,4,|4,6 HV}. Assume that 6p). =0,1,
for some 4,,A,€HY, (A,#2,). Then & 5e)x_5 8.4,. Since 6,0, H{?, we have
that 6,6,%6,, and so, Im5 d.,=Im§,. Therefore for every- sEIm5 there exists
some tES with (2)8,0,=s. Then (s)l =(t)0,0,2,=(t)6,0,4,=(5)A, holds for
every s in Imé,, which is a contradiction. Hence Ax# A, 1mp11es 0,y #5 2,. This
shows that the mapping §: H®—~H® defined by (/1 )0 Ok, isa bljectlon from
H® onto H®. Q.E.D. .
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Theorem 5. If Ris an #-class contained in a regular 2-class of S’(M), then R®
is an Z-class of S(M™).

Proof. 1t is clear that there exists an %-class R* of S(M*) such that R R*.
We shall show that the reverse inclusion holds, too. Let (2., 6,)€ R be an idempontent.
Then §, is an idempotent in R*, and therefore, §,5,=5, for every §,€R*. For the
word ex€l™ we have (4., 0..)=(8. A, 0,)ES’(M). Since ,%J,, there exists
some J,€S(M*) such that §,6,=0,. In this case (0.4,,8,)(A,e,8,0)=(A,, J,)
and (,,6.)(0.2, 6,)=(8,.4,, &,). Therefore (6,2,, 6,)ER and 6,6 R®. Q.E.D.

Theorem 6. ([6]). Let D be aregular @-class of S’(M) and (4, 8,), (4, 8,)€D.
Then (4, 6;)%(4,,9,) if and only if Ker é,=Ker d,S(Ker 2, MNKer 1,).

Theorem 7. If R, and R, are distinct Z-classes in the same regular @-class of
S’(M), then RPNRP=).

Proof. If RIP N R =P then, by Theorem 5, we have R =RP. If (i,, 5,)ER,
and (4, 8,)€R,, then &, and §, arc in R{?, thus Ker §,=Kerd,. By Theorem 1,
Ker6,SKer A, and Kerd,SKer 1,. Therefore, by Theorem 6, we have that
(Axs 6)2(4,,6,), and so R,=R,, which is a contradiction. Q.E.D.

Theorem 8. If D is a regular @-class of S'(M), then D® is a regular P-class of
S(M*).

Proof. 1t is obvious that there exists a regular 9-class D* such that D®C D*,
We show that the reverse inclusion holds. Let §,€D* and let L* be an & -class of D*
containing é,. If R is an %-class of D then, by Theorem 5, R® is an %-class of D*.
Hence R®NL*=@. If §,6 RPNL*, then (4,,6,)ED for some 1,. Let L be an
Z-class containing (4,,9,). Then 8, € L®NL* Thus, by Theorem 2, L®=L*
This means that §.€L®@CD®, "and so D*CD®, Q.E.D.

‘Theorem 9. Let D be a regular 9-class of S'(M), and let Dy and D be sets
of &-classes of D and D, respectively. Then |Dg|=|D§|.

Proof. By Theorems 7 and 8, the mapping R-~R® is a bijection from the set of
Z-classes of D onto the set of Z-classes of D®, QE.D. -

If D is a finite regular 9-class, then D and D® consists of the same number of
Z-classes. However, note that we cannot in general assert that D and D® have the
same number of Z-classes.

Lemma 2. If (4, 8,)is a regular element of S” (M) such that §, is an idempotent,
then (4,,, 6.) is an idempotent and 4,,=6,4,,.

Proof. There exists some idempotent (4, &) such that (4,,,6,) £ (A, 5,). Since
(s, 6,) is aright identity in its #-class, we obtain that (4,,, 6.) (1, 6,)=(3.4;, 6,6,) =
=(,9d,). Thus 6.4i,=A4,. From this we have that (1, é,) is an idempotent and
Aw=0.4,. QE.D.

Theorem 10. If D* is a regular 9D-class of S(M*), then there exists a unique
regular @-class D of $’(M) such that D® = D*,



