
CONSTRUCTOR: A Natural Language Interface 
Based on Attribute Grammar*' ** 

Z . ALEXIN1, J . DOMBI1, K . FABRICZ,2 T . GYIMOTHY,1 T . HORVÁTH1 

1 Research Group on Theory of Automata 
Hungarian Academy of Sciences. Somogyi u. 7., H—6720 Szeged 

a Attila József University, Egyetem u. 2., H—6722 Szeged 

Abstract 

The paper gives an overview of a natural language interface currently being developed at the 
Research Group on Theory of Automata at the Hungarian Academy of Sciences in collaboration 
with the Attila József University, Szeged. The interface supports natural language communication 
between the user issuing commands as steps in plane geometry constructions and the actual graphical 
presentation. The Natural Language Interface named CONSTRUCTOR is described and the expe-
riences of the authors are outlined with a view to generalizing the results thus obtained. 

1. Introduction 

Natural Language Interfaces [NLIs] are one of the most common applications 
of natural language processing. The majority of such interfaces have been developed 
for manipulating databases [Cliff 88]. 

The literature on the methodology for NLI evaluation is by and large restricted 
to interfaces to databases [Schr 88]. Other kinds of NLIs do not only lack general 
principles for objective evaluation; their value is rather hard to assess due to the 
fact that they are usually oriented to some special task with a microcosm of words, 
rules, and knowledge. 

We can roughly distinguish two types of Natural Language Interfaces. Less 
complicated Natural Language Interfaces are based on a sentence-by-sentence 
analysis. As a rule, they extract information from the main constituents of sentences. 

*The computer facilities provided by the Alexander von Humboldt Foundation have greatly 
contributed to the completion of this project. 

** Lecture presented at the 1st Finnish—Hungarian Workshop on Programming Languages 
and Software Tools, Szeged, Hungary, August 8—11, 1989, 



248 Z. Alexin et al. 

This approach allows for skipping different parts of the input while restricting parsing 
to finding the words of direct semantic relevance. In case of a simple NLI, knowledge 
representation does not go hand in hand with natural language analysis. In fact, 
here natural language understanding is replaced by pattern matching and pre-wired 
procedures. These interfaces are relatively easy to construct and they can even be 
made portable. An example of such a system is JAKE [JAKE 88]. 

On the other hand, more detailed analysis along with deeper understanding is 
achieved by interfaces which do not omit parts of the input considering them irrele-
vant. Rather, they are designed to capture the overall content of the input, therefore 
they are suitable for analyzing intersentential relations. Their construction, however, 
presupposes global understanding of what the input is about. Therefore, they can 
provide insight into what representing knowledge or understanding natural language 
means. Although, in principle, their transportability is per se precluded, later in 
this paper some considerations suggest that this should not be the case. 

2. CONSTRUCTOR — an NLI for plane geometry constructions 

CONSTRUCTOR, the NLI we are currently working on belongs to this latter 
group of interface systems. It has been designed to accept English sentences used as 
instructions for plane geometry constructions. The basic idea is to let the user issue 
commands whose output is a step in producing a more or less complicated geomet-
rical construction. (A prototype NLI for plane geometry constructions is described 
in [Arz 85], where an interface of the simpler kind is presented.) 

With CONSTRUCTOR, the main steps to be taken are: 

(i) analyze the input in its entirety, 
(ii) translate the result into a semantic representation, 

(iii) produce, on the basis of (ii), a visualized construction, 
(iv) keep track of the sequence of inputs in order to: 

a) maintain control over the whole procedure of construction, 
b) supply the user with a means of feed-back (evaluation). 

Thus, CONSTRUCTOR is part of a program package that consists of the 
following basic modules. 

CONSTRUCTOR itself consists of the following parts: 

a lexical analyzer 
a syntactic parser 
an attribute evaluator 
a semantic interpreter 
a construction creator 

These moduls can be briefly described as follows. 



A Natural Language Interface Based on Attribute Grammars 249 

INPUT 
Figure 1. 

, 2.1. The lexical analyzer 

The lexical analyzer consists of a machine dictionary, a scanner and a morpho-
logical analyzer. .. _ . .. . 
,>' The dictionary of CONSTRUCTOR contains a lexicon of more than 300 items 
necessary for issuing commands (a typical set of instructions is provided with the 
description of the syntactic analyzer). The word stock incorporated in the lexicon 
makes it possible to maintain ease of reference. Thus the information contained 
in one instruction is related to other pieces of information from a sequence of com-
mands. 

A lexical entry consists of a word-stem (canonical form) and a set of codes that 
are necessary for subsequent analysis. In fact, it is in the lexical entry that basic 
morphological, syntactic, and semantic information is stored. Morphological features 
involve data for the derivation of inflected forms. From the point of view of syntax, 
the lexicon helps the parser assign a token to a particular word. The semantic in-
formation contained in the entry is the basic synthetised attribute underlying the 
final process of analysis, i.e. attribute evaluation. 

The lexicon holds synonymous words to account for the fact that there is a 
difference in word usage among students depending on age and/or level of training 



250 Z. Alexin et al. 

(see, e.g: selection from synonymous verbs like "name", "mark", "label", "denote", 
or "designate" according to the above factors). 

The lexical module is virtually extended by a morphological analyzer. Its func-
tion is to trace all the word-forms not found in the lexicon to their canonical lexeme. 
Its work is based on a tagging algorithm for the derivation of inflected word-forms. 
The relevant information for finding the base form (stem) of a lexeme is encoded in 
the lexical entry. The algorithm facilitates the derivation of all the four major parts 
of speech: verbs (past tense, past participle, third person in the present tense, and 
gerund), nouns (plural forms), adjectives (comparative and superlative degree),'and 
adverts (degrees and "-ly" traced back to adjectival canonical forms with the deriva-
tional path recorded). The inclusion of a morphological analyzer reduces the size of the 
lexicon to a minimum, while the overall amount of actual word-forms is potentially 
well over a thousand. In some cases actual word-forms appear in the lexicon along 
with their canonical form. This is due to matters of conversion, that is, some inflected 
forms may represent products of a change in linguistic status. For instance,- the 
word-form "circumscribed" appears to be an adjective rather than a past participle. 
In this case the algorithm would yield a false result in the sense that it would analyze 
the form as the past participle of "circumscribe" instead of assigning it to the class 
of adjectives in base form. Here we create a lexical entry for "circumscribed" with 
the codes for an adjective. As dictionary look-up takes place prior to derivation, 
a match for "circumscribed" is found with no conflict with the analyzer. "Table 1 
shows the main morphological derivations handled by the analyzer. j; 

Table 1. 

MORPHOLOGICAL CATEGORIES STEMS VARIATIONS INFLECTIONS 

VERBAL MORPHEMES: 

(Canonical form: 'apply') 

apply 
applie-
applie-

-in.g 
-s 
. -d 

NOMINAL MORPHEMES: 

(Canonical form: 'copy') 

copy 
copie- -s • • 

ADJECTIVAL/ADVERBIAL MORPHEMES: 
(Canonical form: 'big') 
(Canonical form: 'great') 
(Canonical form: 'equal') 

big 

great 
equai . 

bigg- ' -er 
-er 
-iy : 



A Natural Language Interface Based on Attribute Grammars 251 

2:2. Syntactic parsing - \ 

The input to the syntactic parser is a string of tokens and terminals to b.e pro-
cessed inio. a sentence (or a list of sentences) with some structure assigned, to the 
input'on the basis of about two hundred re-writing rules. The parser is a hypothesis-
driven (top-down) depth-first left-to-right syntactic analyzer. The syntactic rules 
represent a context-free grammar description. As for the type of look-ahead, the 
syntax is basically of the LL(1) type. The only exceptions are conjunctions together 
vyith a conjunction and more or less optional commas (","), and a few minor con-
structs. 

The sentences that can be processed by the parser may be fairly complex. The 
only significant restriction imposed is that one sentence may refer to but one step 
of construction. It means that issuing commands like "Draw and move a right 
triangle..." is prohibited. On the other hand, nested sentences for object specification 
can be used. It means that; sentences like "Draw a segment that connects points 
"A and ~B." or "Label the line that crosses circle ~C at points ~A and ~B by "1." 
can be freely used. To get a grasp of the range of sentences accepted by CONSTRUC-
TOR, consider the table below: 

•"; • Table 2.: - . . . - . 

FRAME SENTENCE STRUCTURES 

1. Draw two parallel lines. 
(Verb Phrasej(Noun Phrase) 

2. Construct a triangle inside the circle. 
(Verb Phrase)(Noun Phrase)(Prep Phrase) 

3. From point "A, drop a vertical line. 
(Pre-Specifier) (VP) (NP) 

4. Label by "e a straight line that is above the 
circle.- - "•'• • L.•.••.:•'. 
(VP) (NP) (Specifier) 

5. Label by "J a point that divides segment "0~B 
into parts with a proportion of 1:3." 
(VP) (NP) (Specifier within Specifier) 

6. By measuring off the length of segment ~A"B, 
draw two circles with radius 'A'B at a distance 
equal to the difference between the base of the 
triangle and side "U"V of the heptadecagon. 
(PreVP) (VP) (NP) (Specifier within Specifier) 



252 Z. Alexin et al. 

2.3. Attribute evaluation for the basic grammatical structures 

The system uses an L-attribute evaluation strategy. Its task is to compute the 
basic features of grammatical structures. For example, the attributes of the verbal 
object can be computed from the attributes synthetized for the noun phrase, the 
adjectival phrase, and the apposition. This computation mostly involves synthetized 
attribute evaluation, whereas further specification of the object (localization, related-
ness etc.) requires the use of inherited attributes. 

Facing the complexity of the sentences above does not appear to be a simple 
enterprise. Nevertheless, there do seem to be clues to semantic interpretation. 

For one thing, there are some observations that can be made use of for a more 
thorough understanding of the semantic relations involved. 

Prepositions, for example, correspond to markers of localization. Localization 
is taken to refer to either a place or a direction in the plane cf.: 

Mark a point on the circle. 

Move the triangle up. 

Adjectives and nouns enter into relations of selectional restrictions, cf.: 

* Draw a parallel circle. 

Verbs appear to invoke one or more of the following actions: 

drawing, 
marking, 
measuring, 
manipulating. 

These action types often result in overlapping actions due to the vagueness present 
in natural languages, cf.: 

Label by "e an arbitrary line. 
1. Draw an arbitrary line. 
2. Label it by ~e. 

Drop a vertical line "e. 
1. Drop a vertical line. 
2. Label it by ~e. 

2.4. Semantic interpretation 

The result of syntactic parsing, attribute evaluation, and the observations all 
serve as input for semantic interpretation. The main bulk of analysis at this stage, 
however, is done through a metalevel description for building complex noun phrases. 
A part of the metalevel description is shown in Figure 2 below: 



A Natural Language Interface Based on Attribute Grammars 253 

Objects are 
{POSITION data structures} 

IntegerPosition 
IntegerPosition 
RealPosition 
RealPositioii 

coordinate): IntegerNumber; 
coordinate): IntegerNumber; 
coordinate): RealNumber; 
coordinate): RealNumber; 

is X (alias X" 
is Y (alias Y' 
is X (alias X" 
is Y (alias Y" 

{DESIGNATION Data structures} 

is ObjectName (alias Name); 
has IntegerPosition (alias Locus); 
has RealPosition (alias Locus); 

is IntegerPosition; 
is RealPosition; 
has Designation (alias Name); 

{TRIANGLE data structures} 

TriangleBySideType — (EquiAngular (alias EquiLateral), 
Isosceles, Scalene (alias General)); 

TriangleByAngleType = (Acute, Right, Obtuse); 

Designation 
Designation 
-Designation 

Dot 
Dot 
Dot 

Triangle is Dot; 
Triangle is Dot; 
Triangle is Dot; 
Triangle is Designation (alias Name); 
Triangle is ofSizeType; 
Triangle is of TriangleBySideType; 
Triangle is of TriangleByAngleType; 
Triangle has Edge [3] (alias Side): Line; 
.Triangle has Angle [3]; 
Triangle has Center "Line [3]: Line; 
Triangle has MidPoint [3]: Dot; 
Triangle has Circumscribed "Circle: Ellips; 
Triangle has Inscribed "Circle: Ellips; 
Triangle has Circumference: Length; 
Triangle has Area: RealNumber; . 

Figure 2. 

Another difficulty is computing the relations between the objects involved in 
•some construction. Different kinds of specifiers get evaluated by way of logical 
expressions and mathematical functions and equations. For example, the location 
"on the triangle" is computed from the equations relating to the three sides of the 
triangle and defining a set of points to be found "on" the triangle. 

From the nodes of a given triangle we can compute the equations for the edges 
•of the triangle. If the coordinates of the point are within the sets of points defined 
by the equations, then the relation "on the triangle" holds. 



254 Z. Alexin et al. 

2.5. The execution of commands - • •• 

The action creator receives as an input a complete specification of the object 
to be created and it-defines the procedure to be executed with all the parameters set 
The definition does not involve arriving at a possible solution of the specifications 
but also questions of a suitable appearance are of relevance. 

Although the set of sentences presented above may seem impressive as far as 
syntactic and semantic complexity are concerned, the most prominent feature of 
CONSTRUCTOR is most likely its ability to handle reference to some previously 
defined object or action. This feature of CONSTRUCTOR does not simply imply 
a syntactic sugar of using words like "it" or "its" but, from a broader perspective, 
it opens the way to picturing a series of instructions as related steps of some geo-
metrical construction. Keeping a record of what has been done makes it possible 
to resolve or, at least, detect, cases of ambiguity. 

3. Summary 

The kind of natural language interface under consideration appears to be a 
perspective candidate for a large scale, of applications from CAD through text 
editors to intelligent database query languages. Our aim has been to develope a 
software tool for generating NLIs of this kind. 

Since a software generator is considered the right tool in case 
a) it can generate a major part.of.the sóftwáre, and 
b) it can provide some high level user friendly means for the description of the 

variable parts (cf. [Mart 83]),. . 
we have tried to find the more or. less readily standárdizáble .parts of CONSTRUCT 
TOR and provide a metalanguage for thé specification of the variable parts. 

In the case of CONSTRUCTOR that has basically been generated by a genera-
tor based on attribute grammars, the following modules seem to have been apt to 
generation: 

— its lexical analyzer is highly suitable for generation. 
— the algorithm for morphological derivation áppears as a standard procedure 

of the lexical analyzer. We have constructed a convenient tool for dictionary 
maintenance. 

— the syntactic parser is easily generated by PROF—LP [Gyim88] as long 
as the number of LL(1) conflicts is kept to a minimum. In other cases, 
procedures defined by the user can be implemented (this has only partly 
been carried out in,the present version). Slight modifications, in the syntactic 

• description of CONSTRUCTOR might be sufficient for applications . in 
syntactically related domains. 1. : 
á considerable amount of attribute evaluation can be standardized. In cases 
where linguistic structure shows .significant variation (e.g. the structure 
of objects), the . metalevel description can be used for. object, definition. 

. .. This description is the basis of the procedures that handle the, object tab_le. 
There are several parts of the specification, which are suitable forgeneraliza-



A Natural Language Interface Based on Attribute Grammars 255 

tion, but others are problem-specific. Here, again, the metalevel description 
can provide a possible way-out by defining clues for establishing relations 
between objects. 

— although the implementation of relations depends on the very application, 
it seems probable that a natural language interface connected to some CAD 
or data-base would have much in common with CONSTRUCTOR, 

— at present we cannot give a positive answer as to whether the actions in-
voked by CONSTRUCTOR could be straightforwardly transferred to some 
other Natural Language Interface, if at all, but a deeper insight in the se-
mantic configuration of the class of verbs might lead to some result in the 
future. 

4. Further research 

Our farther research in the area of Natural Language Interface generation will 
mainly be oriented to developing a generator that generates Natural Language 
Interfaces in a unique framework (now PROF—LP and metalevel object descrip-
tions are separate entities). Another field of interest would be developing further 
methods for generalization. 

References 

[Arz85] ARZ, J.: TRICON Ein System für geometrische Konstruktionen mit natürlichsprach-
licher Eingabe, Technische Bericht, Universität des Saarlandes, Saarbrücken, KI— 
LABOR. 

[Cliff88] CLIFFORD, J.: Natural Language Querying of Historical Databases, Computational 
Linguistics 1988, 14 (4), 10—34 pp. 

[Gyim88] GYIMÖTHY, T . , HORVATH, T . , KOCSIS, F., TOCZKI, J . : Incremental algorithms in PROF— 
LP, Lecture Notes in Computer Science Vol. 371, 93—102 pp. 

[JAKE88] JAKE The application-independent natural language user interface, English Knowledge 
Systems, Inc. Scotts Valley, California, 1988. 

[Mart83] MARTIN, P., APPELT, D., PEREIRA, F.: Transportability and Generality in a Natural 
Language Interface System, Proceedings of IJCAI—83. Vol. 1, 573—581 pp. 

[Schr88] SCHRÖDER, M.: Evaluating User Utterances in Natural Language Interfaces to Data-
. bases, Computers and Artificial Intelligence 1988 (7), 317—337 pp. 


